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Remote sensing is a key tool to derive glacier surface velocities but existing
mapping methods, such as cross-correlation techniques, can fail where surface
properties change temporally or where large velocity variations occur spatially.
High-resolution datasets, such as UAV imagery, offer a promising solution to
tackle these issues and to study small-scale glacier dynamics, but newworkflows
are required to handle such data. Therefore, we tested the potential of new deep
learning-based image-matching algorithms for deriving glacier surface velocities
across the ablation area of a glacier with strong spatial variability in surface
velocities (<5 m/yr to >100 m/yr) and substantial changes in surface properties
between image acquisitions. For a thorough comparison of state-of-the-art
methods and sensors, we applied three different techniques (cross-correlation
using geoCosiCorr3D, feature tracking with ORB using SeaIceDrift and the new
deep learning-based method using ICEpy4D) and three different platforms
(Sentinel-2, PlanetScope, UAVs) to estimate glacier surface velocities. Results
showed lowest errors for velocities derived with the deep learning-based
approach applied to UAV imagery (RMSE = 2.17 m/yr, R2 = 0.99), followed by
cross-correlation using Sentinel-2 images (RMSE = 21.0 m/yr, R2 = 0.59) and the
deep learning-based approach with PlanetScope data (RMSE = 21.28 m/yr, R2 =
0.36). Cross-correlation with geoCosiCorr3D resulted in comparably high errors
with the UAV dataset (RMSE = 36.22m/yr, R2 = 0.24), whereas ORB-based feature
tacking showed lowest performance with all sensors. Spatial patterns of
computed velocities indicate that applying existing cross-correlation methods
for areas with regular displacements or low glacier velocities yields suitable
results on UAV data, but innovative deep learning-based approaches are
required for resolving rapid changes in velocities or in surface properties. This
novel method benefits from improved keypoint detection and matching through
training using neural networks and data characterized by challenging geometries,
outlier minimization and more robust descriptors by applying cross-attention
layers. We conclude that continued development of deep learning-based feature
tracking approaches for glacier velocity computations may substantially improve
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UAV-based velocity derivations applied to challenging situations. This method is
able to deliver reliable displacement data in situations where traditional methods
fail, which implies a new level of detail in understanding and interpreting glacier
dynamics.
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UAV, PlanetScope, Sentinel-2, cross-correlation, Superpoint, SuperGlue, LightGlue,
displacement

1 Introduction

Understanding glacier dynamics is a prerequisite to unravel key
physical processes controlling glacier morphology and mass balance
as well as socioeconomic impacts of glaciers such as meltwater
production (Millan et al., 2022; Rounce et al., 2023). Glacier surface
velocity (referred to as “glacier velocity” herein) is a central
component of glacier dynamics and reflects glacier behavior.
Therefore, increasing spatiotemporal density of glacier velocity
observations and understanding should assist with untangling the
processes and mechanisms by which glaciers respond to
atmospheric forcings (Nanni et al., 2023).

While field-based methods offer precise measurements, they are
limited in terms of spatial resolution and temporal coverage. Remote
sensing approaches on the other hand offer regional-scale analysis of
glacier velocity albeit with some limitations in terms of spatial and
temporal resolution (Scambos et al., 1992; Immerzeel et al., 2014; Jawak
et al., 2018; Shukla and Garg, 2019; Pronk et al., 2021; Van Wyk De
Vries and Wickert, 2021; Mohanty et al., 2024; Zhou et al., 2024).
However, remote sensing of glacier velocities is a non-trivial task due to
decorrelation and standardization issues and consequentially, several
different remote sensing methods exist, such as interferometric
techniques using synthetic aperture radar (InSAR) and offset
tracking. While SAR data can be utilized for interferometric
techniques, such analyses are only applicable to glaciers under
certain conditions related to ground and sensor characteristics. In
this study, we apply offset tracking, which is more robust and
applicable to both medium and high-resolution data (Shen et al.,
2022; Sood et al., 2022; Li et al., 2024a; Mohanty et al., 2024). Offset
tracking approaches can be applied to both SAR and optical images and
have been widely used to study glacier velocities at a range of spatial and
temporal scales (Scambos et al., 1992; Friedl et al., 2021; Mohanty et al.,
2024). Satellites offer broad spatial coverage and consistent long-term
observations but are most effective on fast-flowing glaciers (e.g., in
Greenland) or those with supraglacial debris, where surface features
remain recognizable over temporal baselines of up to a year. However,
for achieving very high spatial resolutions and detecting small changes,
large spatial velocity variations or slow movement, it is often necessary
to apply unoccupied aerial vehicles (UAVs) for examining glacier
dynamics (Immerzeel et al., 2014; Rippin et al., 2015; Bhardwaj
et al., 2016; Kraaijenbrink et al., 2016; Jouvet et al., 2018; Cao et al.,
2021; Karimi et al., 2021;Wang et al., 2021; Karimi, 2022; He et al., 2023;
Qiao et al., 2023).

Most offset tracking techniques use variations of correlation
methods and comprise intensity tracking and feature tracking
methods (Shen et al., 2022). Intensity tracking uses patches of
images (or chips) and applies cross-correlation algorithms to
calculate displacement, whereby approaches based on the spatial

domain (normalized cross-correlation) or on the frequency domain
(phase-correlation) exist (Heid and Kääb, 2012; Aati et al., 2022b;
Dematteis et al., 2022; Shen et al., 2022). While the majority of
studies are based on intensity tracking methods (Pronk et al., 2021;
Robson et al., 2022; Kelly et al., 2023; Nanni et al., 2023; Mohanty
et al., 2024), several feature tracking algorithms, such as SIFT (Scale-
Invariant Feature Transform), SURF (Speeded-Up Robust Features)
or ORB (Oriented FAST and Rotated BRIEF), have been used for the
derivation of ice movement (Muckenhuber et al., 2016; Hyun and
Kim, 2018). Intensity tracking methods are considered robust in case
of low surface deformations (i.e., changes in surface properties, not
in a glaciological sense) or regular movement patterns, but may be
limited for large velocity ranges and strong surface alterations due to
decorrelation (Dematteis et al., 2022; Kelly et al., 2023), or may even
fail due to substantial surface changes, such as opening crevasses, or
changes of surface facies due to ablation or snow drift (Van Wyk De
Vries and Wickert, 2021; Li et al., 2024b).

