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Accurate estimates of stand volume dynamics in Eucalyptus plantations is critical
for sustainable forest management and wood production. This study investigates
the integration of MODIS-derived indices, such as gross primary productivity
(GPP), net photosynthesis (PSN) and normalized difference vegetation index
(NDVI), with traditional age-based methods to improve stand volume
estimation in Eucalyptus plantations. MODIS GPP was first evaluated against
flux tower measurements, showing moderate agreement and systematic biases,
particularly during periods of highest and lowest productivity in the first years after
planting, with an RMSE of 19.65 gC m-2 8day-1 and R2 of 0.38. Multiple linear
regression (MLR) and two machine learning models, including random forest (RF)
and stochastic gradient boosting (SGB), were used to estimate stand volume by
incorporating cumulative MODIS indices (Cgpp, Cpsn and Cndvi) and stand age.
The SGB model showed the best performance using the full dataset, including
stands aged from 1.6 to 8.4 years, with an RMSE of 22.63 m3 ha-1, an rRMSE of
17.15% and an R2 of 0.90. We showed that including cumulative indices from the
first two years of growth significantly improved the model’s ability to predict
growth dynamics in middle-aged to mature stands. These results highlight the
utility of MODIS productivity products for medium to large-scale plantation
management, providing scalable and cost-effective monitoring of stand volume.
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1 Introduction

Forest plantations play an important economic and
environmental role around the world. They contribute
significantly to carbon sequestration, timber production and the
supply of raw materials for industries such as paper, pulp and wood-
based products. In 2023, the total area of planted trees in Brazil
exceeded 10 million ha for the first time. Eucalyptus was the most
common type of tree planted, covering 7.8 million hectares and
accounting for 76% of the total area planted. This represents an
increase of 41% over the last 10 years, highlighting the growing
importance of this crop in the Brazilian forest economy (IBÁ -
Indústria Brasileira de Árvores, 2024).

Timber production remains the primary ecosystem service of
Eucalyptus plantations, and accurate assessments of stand
productivity are critical for effective forest management.
Traditionally, these assessments rely on field inventories to
measure tree attributes such as diameter at breast height (DBH)
and height. However, such methods are labor intensive, costly,
spatially limited and often fail to capture variation caused by
climatic anomalies. These challenges are particularly pronounced
in fast-growing plantations, where cutting cycles for Eucalyptus can
be as long as 5–7 years, depending on climatic and regional
conditions.

Moreover, inventories are generally conducted by plantation
owners and primarily used for wood stock calculations within
business operations. However, tree growth databases hold
broader significance, particularly for modelling applications
in regional- and large-scale analyses (Alvares et al., 2023).
Such analyses are important to understand broader patterns
of Eucalyptus plantation dynamics, evaluate their
environmental and socio-economic impacts, and support the
development of regional policies for sustainable forest
management.

Advances in remote sensing technologies have facilitated forest
inventory and management practices, particularly in Eucalyptus
plantations (e.g., Aló et al., 2024; Baghdadi et al., 2015; 2014; Dos
Reis et al., 2019; 2018; Dube et al., 2017; Goral et al., 2025; Leite et al.,
2020). Techniques such as LiDAR and synthetic aperture radar
(SAR) effectively capture detailed structural information (Austin
et al., 2003; Domingues et al., 2023; Fayad et al., 2021b; Gama et al.,
2010), though their high cost and limited accessibility remain
challenges. Freely available datasets such as NASA’s GEDI
LiDAR and ESA’s Sentinel-1 SAR have improved accessibility,
but processing these data still requires expertise and
computational resources. Optical remote sensing offers a cost-
effective alternative for large-scale monitoring, using vegetation
indices like the normalized difference vegetation index (NDVI)
and time-series analyses to estimate productivity and biomass.
However, its effectiveness is limited by reflectance signal
saturation in dense, high-biomass forests, which weakens the
relationship between spectral reflectance and biomass. To address
these limitations, studies have integrated optical and active remote
sensing datasets to estimate Eucalyptus stand volume (Dos Reis
et al., 2019; Souza et al., 2019). Combining these technologies with
machine learning algorithms and integrating spatial, temporal,
environmental and structural data further enhances prediction
accuracy (e.g., Dube and Mutanga, 2016).

Age since planting gives a direct indication of plantation growth
and volume in Eucalyptus plantations (Dos Reis et al., 2019).
Therefore, integrating age with remote sensing parameters can
greatly improve the accuracy of the estimate. Dos Reis et al.
(2019) demonstrated that integrating stand age with multispectral
(Landsat 8 OLI), SAR (Sentinel-1B), and DEM-derived data
significantly enhanced Eucalyptus volume estimation accuracy
(RMSE = 22.33 m3 ha−1), highlighting its potential for large-scale
plantation monitoring andmanagement. Another study by LeMaire
et al. (2011) showed that the integration of MODIS-derived NDVI
time series with bioclimatic data and stand age significantly
improved the accuracy of stand-scale Eucalyptus volume (R2 =
0.90, RMSE = 25 m3 ha−1) and height predictions (R2 = 0.92,
RMSE = 1.6 m). A recent study demonstrated similar results at a
higher resolution (within-stand scale) (Aló et al., 2024). It combined
NDVI time series from Landsat, from planting to inventory dates,
with spatial modeling techniques such as kriging with external drift
(KED) and generalized additive models (GAM). This approach
significantly improved within-stand spatial predictions of
Eucalyptus stem volume at a 30 m resolution. The best linear
model achieved an R2 of 0.95 and RMSE of 12.44 m3 ha−1, while
KED and GAM further improved accuracy to R2 of 0.96 and RMSE
of 10.6 m3 ha−1. Marsden et al. (2010) investigated the relationships
between MODIS NDVI time series covering the full rotation of
Eucalyptus plantations in Sao Paulo State, Brazil, and stand
characteristics such as volume, dominant height and mean
annual increment. Their results showed strong correlations
between cumulative NDVI and stem volume, highlighting the
potential of NDVI as a productivity indicator. In addition,
absorbed photosynthetic active radiation (APAR) derived from
NDVI time series showed significant variability during the first
2 years of growth and was strongly correlated with stem wood
production (R2 = 0.78). However, in later years APAR became less
variable and showed a weaker relationship with biomass increment.
These results highlight the value of integrating parameters such as
age, NDVI and APAR to improve the accuracy of eucalyptus volume
estimates, particularly during early growth stages when productivity
metrics are most dynamic.

Given the strong relationship between forest productivity and
carbon sequestration, accurate estimation of stand volume not only
informs timber yield assessments but also informs on ecosystem
functioning. In the volume estimations described above, the
influence of environmental conditions is incorporated into the
predictions only if these factors affect one of the predictors, such
as NDVI or APAR time series. However, other environmental
variables—such as temperature, radiation, or soil water
content—may influence growth and, consequently, volume, but
their effects may not be strong enough to significantly alter the
remotely sensed variables, and thus they are not reflected in the
predictions. This highlights the need to incorporate more effective
forest growth indicators into the models—indicators that can more
comprehensively account for environmental conditions. In this
context, gross primary production (GPP) is a key indicator of
ecosystem productivity, representing the total amount of carbon
fixed by vegetation through photosynthesis. GPP can be estimated
by measuring CO2 exchange between ecosystems and the
atmosphere using eddy covariance techniques (Baldocchi et al.,
2001; Chen et al., 2015; Mayen et al., 2023). However, the limited
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and sparse distribution of flux tower sites restricts their ability to
provide continuous spatial data for GPP estimation (Mayen et al.,
2023). The increasing availability of high spectral resolution satellite
observations with global coverage and high temporal frequency has
enabled the scientific community to revisit a number of existing
approaches to modelling GPP (e.g., Plummer, 2006; Serbin et al.,
2013; Running and Zhao, 2021). The US National Aeronautics and
Space Administration (NASA) Earth Observing System (EOS)
currently produces a regular global estimate of daily GPP, net
photosynthesis (PSN), and annual net primary production (NPP)
of the entire terrestrial earth surface at 500 m resolution. The core
science of the GPP algorithm is an application of radiation
conversion efficiency concept to predictions of daily GPP, using
satellite-derived FPAR (the fraction of incident photosynthetically
active radiation that is absorbed by the vegetation canopy, from
MOD15), independent estimates of PAR, and other surface
meteorological fields (GMAO/NASA). The subsequent estimation
of maintenance and growth respiration terms is then subtracted
from GPP to determine the annual NPP (Running and Zhao, 2021).

Several studies have evaluated the performance of MODIS GPP
and FPAR products, examining their accuracy and applicability
across various ecosystems and regions (e.g., Turner et al., 2006;
Majasalmi et al., 2015; Yan et al., 2016; Wang and Mo, 2015; Wang
et al., 2017; Brown et al., 2020; Sanchez-Azofeifa et al., 2024). For
instance, a study evaluating MODIS GPP product (MOD17A2,
1,000 m resolution) across different forest ecosystems showed
that while MODIS effectively captures broad GPP trends at an 8-
day timescale for most forest types, its performance varies
significantly among biomes. The product showed higher accuracy
for deciduous broadleaf forests (DBF) and mixed forests (MF),
moderate accuracy for evergreen needleleaf forests (ENF), and
weaker performance for evergreen broadleaf forests (EBF).
Seasonal analyses showed the best performance in ENF, followed
by MF and DBF, with EBF lagging behind. These results highlight
the need for improved upstream inputs and algorithm refinement to
improve MODIS GPP estimates, especially for complex forest
ecosystems (Tang et al., 2015). An evaluation of the MODIS GPP
product MOD17A2H at 500 m resolution, using
FLUXNET2015 data from 18 global sites across six ecosystems,
revealed poor performance in estimating annual (R2 = 0.62) and 8-
day (R2 = 0.52) GPP values, primarily due to errors in FPAR inputs
(Wang et al., 2017). Specific causes of the low performance of
MODIS GPP have been traced to algorithmic inputs, including
the quality of meteorological data derived from coarse resolution
datasets (Tang et al., 2015; Wang et al., 2017), errors in LAI and
FPAR inputs (Propastin et al., 2012; Tang et al., 2015; Eenmäe et al.,
2014), inaccuracies in land cover classification (Nilson et al., 2012;
Krause et al., 2022), and light use efficiency calculated based on
biome-specific physiological parameters (Wei et al., 2017; Pei
et al., 2022).