Therefore, challenging conditions with strong surface changes
require new methods to derive glacier velocities. Deep learning
applications revolutionized remote sensing approaches in many
thematic areas such as land cover classification or modelling
(Pang et al., 2025; Tang et al., 2025). Recent studies have
indicated that deep learning-based image matching algorithms
also bear improvements in mapping glacier surface properties
and reconstructions based on structure from motion (SfM), as
they show much higher densities of matched features and are
capable of tracking features under strong glacier activity and
geometry variations (Ioli et al., 2023a; Ioli et al., 2024; Mohanty
et al., 2024), making it a promising technique for more robust
feature tracking approaches (Shen et al., 2022). However, these
techniques have not yet been applied to optical UAV imagery for
deriving glacier velocities and so the potential of them for velocity
mapping with high-resolution data is unknown.

Therefore, the aim of this study is to compare new deep learning-
based workflows to frequently used, existing algorithms for deriving
glacier velocities with very high-resolution UAV data, high-resolution
(PlanetScope) andmedium resolution (Sentinel-2) satellite imagery.We
apply our workflows to Austerdalsbreen, as it is a challenging test case;
where the glacier exhibits substantial inter-annual surface changes and
large velocity ranges (5 m/yr to >100 m/yr).

2 Materials and methods

2.1 Study area

Austerdalsbreen (61°36′N, 6°59′E) is a 19.38 km2 outlet glacier of
the Jostedalsbreen ice cap with a glacier tongue of about 2,700 m in
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length in 2024 (measured from the confluence of the two icefalls,
Odinsbreen and Thorsbreen; Figure 1). The steep icefalls separate
the accumulation area located on a high plateau from the low-
sloping glacier tongue, which constitutes the study area.
Jostedalsbreen is the largest ice cap of the European mainland
and has been receding since the termination of the Little Ice Age
around 1750 CE (Carrivick et al., 2022). Austerdalsbreen
experienced strong changes in recent years, with the formation of
an expanding glacial lake since 2014 and a continuous and
accelerating thinning and decrease of the glacier’s length and
volume (Seier et al., 2024). However, the ice thickness in the
central part of the glacier tongue is still more than 200 m
(Gillespie et al., 2024).

Several studies exist that focus on the glacier’s prominent ogives
(transverse annual light and dark bands on the glacier surface,
formed below the icefalls) and series of proglacial moraine ridges,
and glacier dynamics were considered as a main influencing factor
for explaining their formation and variability (King and Lewis, 1961;
Eyles and Rogerson, 1978; Waddington, 1981). The surface of
Austerdalsbreen is also characterized by a distinct ablation-
dominated medial moraine, which separates the ice flow from the
two icefalls. However, until now, no remote sensing-based approach
to map glacier velocity with high-resolution data exists. Field
observations show that the glacier is also characterized by a

strong spatial variability in glacier velocity, from 5 m/yr at the
ice margins to more than 100 m/yr near the icefalls, a distinctive
feature already mentioned in the King and Lewis (1961). These
spatio-temporal variations in glacier velocity, together with rapid
surface changes, make Austerdalsbreen an ideal test site to study
different velocity mapping techniques in challenging conditions.

2.2 Datasets and preprocessing

To test various glacier velocity algorithms, optical high-
resolution UAV data is the main data source of this study.
Furthermore, the integration of two additional optical remote
sensing sensors intends to provide a feasible comparison to other
datasets. We selected Sentinel-2 imagery as a medium resolution
source to include one of the most used optical remote sensing
sensors for glacier velocity mapping (Altena et al., 2019; Bhambri
et al., 2020; Pronk et al., 2021; Zhou et al., 2021; Millan et al., 2022;
Mouginot et al., 2023). To also provide an example of a high-
resolution, spaceborne sensor, we also incorporated PlanetScope
data into our analysis, which has been frequently used to calculate
glacier velocity in existing research (Dell et al., 2019; Bhushan et al.,
2020; Liu et al., 2020; Liu et al., 2024; Aati et al., 2022a; He
et al., 2023).

FIGURE 1
(a)Overview of the study area showing the location of the Jostedalsbreen ice cap in Norway; (b) the location of Austerdalsbreen in relation to the ice
cap; and (c) a detail of Austerdalsbreen on 19 September 2024, showing the boundary of the UAV survey area. Notice the transverse light and dark bands
called ogives on the glacier tongue. Satellite image: ESA (2024). Elevation data: Kartverket (2021) Glacier outlines: RGI Consortium (2023).
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2.2.1 UAV data - mapping and preprocessing
We performed one UAV flight on 13 September 2023

(1043 images), which is approximately at the end of the
hydrological year that is also used for evaluating the mass
balance of glaciers (Seibert et al., 2021) and one flight on 03 July
2024 (862 images), as prolonged snow cover makes earlier
observations not feasible. However, the resulting time period
from fall to early summer is an ideal benchmark for testing
different sensors and algorithms, as it represents the winter
period but also uses dates without snow cover, which may
confound displacement calculations. Both datasets were acquired
using a Wingtra Gen II fixed-wing UAV with a front and side
overlap of 70% to ensure comprehensive coverage and high-quality
photogrammetric reconstruction.

To accurately georeference the images, a Post-Processing
Kinematics (PPK) workflow was applied, utilizing the
Tunsbergsdalen base station, maintained by the Norwegian
Mapping Authorities (Kartverket). This workflow resulted in
geolocation residuals of 0.06 m in the X and Y directions and
0.11 m in the Z dimension for the 2023 acquisition, and 0.04 and
0.10 m for the 2024 acquisition.