Studies have shown the correlation between GPP and biomass
growth during active growing seasons, particularly in specific
ecosystems and under optimal conditions (Babst et al., 2014;
Puchi et al., 2024). However, the strength and consistency of this
relationship vary significantly across forest types and regions,
influenced by factors such as species composition, climatic
conditions, nutrient availability, and carbon allocation strategies
(Ryan et al., 2010; Epron et al., 2012; Malhi et al., 2015). GPP reflects

the total amount of carbon fixed through photosynthesis, but not all
of this carbon is allocated to tree growth. Significant portions are
used for the production and replacement of short-lived organs such
as leaves and fine roots, and for autotrophic respiration, where
carbon is used by the plant for maintenance and metabolic
processes, rather than growth (Litton et al., 2007; Nouvellon
et al., 2012; Rodrigues et al., 2021). Moreover, carbon allocation
changes over time depending on factors such as tree age,
environmental conditions, and resource availability (Ryan et al.,
2004; Franklin et al., 2012; Guillemot et al., 2017). As a result, a
direct correlation between GPP and forest volume increment can
lead to large errors, including overestimating carbon
sequestration potential.

While MODIS GPP has been widely validated across different
forest ecosystems, as mentioned above, its performance in
Eucalyptus plantations remains largely unexplored. Eucalyptus
stands exhibit distinct physiological and structural traits,
including high productivity, rapid biomass accumulation, and
unique carbon allocation dynamics, which differ significantly
from other forest types. Furthermore, existing volume estimation
models for Eucalyptus plantations primarily rely on age-based
approaches, which, although useful, fail to capture interannual
variations driven by environmental factors such as drought stress,
nutrient limitations, and site conditions. Some models use
vegetation indices, which may include part of these
environmental effects, but not entirely. Given that remote
sensing-derived GPP accounts for dynamic environmental
influences on productivity, integrating GPP within stand volume
estimation models could improve predictions by incorporating
environmental spatial and temporal variability that may not
already be included in the vegetation indices. However, the
extent to which MODIS GPP can enhance age-based and VI-
based models for Eucalyptus volume estimation remains an
open question.

This study aims to address these gaps by evaluating the utility of
the latest version of the MODIS GPP product (MOD17A2HGF
v061) in estimating Eucalyptus stand volume. The specific objectives
were (a) to evaluate the accuracy of MOD17A2HGF derived GPP by
comparing it to GPP obtained from eddy covariance flux tower
measurements over Eucalyptus plantations; (b) to improve
traditional age-based or VI-based Eucalyptus stand volume
estimation by incorporating information on GPP (or PSN)
derived from MODIS products; (c) to evaluate the performance
of different machine learning methods for estimating Eucalyptus
stand volume based on integrated remote sensing and field data.

2 Materials and methods

2.1 Study area and data collection

2.1.1 Study area
This research was carried out in Eucalyptus plantations in Mato

Grosso do Sul state located in the southwestern Brazil. The climate
of Mato Grosso do Sul can be classified as tropical wet and dry or
savannah according to the Köppen climate classification. This
results in hot, humid summers and mild to warm, dry winters.
Throughout the year, the average temperature is between 20°C and
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28°C (Alvares et al., 2013). Mato Grosso do Sul covers an area of
approximately 35 million ha in a flat region with an altitude of
250–400 m. Eucalyptus plantations cover 1.3 million ha in this
region (IBÁ - Indústria Brasileira de Árvores, 2024), and primarily
consist of clonal seedlings of Eucalyptus grandis (W. Hill ex
Maiden), E. urophylla (S.T. Blake), and various hybrids, planted
in rows at densities of 1,200 trees per hectare. The average wood
productivity is 40–45 m3 ha−1 year−1, with 80% of stands producing
between 30 and 50 m3 ha−1 year−1 (Fayad et al., 2021a). The
homogeneity of the stand is a key management objective, as it
has a direct impact on the productivity of the stand (Stape et al.,
2010). The plantations are managed at the stand level, with
standardized practices including planting, harvesting, weed
control, soil preparation, fertilization, and the use of consistent
genetic materials. Over 82% of these plantations are located on flat to
gently sloping terrains to minimize harvesting and logging costs
(Fayad et al., 2021a).

2.1.2 In-situ stand scale measurement
The inventory data were collected in Eucalyptus plantations

within inventory plots of 400 m2, laid out in a quasi-systematic
grid at a density of approximately one plot every 10 ha. In each
plot, the diameter at breast height (DBH) of all trees, the height
of a central sub-sample of 10 trees and the height of the four
trees with the largest DBH were measured. Individual tree
volume was then calculated using volume equations such as
the methodology presented by Nouvellon et al. (2012). Stand-
level volume was determined by averaging all measured plots
within each stand.

The field measurements were conducted at different
stand ages, corresponding to the time elapsed since the
planting date. There was no single measurement date for all
stands; instead, each stand had a specific measurement date,
recorded alongside its planting date from forest management
records. The dataset included repeated measurements at
different stand ages for some stands, with over 7,000 stands
measured across the study area. The distribution of stand ages is
shown in Figure 1.

2.1.3 Eddy covariance flux tower data
The in-situ GPP data were collected using an eddy

covariance (EC) flux tower, in the framework of the Eucflux
cooperative research project (Guillemot et al., 2018) conducted
by the Forestry Science and research Institute (IPEF). This tower
is located in southwestern Brazil (22°58′04″S; 48°43′40″W,
750 m.a.s.l.) in a flat and homogeneous 200 ha Eucalyptus
plantation. Eddy-covariance measurements were carried out
from the top of the tower with an open-path system
consisting of a Li-COR LI-7500A infrared gas analyzer
(IRGA; LICOR Inc., Lincoln, NE, United States) and a 3D
sonic anemometer (81,000 V, Young, Traverse City, MI,
United States). Half-hourly meteorological measurements (air
temperature and relative humidity, wind speed and direction,
atmospheric pressure, rainfall, global and net radiation) were
made at the same height as the EC system (Christina et al.,
2017). Over the study period, the height of the tower was
adjusted every 6–12 months to keep the sensors 5–7 m above
the canopy (or above the soil, in post-harvest period). Net

FIGURE 1
Distribution of stand age across the study area.
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ecosystem exchange (NEE) was derived from the covariance of
vertical wind velocity and CO2 concentrations measured at a
high frequency (20 Hz) and integrated over 30-min intervals
(Aubinet et al., 2012). Quality-control, data gap-filling and
partitioning of NEE into GPP and Ecosystem Respiration
(Reco) was performed according to Lasslop et al. (2010).
Continuous measurements were made from February 2008 to
September 2024, resulting in a comprehensive half-hourly GPP
dataset encompassing the end of a first rotation (2008–2009),
one harvest period in 2009, a complete rotation from 2009 to
2018, a second harvest in 2018, and the first years of the next
rotation (2018–2024).

2.1.4 MODIS GPP product
The MOD17A2HGF version 6.1 Gross Primary Productivity

(GPP) product provides cumulative 8-day composite data at a
spatial resolution of 500 m. This product, derived from the
radiation use efficiency model, serves as a valuable input for
various data models used to analyze terrestrial energy, carbon,
and water cycle processes, as well as vegetation biogeochemistry.
It includes estimates of GPP and net photosynthesis (PSN),
expressed in units of “kg C m−2 8 day−1.” The PSN values are
calculated by subtracting maintenance respiration (MR) from GPP.
The gap filled product of MOD17A2HGF is an improved MOD17,
which is created annually after the complete 8-day MOD15A2H
dataset becomes available. In this product, poor-quality inputs from
8-day leaf area index (LAI) and FPAR has been corrected based on
pixel-specific quality control (QC) information (Running and Zhao,
2021). The resulting 8-day products, beginning in 2000 and
continuing to the present, are archived at a NASA DAAC
(distributed active archive center).

2.1.5 MODIS NDVI
The MCD43A4 V6.1 nadir bidirectional reflectance distribution

function adjusted reflectance (NBAR) product provides 500 m
resolution reflectance data for MODIS land bands 1–7. These
reflectance values are adjusted using a bidirectional reflectance
distribution function (BRDF) to represent observations as if
collected from a nadir view. The product is generated daily using
a 16-day retrieval period, with the reference date corresponding to
the ninth day (Strahler et al., 1999). While the data are
atmospherically corrected and cloud-free within the temporal
aggregation period, there are some gaps in regions with
persistent cloud cover or insufficient observations. To address
these gaps, NDVI values calculated using red and near-infrared
reflectance bands were linearly interpolated to a daily temporal
resolution, a process performed as part of this study to produce a
complete annual time series for the study period. To further improve
data precision while preserving trends, the time series were
smoothed using a Savitzky-Golay filter (Gallagher, 2020).

The overall data processing workflow is summarized in Figure 2.

2.2 Evaluation of GPP from MOD17A2HGF

The MODIS GPP product (MOD17A2HGF) was evaluated
using in-situ GPP data from the eddy covariance flux tower. The
flux tower is located within a MODIS pixel with a 500 m resolution,
and the pixel is considered to be pure, meaning it predominantly
represents the plantation area of interest (200 ha). The GPP value
from this single MODIS pixel was used for direct comparison with
the flux tower data. To align the time scales, half-hourly flux tower
data were aggregated into 8-day periods for comparison with

FIGURE 2
Overview of the data processing workflow. Parallelograms represent input and output data; rectangles represent processing steps; ellipses indicate
derived key variables.
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MODIS GPP. Both datasets were analyzed over the period covered
by the flux tower measurements. The trends of the MODIS GPP and
flux tower GPP were examined, and statistical metrics, including
root mean square error (RMSE) and R2, were calculated to assess the
accuracy and correlation between the two datasets.

2.3 Stand scale volume estimation

2.3.1 Data preparation
The stem volume of Eucalyptus stands at a given date, obtained

from field inventories, was compared to the volume estimated from
MODIS derived indices and plantation age. This comparison is
possible only if the MODIS pixel is representative of the stand.
Eucalyptus plantations are generally considered homogeneous at the
stand-scale in terms of volume per hectare. This is largely due to
regular planting of a single genotype, which is typically clonal, and
the uniform stand age, as each stand follows a single silvicultural
calendar. As a result, management practices remain consistent
throughout the growth cycle. MODIS pixels have a spatial
resolution of 500 m, which can limit the number of pixels that
are fully contained within individual stands. In order to increase the
number of possible comparisons between MODIS data and stand
volume, we applied a spatial filtering approach that retained only the
stands and MODIS pixels where at least 90% of the pixel area
overlapped with a single stand. To achieve this, we overlaid the
MODIS raster image on the shapefile layer of stands and computed
the spatial intersection between each stand polygon and the
corresponding MODIS pixels. Pixels with an overlap ratio
of ≥90% were retained for further analysis. This filtering process

resulted in 4,130 pixels distributed across 1,303 stands. The spatial
distribution of Eucalyptus stands and the selected MODIS pixels
within stands is illustrated in Figure 3.