The acquired images were processed photogrammetrically in
Agisoft Metashape Professional following a standard workflow,
beginning with image alignment and subsequent steps for 3D
reconstruction.

The resulting orthophotos with a ground sampling distance of
0.03–0.04 m were then coregistered using an affine transformation
with 14 manually mapped matching points, placed on solid surfaces
along the glacier and lake boundary, leading to a registration error of
0.09 m. Finally, we resampled the images to 0.10 m, 0.15 m and
0.60 m for the analysis. This was performed to test different
resolutions and to reduce processing times.

2.2.2 PlanetScope
The newest generation of the PlanetScope dove constellation

is the PSB. SD instrument, which provides eight spectral bands
(coastal blue, blue, green I, green, red, yellow, red edge and near-
infrared (NIR)), a product resolution of 3 m, resampled from
original 3–4 m depending on flight height, and near daily
temporal resolution since 2021 (Planet Labs PBC, 2023). To
reach the best possible match to the UAV campaign, we
downloaded PlanetScope PSB. SD SuperDove ortho scene
surface reflectance products (Planet Labs PBC, 2024) for
13 September 2023, and 20 July 2024. This is the closest
possible match (within 17 days of the UAV acquisition) due
to cloud coverage. Final products showed good coregistration, so
no further geometrical corrections were applied.

2.2.3 Sentinel-2
Sentinel-2 provides 10 m spatial resolution with the blue, green,

red and NIR bands and a revisit period of approximately 5 days. We
used Level-1C data (ESA, 2024) to avoid potential artefacts from
atmospheric corrections. The acquisition dates of the utilized scenes
were 31 August 2023, and 24 June 2024. Respective dates represent
the closest match to UAV acquisitions (within 13 and 9 days of the
UAV images) without cloud cover or noise from haze. Visual
inspection showed good geometrical coregistration and no
further geometrical processing was performed. For some

algorithms, respective data was resampled to 5 m to allow more
flexibility with the step size.

2.3 Glacier surface velocity algorithms

The main target parameter of this study is horizontal (2D)
displacement instead of 3D displacement, as the latter is also
dependent on the quality of the associated digital elevation
model, which complicates the assessment and is not available for
the dates of the spaceborne data. We aimed at selecting algorithms
that cover different methods, i.e., intensity tracking based on cross-
correlation and feature tracking approaches, and that are applicable
without the need of additional filtering, as this also introduces
different tradeoffs and variations based on glacier shape and
surface conditions (e.g., snow cover, shadows) during image
acquisition (Paul et al., 2017). However, different algorithms lead
to different output products, i.e., either raster datasets or
displacement vectors. The latter have to be interpolated to
provide a feasible comparison in the raster domain. In such
situations, we used inverse distance weighted (IDW) for
interpolation as this method is frequently used to interpolate
glacier velocities from point data (Waechter et al., 2015) and
shows good results and higher performance compared to other
techniques (Gong et al., 2014; Hodam et al., 2017). The
corresponding IDW-radius was set to half the maximum distance
of resulting displacement vectors on the glacier surface to minimize
holes in the interpolated surface. However, it is important to
consider that the performance of interpolation techniques can be
highly variable (Strößenreuther et al., 2020). To provide a
comparison of all datasets in the vector domain, we calculated
100 m × 100 m median vectors from the resulting products.

2.3.1 Intensity tracking using geoCosiCorr3D
Intensity tracking methods compare small sections of images,

called windows or chips, and correlate them to derive offsets that
represent glacier velocities. We selectedGeospatial CosiCorr3D (Aati
et al., 2022b; Aati, 2024) because it is a newer improvement of the
frequently used and cited COSI-Corr algorithm (Leprince et al.,
2007; Heid and Kääb, 2012; Jawak et al., 2018). With this approach,
horizontal 2D displacements are derived using a multi-scale moving
window, whereby the first window maximizes the correlation
between base and target image and a smaller window is used to
compute a finer offset value. This correlation can be computed in
both the spatial and the frequency domain, although the latter is
recommended (Aati et al., 2022b). Several parameters need to be
defined, such as the initial and final window sizes, number of
iterations, and sampling distance. Sampling distance (step size)
has to be larger than one pixel for this algorithm. To achieve a
resolution higher than 20 m with the Sentinel-2 dataset, the
mentioned resampling step to 5 m was performed. This approach
usually uses a single band for each image. Therefore, we computed
principal components with all our datasets, using all bands from
PlanetScope and the 10 m bands from Sentinel-2, which is
recommended to enhance topographic features and reduce noise
in ice velocity research (Bindschadler and Scambos, 1991;
Fahnestock et al., 2016). We used the first principal component
to calculate the displacement with geoCosiCorr3D.
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For other parameters, we used the initial settings according to
the relevant literature (Aati et al., 2022a; Aati et al., 2022b) such as a
window size larger than the expected displacement (Dematteis et al.,
2022). However, when no correlation, intense noise, or unrealistic
results appeared, we gradually adapted the window size or used the
spatial instead of the frequency domain. With these variations, we
also intended to reduce the effects of different tradeoffs due to
different window sizes (Paul et al., 2017). The final products of the
algorithm were raster-based u and v components, which were
converted to total horizontal displacement.