2.3.2 Statistical modeling
Time series of MODIS products (GPP, PSN, and NDVI) were

extracted specifically for the pure MODIS pixels identified
previously to capture the growth dynamics of the stands. These
particular MODIS variables were selected because they directly
reflect vegetation productivity and photosynthetic activity,
aligning with the objective of evaluating MODIS-derived metrics
for improving volume estimation. Other MODIS indices (e.g., EVI,
LAI) and external environmental variables (e.g., temperature,
precipitation) were not included, as this study focused on
assessing the added value of GPP and related indices beyond age-
based models.

For each stand, cumulative values of the MODIS indices (e.g.,
GPP, PSN, and NDVI) were calculated from the planting date to the
measurement date (referred to as Cgpp, Cpsn, and Cndvi,
respectively). Statistical modelling was performed on different
groups of datasets: (1) the entire data set, which includes the
entire age range from 1.6 to 8.4 years (n = 4,130), (2) stands
older than 3 years (n = 2,488), (3) stands older than 4 years (n =
1,582), and (4) stands older than 5 years (n = 933). We did not create
a separate group for stands older than 2 years because the entire
dataset (group 1) already includes stands of all ages, and our focus
was to examine the effect of growth stage-specific variables on
middle-aged and mature stands. We selected age thresholds of 3,
4, and 5 years to incorporate more cumulative variables and better
capture growth dynamics at these stages. The analysis was not

FIGURE 3
Spatial distribution of Eucalyptus stands and selected MODIS pixels within the study area.
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extended to stands older than 6 years because the number of samples
decreased significantly with each additional age filter, limiting the
reliability of the results for older age groups.

For the first group, cumulative MODIS indices were also
calculated up to 1 year after the planting date. For groups 2–4,
additional cumulative indices were calculated from the planting
date to 1–N years after planting, where N corresponds to the
minimum age of the group (i.e., N = 3, 4, and 5 for stands older
than 3, 4, and 5 years, respectively). This approach was adopted
to capture detailed growth patterns and dynamics over shorter
time intervals, which may not be fully reflected in the overall
cumulative variables. By including these intermediate
cumulative variables, we aimed to account for variations in
growth rates across different stages of stand development. These
intermediate variables were ultimately incorporated into the
statistical models to improve their ability to explain and predict
stand volume. The extracted variables and their definitions are
summarized in Table 1.

Two non-parametric algorithms, stochastic gradient boosting
(SGB) and random forest (RF), as well as multiple linear regression
(MLR), were employed for Eucalyptus stand volume estimation. The
models were developed and validated using a five-fold cross
validation approach, which reduces the likelihood of overfitting
by training and testing the models on multiple subsets of the dataset,
ensuring their ability to generalize well to unseen data (Berrar, 2018;
Charilaou and Battat, 2022).

SGB and RF are both non-linear ensemble learning methods
based on decision trees, but they differ in their training
strategies and handling of data variability. SGB employs a
sequential boosting approach where each tree corrects the
errors of its predecessor, leading to improved generalization
but longer training times (Friedman, 2002). In contrast, RF
utilizes bootstrap aggregation, where multiple decision trees are
trained in parallel on random subsets of the data, resulting in
faster training and greater robustness to noise and outliers
(Breiman, 2001). Both models require careful hyperparameter
tuning which was performed using RandomizedSearchCV.
While SGB reduces variance through boosting, RF achieves
stability by averaging multiple decision trees, making it well-
suited for handling complex interactions and correlated inputs

(Franklin et al., 2012; Talebiesfandarani and Shamsoddini,
2022). Both methods have been widely applied for Eucalyptus
stand volume estimation, integrating age with environmental
and spectral variables from satellite data. Examples include
variables derived from MODIS NDVI time series and
bioclimatic data (Le Maire et al., 2011); SPOT 5 spectral
bands combined with rainfall metrics (Dube et al., 2017);
Worldview-2 data alongside environmental variables such as
rainfall, temperature, slope, aspect, elevation, soil wetness, and
soil types (Dube and Mutanga, 2016); as well as Landsat-8 OLI
or synthetic aperture radar (SAR) data (Dos Reis et al., 2019).

MLR is a parametric regression method that models the
relationship between a dependent variable and multiple
independent variables. It assumes a linear relationship between
the predictors and the response variable. To address the
multicollinearity among cumulative GPP, PSN, and NDVI
variables, which is particularly critical for the stability and
reliability of MLR models, principal component analysis (PCA)
was applied separately to each set of cumulative variables and also to
the combination of all variables. PCA transforms the original
correlated variables into a set of uncorrelated components, with
the first principal component (PC1) capturing the largest possible
variance in the data, followed by additional components that
successively account for the remaining variability (Çamdevýren
et al., 2005; Gwelo, 2019). As the most informative and
representative summary of the underlying variables, the first
principal components of applying PCA on each set of variables
were then used as inputs to the MLR models. We also applied PCA
on combination of four different variables (Cgpp, Cpsn, Cndvi, Age)
and used all four output components in the linear model after
removing the problem of collinearity. It is worth nothing that, unlike
typical PCA applications that reduce dimensionality by selecting
only a few PCs, we retained all four principal components in our
model. This approach effectively eliminated collinearity while
ensuring that all information from the original variables was
preserved. High collinearity among predictors can lead to inflated
standard errors, unstable coefficient estimates, and unreliable
conclusions. By using the PCs, which are uncorrelated, we
ensured that the regression coefficients were more stable and
reliable, allowing for more accurate model interpretation.

TABLE 1 Definition of variables used for Eucalyptus stand volume estimation.

Variable Definition

Cgpp Cumulative GPP between planting and volume measurement date (kg C m−2)

CgppNY Cumulative GPP between planting date and N years after planting: N = 1 to a maximum of 5 years after planting

Cpsn Cumulative PSN between planting date and volume measurement date (kg C m−2)

CpsnNY Cumulative PSN between planting date and N years after planting: N = 1 to a maximum of 5 years after planting

Cndvi_L and Cndvi_S Cumulative NDVI between planting and volume measurement date of linearly interpolated NDVI without (Cndvi_L) and with
smoothing (Cndvi_S)

CndviNY Cumulative NDVI between planting and N years after planting N = 1 to a maximum of 5 years after planting

Age Delta time between planting and volume measurement date (year)

PC1, PC2, PC3, PC4 Four principal components of PCA analysis on four variables of Cgpp, Cpsn, Cndvi and Age

Cgpp_PC1, Cpsn_PC1, Cndvi_PC1 First principal component of PCA analysis on cumulative GPPs, PSNs, and NDVIs, separately
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The statistical criteria for model performance evaluation,
including RMSE, relative RMSE (rRMSE), and R2, were
computed using Equations 1–3.

RMSE �
��������������
1
n
∑n

i�1 yi − ŷi( )2√
(1)

rRMSE � RMSE

�y
× 100 (2)

R2 � 1 − ∑n
i�1 yi − ŷi( )2�����������∑n
i�1 yi − �y( )2√ (3)

Where yi and ŷi are the observed and predicted values, respectively,
and �y is the mean of the observed values.

3 Results

3.1 Comparison of MODIS GPP with flux
tower data

The temporal dynamics of MODIS and flux tower GPP, and
MODIS NDVI across 8-day intervals over 14 years are illustrated in
Figure 4. While MODIS and flux tower GPP follow similar seasonal
patterns, some discrepancies are apparent, particularly during
periods of high productivity where MODIS tends to
underestimate GPP compared to the flux tower. In Eucalyptus
plantations, trees are typically harvested on a 6–8 years cycle.
The pronounced drops in GPP observed in 2010 and
2018 correspond to these harvesting events. MODIS derived GPP
appears to be noisy and potentially less accurate during the first year
of stand growth, as evidenced by an overestimation of GPP
compared to the flux tower (see the red circled areas in
Figure 4). The NDVI trends (Figure 4B) show less pronounced
fluctuations over time, particularly after reaching a threshold of

canopy closure. NDVI primarily reflects the greenness and density
of vegetation cover, saturating when the canopy reaches full closure.
On the other hand, GPP is influenced not only by the vegetation
cover but also by other environmental factors, such as radiation,
temperature, and water availability, which drive photosynthesis.
These factors introduce greater variability into GPP, especially
during periods of high productivity or environmental stress.

Figure 5, plots a and b show a scatter plot comparing MODIS
and flux tower GPP values over 8-day and annual periods,
respectively. It statistically validates the previously explained
observations. The scatter plot comparing MODIS and flux tower
GPP demonstrates a moderate level of agreement, with an R2 value
of 0.38 and an RMSE of 19.65 g C m−2 8 day−1. Notably, systematic
errors in the MODIS GPP estimation are evident. MODIS
underestimates GPP at higher flux tower values, reflecting
challenges in capturing peak productivity, and overestimates
during periods of low GPP.

3.2 Stand volume estimation using variables
at measurement date

The scatterplots in Figure 6 demonstrate the strong correlations
between Eucalyptus stand volume and key variables derived from
MODIS indices and stand age. The cumulative NDVI at measuring
date (Cndvi) exhibited the highest correlation with volume (R2 =
0.81) followed by stand age with a correlation of R2 = 0.78.
Cumulative GPP (Cgpp) also showed a notable correlation with
stand volume (R2 = 0.74), suggesting its potential as a predictor of
volume. While cumulative PSN (Cpsn) had a lower correlation (R2 =
0.52), it still indicates some relationship with stand volume. These
relationships highlight the potential of time integrated MODIS
indices and stand age as reliable indicators of Eucalyptus stand
volume. Given the high correlation between volume and each

FIGURE 4
Dynamics of MODIS and flux tower GPP (A) and MODIS NDVI (B) during 2008–2024.
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variable, we explored whether combining multiple variables could
improve predictive accuracy.

The RF model demonstrated strong performance in predicting
Eucalyptus stand volume, with the best model achieving an RMSE of
27.90 m3 ha−1, rRMSE of 21.15%, and R2 of 0.85 for the first group
containing the entire data (Table 2). This model included the variables
Cgpp, Cpsn, Cndvi_L, and Age. The variable importance analysis for
this model, based on the %IncMSE method (Figure 7), ranked
cumulative NDVI (Cndvi_L) as the most important variable,
followed by cumulative GPP, stand age, and cumulative PSN. This
order of importance aligns with the correlation strengths observed
between volume and individual variables (Figure 6). A slightly simpler
RF model, combining only Cgpp, Cndvi, and Age, showed
comparable performance with an RMSE of 28.26 m3 ha−1, rRMSE
of 21.42%, and R2 of 0.84. Similarly, the SGBmodel also demonstrated
similar results. These findings suggest that cumulative PSN (Cpsn)
adds limited improvement to predictive accuracy when combined
with the other variables. It should be noted that during the NDVI
extraction process (described in Section 2.1.5), two NDVI time series
were evaluated: one generated through linear interpolation without
smoothing (Cndvi_L) and the other using Savitzky-Golay smoothing
(Cndvi_S). Both approaches gave similar prediction results.
Therefore, in Table 2, results for both NDVI variables are
presented only for some models to illustrate their comparability.
For the remaining models, only the linearly interpolated NDVI is
included to avoid redundant information.