2.3.2 Feature tracking using ORB
Feature tracking algorithms identify certain distinctive features in

the primary images based on different techniques that are independent
of orientation or scale, store the identified features as keypoints, and try
to identify these distinctive points by comparing them to keypoints of
secondary images (Gabarró et al., 2023). We selected an ORB-based
feature tracking method implemented in the python package
SeaIceDrift (Muckenhuber et al., 2016; Korosov and Rampal, 2017;
NERSC, 2018), as this package shows high accuracy and speed in
cryospheric research, and ORB shows better performance compared to
other traditional feature tracking methods such as SIFT or SURF
(Rublee et al., 2011; Muckenhuber et al., 2016; Li et al., 2022). The
approach is based on the FAST (Features from Accelerated Segment
Test) keypoint detector that analyses the images on several scales and
levels, while ORB adds a direction using intensity-weighted centroids,
selects the best keypoints to subsequently match the features using a
brute force matcher and the Hamming distance, and applies a ratio-test
before accepting the best match (Muckenhuber et al., 2016). Finally, we
calculated displacement vectors from the resulting coordinates of the
matches. We did not apply the pattern matching option of the
mentioned package, which is based on the cross-correlation
technique (Korosov and Rampal, 2017), to avoid methodological
overlaps with the intensity tracking approach of the previous
chapter. However, selective test results of the pattern matching
technique did not show any improvements of the results obtained
by standalone feature tracking applied in the presented study.

Numerous parameters, such as the number of target features, the
ratio threshold, pyramid levels, maximum expected displacement, or
patch size, can be selected in the module. In this study, all
recommended settings according to Muckenhuber et al. (2016)
were used for the initial run, apart from the expected
displacement, which was set to the maximum observed value
found in the literature (King and Lewis, 1961). In case of a low
number of computed displacement vectors, we fine-tuned other
parameters, e.g., by increasing the number of target features, ratio
thresholds or pyramid levels to achieve a maximum number of
reasonable displacement vectors and ideal spatial distribution.

For deriving final displacement vectors, we used the coordinates of
the resulting matches to calculate the u component, the v component
and the total displacement with subsequent interpolation.

2.3.3 Deep learning-based feature tracking
Deep learning-based image matching and feature tracking show

increased performance in recent literature (Wang et al., 2022;
Petrakis and Partsinevelos, 2023; Hendrickx et al., 2024). New
deep learning techniques are considered particularly useful for
challenging regions, such as mountain areas with steep

topography, or given difficult conditions where traditional feature
tracking methods may fail, such as situations with strong appearance
changes and high rotational deformations (Yuan et al., 2022;
Maiwald et al., 2023; Ioli et al., 2024).

In this study, we used the feature matching algorithms SuperPoint,
SuperGlue and LightGlue (DeTone et al., 2018; Sarlin et al., 2020;
Lindenberger et al., 2023), as implemented in the python package
ICEpy4D (Ioli et al., 2023a), as the respective matching algorithms were
already successfully used in glacier or permafrost environments (Ioli et al.,
2023b; 2024; Hendrickx et al., 2024), although not for deriving glacier
surface velocities from orthoimages but for 3D terrain reconstruction.

The approach uses single or three band images in byte format, and
looks for corresponding points, which are detected by SuperPoint, and
matches these points with the SuperGlue or LightGlue matcher (Ioli
et al., 2023a; Lindenberger et al., 2023). SuperPoint is a Convolutional
Neural Network (CNN) that uses a self-supervised training approach to
extract relevant distinctive points in the images and a corresponding
256 unit descriptor, showing increased performance when compared to
LIFT, SIFT andORB (DeTone et al., 2018). SuperGlue thenmatches the
keypoints using two components, an attentional graph neural network
that uses initial features communicating with each other using self- and
cross-attention layers formore robust representations of the descriptors,
and an optimal matching layer that creates a score matrix to find the
best partial assignment of the keypoints by utilizing the Sinkhorn
algorithm (Sarlin et al., 2020). Thereby, the algorithm considers both
images at the same time for outlier minimization and sparse point
matching (Lindenberger et al., 2023). ICEpy4D uses pre-trained models
with either indoor or outdoor-based sets of weights (Ioli et al., 2024).
We selected the outdoor-based model, which is trained on the
MegaDepth dataset (Li and Snavely, 2018) following (Ioli et al.,
2024). In the case of a low number of matches, also the indoor
model was tested, but this setting did not lead to improved results.
The other utilizedmatcher, LightGlue, is an enhancement of SuperGlue
that aims to make the feature tracking algorithm more accurate and
efficient by preselecting points that are easier to match, and by
discarding points that are considered not matchable by the
algorithm (Lindenberger et al., 2023).

In addition to the selection of the indoor or outdoor pre-trained
models, several options are available for fine tuning the feature
matching approach, such as the SuperPoint keypoint detector
threshold, the limit for the detected keypoints and tiled or
untiled processing options. We used a tiled processing approach
and a detector threshold of 0.0001 following recommendations in
the package documentation (Ioli et al., 2023a), but we increased the
limit for detected keypoints to 20,000.

For deriving final displacement vectors, we used the coordinates
of the resulting matches to calculate the u component, the v
component and the total displacement of the point-based
displacements with subsequent interpolation.

2.4 Validation and performance measures

Different validation options for evaluating glacier velocities exist
(Karimi et al., 2021; Mouginot et al., 2023; Liu et al., 2024) and
several best practice approaches are discussed in Paul et al. (2017).
Simple methods include visual inspections of the flow field and
comparisons to the glacier outlines or inspections of stable ground
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areas. However, providing error measures based on ground-truth
points from field surveys or higher resolution images are considered
as the highest-level error assessment approaches (Paul et al., 2017).
In this study, the applied approach followed these recommendations
and included a combination of validation metrics.

Quantitative error measures are used as the most important
indicators of algorithm performance following Paul et al. (2017).
Therefore, the high-resolution UAV data (pixel size 3–4 cm) served
as the basis for mapping displacement vectors across the glacier surface
using distinctive features, a technique also used in previous research
(Kraaijenbrink et al., 2016). Mapping was performed in a way where the
search started at the confluence of the icefalls Thorsbreen and
Odinsbreen towards the glacier terminus. After a distinctive feature
was identified in both images and mapped in one glacier location in
both images, the search continued about 100m in the ice flow direction.
The random and irregular nature of distinctive features together with
the large surface change of the glacier led to several limitations, as it
prevented a regular pattern of the resulting validation vectors and
increased the originally intendedmapping distance and density. In total,
43 validation vectors were mapped for most of the length of the glacier
tongue covering different areas of the glacier surface. Although more
vectors could theoretically be mapped in certain areas of the glacier, we
avoided this practice and tried to maintain a balanced evaluation
mapping along the whole length of the glacier, given the
aforementioned limitations, to not bias the assessment towards areas
where distinctive features were easier to map, as these areas most likely
represented regions with lower surface changes and velocities.

The location of the mapped points was finally used to extract
glacier velocities from the different algorithms. Due to the varying
image capture dates, all displacements were converted to glacier
velocity in m/yr for the final evaluation. Some velocity algorithms
may lead to NA (no value is available) values on the glacier surface
due to decorrelation of the image pairs. If ground-truth points were
located in NA-areas, they were converted to zero before the
evaluation to consider the same number of evaluation points for
all algorithms. We calculated several performance measures
frequently used in existing research to assess different algorithms
and compare the results. The calculated measures were the root
mean squared error (RMSE), the mean absolute error (MAE), and
the bias. Additionally, we calculated respective relative values as a
percentage of the mean measured glacier velocity. All performance

measures were calculated according to formulas provided in Zandler
et al. (2019).

In addition, visual inspection was used as a qualitative measure of
algorithm performance as recommended in literature (Paul et al., 2017).
We created maps of velocities, superimposed by calculated 100 m ×
100 m median displacement vectors compared to the measured
displacement vectors. Visual inspection of the algorithm results is
important to quickly assess its capability to derive displacement
patterns across the glacier or if it just generates random noise.

3 Results

The different sensors and algorithms, paired with the large number
of modifiable settings (window and step size, keypoints, pyramid levels,
detector thresholds) lead to a very large number of performance
measures. Therefore, we only selected the best performing
combinations for presentation in this section for a feasible
comparison and we provide performance measures of other methods
as a table in the Supplementary Material. An overview of algorithms,
sensors, and main settings is summarized in Table 1 of chapter 3.5.

3.1 UAV imagery comparison

Orthoimages of the flight campaign show a recession of the
glacier tongue, an increase in debris cover, and substantial changes
in the northwestern part of the glacier below the confluence of
Thorsbreen and Odinsbreen (Figure 2). Mapped displacement
vectors show glacier velocities between 5.3 m/yr and 105.6 m/yr
(which translates to a displacement from 4.2 m to 85.0 m between
the UAV survey periods) with an average value of 38.6 m/yr and a
median value of 26.4 m/yr. Strong increases in surface velocity were
visible towards Odinsbreen and Thorsbreen. Displacement vectors
were mostly mapped along the medial moraine.

3.2 GeoCosiCorr3D

With Sentinel-2, the intensity trackingmethod geoCosiCorr3D, with
a window size of 32 × 32 pixels, a minimum step size of 10 m and based

TABLE 1 Performance measures of different glacier velocity algorithms and sensors.R2.

Platform Algorithm and main settings MAE
[m]

MAErel
[%]

RMSE
[m]

RMSErel
[%]

R2 Bias
[m]

Sentinel-2 GeoCosiCorr3D, window size: 32 × 32 pixels, frequency 14.18 36.71 21.04 54.46 0.59 −33.41

PlanetScope GeoCosiCorr3D, window size: 32 × 32 pixels, frequency 10.75 27.82 22.54 58.37 0.25 −14.33

PlanetScope ICEpy4D, SuperGlue + LightGlue 11.03 28.55 21.28 55.1 0.36 −8.95

UAV GeoCosiCorr3D, window size: 64 × 64 pixels, spatial, range 150 m,
60 cm pixel resolution

17.59 45.53 36.22 93.77 0.24 43.67

UAV SeaIceDrift, ratio threshold: 0.9, target features: 250,000, pyramid
levels: 12, spatial range 90 m, 15 cm pixel resolution

22.5 58.26 29.25 101.62 0.09 −54.76

UAV ICEpy4D, SuperGlue + LightGlue, combination of 10 cm and 60 cm
resolution

1.66 4.3 2.17 5.63 0.99 −1.26

Bold numbers indicate lowest errors and highest R2.
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on the frequency domain, resulted in glacier velocity values throughout
most of the glacier area (Figure 3). The algorithm produced low surface
velocities near the glacier terminus with around 10 m/yr and higher
values around 60 m/yr upglacier below the icefalls. Displacement
direction was reasonably captured by the algorithm across most
parts of the glacier. The glacier area below the icefalls was
characterized by strong patchiness of the results with surface
velocities alternating between 10 m/yr and more than 100 m/yr with
several decorrelated areas without computed surface velocities. The
same was true for larger stretches around the glacier periphery. Stable
bedrock areas showed relatively high computed surface displacement
values in some parts.

With PlanetScope data, geoCosiCorr3D led to the best results
using a window size with a side length of 64 pixels and a minimum
step size of 6 m. The algorithm resulted in glacier velocities across
most parts of the glacier and a relatively smooth transition from
lower velocities at the glacier terminus towards higher surface
velocities below the icefalls (Figure 4). Directional vectors derived
from the algorithm showed large agreement with mapped vectors. In
the area closer to the icefalls, the results showed a noisy pattern and
no clearly oriented vectors. Rocky areas next to the glacier partly
resulted in no or almost no surface movement in some areas, but also
several areas with computed movement and noise in the marginal
parts of the glacier tongue.

GeoCosiCorr3D applied to UAV data led to noisy results for
large parts of the glacier surface with several window sizes (128 ×
128 px, 256 × 256 px, 512 × 512 px) and resolutions (0.15 m and
0.60 m) using the frequency approach of geoCosiCorr3D. The

“spatial” approach showed better and more stable results and
best performance was achieved with the 0.6 m resolution, a
window size of 64 pixels side length, and a maximum search
range of 150 m (Figure 5). Visually, the results showed a smooth
transition from the glacier terminus to the area with surface
velocities of around 100 m/yr. Near the icefalls, the resulting
displacement vectors were relatively chaotic while they showed
mostly good agreement in other areas with exception of the
medial moraine. The medial moraine also resulted in higher
surface velocities than measured vectors. Stable areas were
correctly mapped at the southeastern lake shore, but
overestimated surface velocities occurred in other regions.