Due to the high multicollinearity among the variables, tested
based on variance inflation factor (VIF), a PCA was performed to
address this issue which is important for linear regression models
(Gwelo, 2019). The best MLR result was obtained using the four
principal components derived from PCA on variables Cgpp, Cpsn,
Cndvi_L, and Age. This model achieved an RMSE of 29.59 m3 ha−1,
rRMSE of 22.43%, and R2 = 0.83. Notably, the PCA approach
reduced the VIF values for all predictors (PCA outputs) to 1,
effectively eliminating multicollinearity. For reference, the
original VIF values were 38.66 for Cgpp, 11.83 for Cpsn,
101.32 for Cndvi, and 77.29 for Age.

3.3 Impact of growth stage-specific
variables on stand volume estimation

To better understand how changes in key variables over time
affect stand volume estimation, we first examined the impact of
including cumulative MODIS indices up to 1 year after plantation
date for the entire dataset (first group, n = 4,130). By adding
variables such as Cgpp1Y, Cpsn1Y, and Cndvi1Y_L alongside the
existing predictors (Cgpp, Cpsn, Cndvi_L, and Age), significant
improvements in model performance were observed. The RF model
achieved an RMSE of 25.42 m3 ha−1 and an R2 of 0.87, while the SGB
model exhibited superior accuracy with an RMSE of 22.63 m3 ha−1

and an R2 of 0.90 (Table 3). These results highlight the importance of
cumulative indices from earlier growth stages in improving the
overall prediction accuracy. Figure 8 illustrates the predicted volume
using the SGB model versus the in-situ volume and the result of the
feature importance analysis using the %IncMSE method.

The impact of hyperparameter tuning varied across models. For
example, for the models presented in Table 3, performance
remained stable for RF, with RMSE improving slightly from
25.71 m3 ha−1–25.42 m3 ha−1 (1.1%) and no change in R2 (0.87).
These findings confirm that model robustness is more dependent on
the quality of input data than on hyperparameter fine-tuning in this
context. However, for SGB, tuning resulted in a more substantial
improvement, reducing RMSE from 26.00 m3 ha−1–22.63 m3 ha−1

(13%) and increasing R2 from 0.87 to 0.90. This suggests that model
robustness in this study dependsmore on the choice of the algorithm
than on hyperparameter fine-tuning, with boosting-based models
benefiting more from optimization.

Building on these findings, we conducted a detailed analysis of
the cumulative MODIS indices across various growth stages by
examining datasets representing stands older than 3, 4, and 5 years
(groups 2–4, respectively). Both the RF and SGB models exhibited
improvements in prediction accuracy as more cumulative indices
were added. In general, the SGB algorithm outperformed the RF
across all age groups, probably due to its adaptability and error-
learning properties.

FIGURE 5
Comparison between MODIS and flux tower GPP at 8-day intervals (A) and annual (B) for the period 2008–2024. Note that full-year flux tower data
for 2008 and 2024 are not available.
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For stands older than 3 years (Table 4), the results showed that
the inclusion of cumulative indices for the first and second year
significantly (referring to the models number 2 and 3) improved
model accuracy. However, adding cumulative values from the third
year improved accuracy further, but to a lesser extent. The best result
was obtained using the SGB model, which combines all cumulative
variables from planting to the measurement date and also from
planting to the third year of growth. This model gave an RMSE of
23.55 m3 ha−1, an rRMSE of 13.52% and an R2 of 0.84 (model 4).
Figure 9 shows the scatter plot of the predicted volume versus true
volume using model 4, and the order of feature importance for both
RF and SGM models.

Interestingly, while direct correlations between stand volume
and the predictor variables (cumulative NDVI, Age, cumulative
GPP, and cumulative PSN) showed the strongest correlation for
cumulative NDVI (Cndvi), followed by Age, cumulative GPP
(Cgpp), and cumulative PSN (Cpsn), the SGB model ranked
Cpsn as the most critical predictor. This was followed by Cgpp,
Cndvi, and Age. Conversely, the RF model’s feature importance
aligned more closely with the direct correlation results, with Cndvi
ranked highest, followed by Cgpp, Age, and Cpsn. This
inconsistency in the SGB model’s feature importance may be
attributed to the algorithm’s sensitivity to interactions among
predictors and the way it adjusts feature weights over successive

FIGURE 6
Correlation between Eucalyptus stand volume (m3 ha−1) and (A) stand age (years); (B) cumulative NDVI; (C) cumulative GPP (kg C m−2); and (D)
cumulative PSN (kg C m−2). The cumulative of GPP, PSN and NDVI was calculated between the planting and volume measurement date.
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boosting iterations. Cumulative NDVI, despite having the highest
direct correlation with volume, might have interacted with other
predictors in ways that reduced its relative importance in the
SGB model.

Since the MLR models performed weaker than non-parametric
models, as described in the previous section, our focus here is on
understanding the effect of growth-stage variables over time on
accuracy, which is better captured by the RF and SGB models.