3.3 ORB-based feature tracking (SeaIceDrift)

Feature tracking approaches with ORB did produce almost no
displacement vectors with Sentinel-2 image pairs and were not
further evaluated. Therefore, the feature tracking method was not
applicable for this dataset and resolution. Similarly, ORB-based
feature tracking did result in a very low number of displacement
vectors with PlanetScope imagery, whereby some showed visual
agreement to the mapped vectors, but most vectors showed no clear
patterns and large deviations to the mapping results and glacier
outline. Therefore, the results from ORB were not further analyzed
and not feasible in combination with PlanetScope data.

Feature tracking based on ORB using UAV data did not result in
sufficient displacement vectors with most settings. The best results

FIGURE 2
Orthoimages of Austerdalsbreen resulting from the survey flight on (a) 13 September 2023 and (b) 3 July 2024. Ground truth displacement vectors
are shown on both images. The background hillshade is based on a DEM from 2020 (Kartverket, 2021).
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were achieved with a resolution of 0.15 m, a ratio threshold of 0.9,
and 250.000 target features (Figure 6). Thereby, many areas were not
covered by displacement vectors. The remaining areas showed a
transition from surface velocities of 20 m/yr at the terminus to
maximum values of about 70 m/yr below the icefalls, while the
produced displacement vectors showed similar direction compared
to mapped displacements.

3.4 Deep learning-based feature
tracking (ICEpy4D)

Sentinel-2 data did not result in a meaningful number of
displacement vectors with deep learning techniques as
implemented in ICEpy4D, rendering both tested feature tracking
approaches not feasible with medium resolution optical data. The

FIGURE 3
Displacement values based on Sentinel-2 imagery and the intensity trackingmethod geoCosiCorr3D compared tomeasured displacement vectors.
Background hillshade shows UAV data 2023 on the glacier tongue and elevation in 2020 outside of the UAV survey area (Kartverket, 2021).
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approach based on ICEpy4D, combining the SuperGlue and
LightGlue matchers, computed glacier velocities in most areas
with PlanetScope data, but also showed some irregular features
and patchiness with strong velocity variations in some parts of the
glacier (Figure 7).

Visual comparison of calculated directions to mapped directions
showed a relatively good agreement until manually mapped surface

speed of about 70 m/yr, but low agreement below the icefalls where
higher speeds were mapped. Stable areas were often not correctly
mapped and resulted in low surface displacements in most parts.

With UAV data, the deep learning algorithm resulted in
calculated surface velocities across most parts of the glacier
surface except directly below the icefalls, and a smooth transition
between the different velocity classes is evident (Figure 8).

FIGURE 4
Displacement values based on PlanetScope imagery and the intensity tracking method geoCosiCorr3D compared to measured displacement
vectors. Background hillshade shows UAV data 2023 on the glacier tongue and elevation in 2020 outside of the UAV survey area (Kartverket, 2021).
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Best results were achieved with a combination of the
SuperGlue and LightGlue matchers and both the 10 cm and
60 cm resolutions, whereby SuperGlue resulted in more matches
on the glacier and LightGlue produced more displacement
vectors in stable areas. Velocities around zero were calculated
along the rocky stable areas around the glacier with some
exceptions. The lake area at the glacier terminus showed an

area of exceptionally high surface velocities. Almost all
computed vectors matched mapped vectors in direction and
length with the exception of water surfaces.

The qualitative comparison of all sensors showed a pattern
with best results of the UAV data combined with deep learning-
based feature tracking from ICEpy4D, followed by
geoCosiCorr3D using PlanetScope and Sentinel-2, whereas

FIGURE 5
Displacement values based on UAV imagery and the intensity tracking method geoCosiCorr3D compared to measured displacement vectors.
Background hillshade shows UAV data 2023 on the glacier tongue and elevation in 2020 outside of the UAV survey area (Kartverket, 2021).
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geoCosiCorr3D with UAV imagery, the deep learning-based
feature tracking method with PlanetScope data or the ORB
feature tracking method as implemented in SeaIceDrift with
UAV imagery resulted in many areas without appropriate
detection of surface velocities (Figure 9).

3.5 Performancemeasures of the algorithms
and sensors

UAV data combined with deep learning-based feature
tracking achieved the best results across all performance

FIGURE 6
Displacement values based on UAV imagery and the feature tracking method ORB as implemented in SeaIceDrift compared to measured
displacement vectors. Background hillshade shows UAV data 2023 on the glacier tongue and elevation in 2020 outside of the UAV survey area
(Kartverket, 2021).
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measures (Table 1). Sentinel-2 together with the intensity
tracking method geoCosiCorr3D resulted in second highest R2

and second lowest RMSE, while PlanetScope with deep learning-
based feature tracking or intensity tracking were second in
respect to MAE and Bias. Lowest performances were achieved
with UAV data using both intensity and ORB-based feature

tracking methods, with relative RMSE errors of 94% to
more than 100%.

Visual comparison of scatterplots supported numerical
performance measures, with a constant negative Bias of the
Sentinel-2 results, whereas the majority of data points were close
to the 1:1 line with all other approaches with strong deviations

FIGURE 7
Displacement values based on PlanetScope imagery and the deep learning-based feature tracking method from ICEpy4D compared to measured
displacement vectors. Background hillshade shows UAV data 2023 on the glacier tongue and elevation in 2020 outside of the UAV survey area
(Kartverket, 2021).
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particularly for intensity and ORB feature tracking methods with
UAV data (Figure 10). GeoCosiCorr3D showed better matches at
medium velocities with space-borne sensors, but higher errors at
regions with lower or very high surface displacements.

The graphical comparison of differences between algorithm-
based velocities and measured velocities also shows that outliers had

a strong impact on error measures of several algorithms, particularly
on GeoCosiCorr3D and ICEpy4D with PlanetScope, while the deep
learning-based technique showed low differences to measured data
and no outliers with UAV imagery (Figure 11). Sentinel-2 results
showed a relatively low number of outliers and constant negative
differences for most validation vectors. Methods using

FIGURE 8
Displacement values based on UAV imagery and the deep learning-based feature tracking method from ICEpy4D compared to measured
displacement vectors. Background hillshade shows UAV data 2023 on the glacier tongue and elevation in 2020 outside of the UAV survey area
(Kartverket, 2021).
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GeoCosiCorr3D and SeaIceDrift with UAV data generally showed
higher error with particularly high errors of several outliers.

4 Discussion

To our knowledge, this study is the first comparison of
traditional tracking methods and innovative new deep learning
feature tracking approaches for mapping glacier velocities from
air- and spaceborne imagery. At the case study site of
Austerdalsbreen, which is characterized by a highly dynamic ice

surface for a land-based glacier, our results indicate that deep
learning-based feature tracking outperforms traditional
algorithms such as intensity tracking methods if applied to high-
resolution UAV datasets. Quantitatively, the deep learning-based
approach had sixteen times lower RMSE compared to the cross-
correlation method. This result adds to the findings of existing
research highlighting the potential of deep learning-based matching
for surface dynamics of glaciers or permafrost environments
(Hendrickx et al., 2024; Ioli et al., 2024).

4.1 Overall performance

With absolute error values of around 2 m/yr, the best results
show considerable uncertainties and are higher compared to UAV-
based results for very slow-moving glaciers (<10 m/yr) that resulted
in errors around or below 1 m/yr (Cao et al., 2021; Karimi et al.,
2021; Karimi, 2022). However, if relative errors are considered, the
algorithm shows equally good performance with relative errors
below 10% even under the challenging conditions of the local
glacier dynamics, i.e., large velocity variations and considerable
changes in surface features. Comparisons to evaluations in
regions with moderate glacier velocities (<55 m), resulting in
RMSE values of 1.7 m/yr to 1.9 m/yr (Van Tricht et al., 2021),
also indicates the good performance of the presented method at
higher surface velocities. Deep learning-based techniques were also
applicable to PlanetScope data with coarser spatial resolution to
some extent with a RMSE of 21 m/yr, a reasonable performance if
compared to existing work using this sensor with cross-correlation
methods (Liu et al., 2024). However, although these comparisons
show the applicability of the deep learning-based feature tracking
approach for UAV data, it must be stated that direct comparisons to
other studies and evaluation approaches are challenging due to the
different study settings.

Although the performance was lower than the deep learning-
based UAV method, other algorithms achieved good results as well,
but with different sensors. Intensity tracking, i. e., traditional cross
correlation, showed MAE values around 14 m/yr with Sentinel-2,
which is similar compared to existing medium resolution sensor
studies, which reported errors of about 10 m/yr (Millan et al., 2022;
Mouginot et al., 2023). However, RMSE values were higher in this
study with 21 m/yr due to the impacts of validation points in glacier
regions with high surface velocities. The comparison to research on
faster glaciers (>70 m/yr) reporting RMSE values of >90 m/yr (Kelly
et al., 2023), indicates superior performance of the presented study
with medium resolution data. GeoCosiCorr3D also resulted in
comparably good results with PlanetScope imagery, showing a
RMSE of 22.5 m/yr, which is lower if compared to existing work
on this sensor but also higher surface velocities (Liu et al., 2024).

4.2 Uncertainties and variability

Another notable result was that UAV derived datasets
performed relatively poorly using existing, well-established
methods, such as cross-correlation, in the presented setting. With
intensity tracking methods, good results were achieved for bare ice
areas with glacier velocities up to 60 m/yr. However, higher glacier

FIGURE 9
Visual comparison of resulting velocities of the different
platforms and algorithms with (a) geoCosiCorr3D using Sentinel-2; (b)
geoCosiCorr3D using PlanetScope; (c) ICEpy4D using PlanetScope;
(d) geoCosiCorr3D using UAV data; (e) SeaIceDrift using UAV
data; and (f) ICEpy4D using UAV data.
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velocities and areas with high debris cover, such as the medial
moraine, led to decorrelation and no feasible velocity results, a result
also reported by other UAV-based studies where decorrelationmade
intensity tracking impossible (Li et al., 2022). Changes in small
features, such as rocks in the medial moraine, which are usually well

visible in the high-resolution UAV data, but not in coarser
resolution imagery, may therefore be a disadvantage for
calculating surface displacement with such datasets. High
displacements may also limit frequency-based intensity tracking
approaches as reported by existing work (Dematteis et al., 2022).

FIGURE 10
Scatterplots of measured compared to calculated displacement from the different platforms and algorithms with (a) geoCosiCorr3D using Sentinel-
2; (b) geoCosiCorr3D using PlanetScope; (c) ICEpy4D using PlanetScope; (d) geoCosiCorr3D using UAV data; (e) SeaIceDrift using UAV data; and (f)
ICEpy4D using UAV data.
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This is supported by the findings of the presented approach, where
spatial and frequency-based methods showed similar results with
space-borne sensors of lower resolution, but the spatial domain
performed much better with UAV imagery. The relatively good
performance of other sensors also showed that high-resolutions do
not necessarily improve the performance, which is in line with the
findings by Karimi (2022).

Deep learning-based feature tracking using UAV imagery led to the
best performance at Austerdalsbreen, but was also connected to some
variability of the results dependent on fine tuning of the algorithm.
Combining the SuperGlue and LightGlue did not improve the
quantitative performance measures, but resulted in more
displacement vectors, particularly outside of the glacier area but also
in high velocity regions. Therefore, some areas with high velocities,
which result in a lower density of displacement vectors, are subject to
considerable variability depending on the selected deep learning-based
approach and respective settings. In the presented approach, LightGlue
resulted in more matches in stable areas, as it preselects points, and
discards points that are harder to match (Lindenberger et al., 2023).
Therefore, the points that are harder to match are potentially found on
areas with considerable surface changes, which were less prominent in
the LightGlue approach compared to SuperGlue, while steady or more
robust matches are more likely found on stable ground. In summary,
the inhomogeneous density of matches resulting from the deep
learning-based approach, as also visible in existing work (Ioli et al.,
2023a; Ioli et al., 2024), is a clear disadvantage of the method compared
to regular gridded approaches such as correlation-based intensity
tracking. In this regard, the interpolation technique and associated

parameters ads further variability and may introduce strange patterns,
e.g., a bubbly appearance as visible on some feature tracking-based
results, making the standardization and comparison of this approach
difficult. Furthermore, higher resolutions may lead to a higher
concentration of tie points in certain areas with good matches,
whereas other areas with more challenging conditions may not be
sufficiently covered, an issue that led to lower performance with higher
resolved UAV imagery in this study.

The other tested feature tracking approach, ORB, did not produce a
sufficient number of displacement vectors and was not successful in the
presented study. Therefore, this method is not considered suitable for
mapping glacier velocities in this setting. This result is unexpected, as
this approach is frequently used for sea ice monitoring with medium
resolution data (Hyun and Kim, 2018; Yang and Xie, 2024), and was
also successfully used to match high-resolution images of rock glaciers
(Marsy et al., 2020). Although results of the approach could be
potentially improved using filtering of erroneous displacement
vectors (Yang and Xie, 2024) or pairing it with correlation methods
as implemented by the SeaIceDriftmodule (Muckenhuber et al., 2016),
such an approach was not feasible in the presented approach given the
low number of computed displacement vectors.

4.3 Algorithm comparison

Intensity tracking methods performed well in regions with small
optical changes, which can be explained by the high correlation of
regular tiles with a defined side length in such areas due to low

FIGURE 11
Boxplots of differences between yearly displacements as calculated with the applied algorithms versus measured yearly displacement values.
Negative differences indicate lower algorithm velocities, while positive values indicate higher values of the calculated velocities.
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changes in their grey value distributions (Leprince et al., 2007).
Surface changes, rotations and changes in surface debris between
acquisitions substantially change the overall distribution of grey
values leading to the decorrelation of the whole tile, even if small
sections within the tile may still be similar (Dematteis et al., 2022).
Therefore, this method was not successful in the upper part of the
glacier. Similarly, feature tracking based on traditional methods,
such as the presented ORB algorithm, requires regular grey value
distributions around the keypoints and complex distortions, missing
content and occlusion inhibit the performance of this approach (Ioli
et al., 2024). This partly explains the low performance of the ORB
based technique. In contrast, techniques that are directly trained on
data with challenging geometries to identify and match keypoints
and include self- and cross attention layers, as the presented deep
learning-based method, are particularly successful in situations of
varying radiometry, illumination, different viewing angles and
rotational deformations (Maiwald et al., 2021; Ioli et al., 2024;
Morelli et al., 2024). All these conditions are frequently found in
high-resolution imagery of glaciers due to rotations of single rocks,
structural ice changes, illumination effects on the ice due to varying
irradiance on the highly reflective ice surface and changes in
sediment content. Furthermore, an important advantage of this
technique is that it is based on keypoints and not a fixed window
size, which is particularly important in regions where substantial
changes occur and just small features are retained.

4.4 Relevance for glacier research

Our results showed that established cross-correlation methods
performed well where glacier surface velocities are moderate and
with imagery from medium to high-resolution, spaceborne sensors.
However, neither areas with high velocities nor areas with very slow
surface displacement were adequately resolved by these approaches. In
contrast, glacier surfaces characterized by very low and very high
velocities were successfully mapped using deep learning-based
feature tracking and UAV data, and this technique was the only
method that resulted in reasonable surface displacement results with
the UAV imagery across the whole glacier. Therefore, the presented
deep learning approach may be particularly useful in situations of large
variabilities in glacier velocities, for detecting inter-seasonal glacier
dynamics, or if large surface changes are present due to rotational
transformation or ablation, for example, (Kraaijenbrink et al., 2016; Ioli
et al., 2024). Additionally, this deep learning workflow may also be
crucial for glaciological applications where small-scale processes are
investigated with recourse to surface velocities, such as for sudden and
intense accelerations of icemargins related to the drainage of ice-contact
lakes (Bhardwaj et al., 2016; Mallalieu et al., 2017), ice passage through
icefalls, or ice flow near calving fronts.

5 Conclusion

Traditional intensity tracking methods applied to high-
resolution UAV data, such as cross-correlation, are suitable
methods where glacial surface displacements are regular and
relatively low (Vivero and Lambiel, 2019; Puniach et al.,
2021). However, resolving ice surface velocities in areas of

rapid changes in glacier surface conditions and in areas with
high spatial variability in velocities can benefit from improved
methods such as deep learning-based feature tracking. In this
study, intensity tracking methods applied to datasets obtained
from spaceborne sensors achieved good results for most parts of
the glacier tongue of Austerdalsbreen, but could not resolve
glacier velocities in areas characterized by strong surface
changes. The applicability of methods is therefore mainly
dependent on the rate of optical surface change and
resolution, and intensity tracking methods are more suitable
in situations where high temporal resolutions are possible
during the snow free period.

This research illustrates the general feasibility of deep learning-
based feature tracking for deriving glacier velocities using high-
resolution remote sensing data. Respective technique substantially
increases information on glacier surface velocities using high-
resolution imagery, as it is able to deliver reliable displacement
data in situations where traditional methods may fail. Therefore, the
presented new deep image-matching method to derive glacier
velocities implies a new level of detail in understanding and
interpreting glacier dynamics. Improvements of deep learning-
based feature tracking approaches, e.g., with more homogenous
point densities, may greatly improve UAV-based velocity
derivations under challenging conditions in future research.
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