TABLE 2 Performance metrics of MLR, RF and SGB models for predicting Eucalyptus stand volume (n = 4,130).

# Model Variables RMSE (m3 ha−1) rRMSE (%) R2

1 SGB Cgpp, Cpsn, Cndvi_L, Age 28.17 21.35 0.84

2 RF 27.90 21.15 0.85

3 SGB Cgpp, Cpsn, Cndvi_S, Age 28.14 21.33 0.84

4 RF 27.93 21.17 0.84

5 SGB Cgpp, Cndvi_L, Age 28.78 21.81 0.84

6 RF 28.26 21.42 0.84

7 SGB Cgpp, Cndvi_S, Age 28.82 21.84 0.83

8 RF 28.35 21.49 0.84

9 RF Cgpp, Cpsn, Age 28.98 21.97 0.83

10 RF Cgpp, Age 30.12 22.83 0.82

11 RF Cpsn, Age 31.34 23.75 0.80

12 RF Cndvi_L, Age 29.82 22.60 0.82

13 MLR Volume = −28.1313 + 41.8499*Age 33.04 25.04 0.78

14 MLR Volume = −8.0887 + 17.5979*Cgpp 36.52 27.68 0.73

15 MLR Volume = 30.6786 + 27.4141*Cpsn 49.10 37.22 0.52

16 MLR Volume = −17.6941 + 0.1438*Cndvi_L 30.75 23.31 0.81

17 MLR Volume = −17.7193 + 0.1435*Cndvi_S 30.76 23.31 0.81

18 MLR Volume = 132.3139 + 32.9828*PC1 −19.4549*PC2 +
3.0674*PC3 −155.7569*PC4

29.59 22.43 0.83

Note: Bold values indicate the performance metrics of the best-performing model.

FIGURE 7
Random forest result for Eucalyptus stand volume. (A) Predicted versus observed volume. (B) Variable importance based on the %IncMSE method.
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However, for completeness, the result of the MLR model using the
first principal components of PCA analysis for cumulative GPPs,
PSNs, and NDVIs produced an RMSE of 35.37, an rRMSE of
20.30%, R2 = 0.63, and R = 0.79. These weaker results reaffirm
the greater efficacy of non-parametric approaches in capturing
complex interactions between variables and improving predictive

performance. Therefore, the detailed analysis presented in this
section focuses exclusively on the RF and SGB models, which
demonstrated overall superior accuracy.

For stands older than 4 years (Table 5), we included cumulative
variables up to year 4 after plantation. As observed in the earlier
group (older than 3 years), the inclusion of cumulative indices from

TABLE 3 Performance metrics of RF and SGB models for predicting Eucalyptus stand volume (n = 4,130).

# Model Variables RMSE (m3 ha−1) rRMSE (%) R2 arRMSE improvement (%)

1 SGB - Cgpp, Cgpp1Y
- Cpsn, Cpsn1Y
- Cndvi_L,Cndvi1Y_L
- Age

22.63 17.15 0.90 19.67

2 RF 25.42 19.27 0.87 8.89

arRMSE Improvement was calculated in comparison to the models 1 and 2 in the Table 2.

Improvement = rRMSET2n−rRMSET3n
rRMSET2n

× 100; T3 and T2 = Table 3 and Table 2; n = model number.

Bold values indicate the performance metrics of the best-performing model.

FIGURE 8
SGB result for Eucalyptus stand volume. (A) Predicted versus observed volume. (B) Variable importance based on the %IncMSE method.

TABLE 4 Performance metrics of RF and SGB models for predicting Eucalyptus stand volume in stands older than 3 years (n = 2,488).

# Variables RMSE (m3 ha−1) rRMSE (%) R2

RF SGB RF SGB RF SGB

1 Cgpp, Cpsn, Cndvi-L, Age 33.38 33.82 19.16 19.41 0.67 0.66

2 - Cgpp, Cgpp1Y
- Cpsn, Cpsn1Y
- Cndvi_L, Cndvi1Y_L
- Age

30.26 26.93 17.37 15.46 0.73 0.79

3 - Cgpp, Cgpp1Y, Cgpp2Y
- Cpsn, Cpsn1Y, Cpsn2Y
- Cndvi_L, Cndvi1Y_L, Cndvi2Y_L
- Age

29.26 24.82 16.79 14.25 0.75 0.82

4 - Cgpp, Cgpp1Y, Cgpp2Y, Cgpp3Y
- Cpsn, Cpsn1Y, Cpsn2Y, Cpsn3Y
- Cndvi_L, Cndvi1Y_L, Cndvi2Y_L, Cndvi3Y_L
- Age

28.71 23.55 16.48 13.52 0.76 0.84

Bold values indicate the performance metrics of the best-performing model.
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the first 2 years was particularly influential in enhancing model
performance. While the addition of cumulative data from the
planting date to year 3 or from the planting date to year
4 further improved the accuracy, the improvements were less
pronounced compared to the inclusion of indices from planting
date to year 1 and 2. The best performance was obtained by
combining cumulative variables from planting to measurement
date and also from planting to year 4 and using the SGB model,
which resulted in an RMSE of 27.38 m3 ha−1, an rRMSE of 13.62%
and an R2 of 0.73 (model 5).

For stands older than 5 years, cumulative indices were analyzed
up to the fifth year of growth. Referring to Table 6, the results
reaffirm that while adding cumulative indices over successive years
continues to improve predictive accuracy, the early growth period

(especially years 1 and 2) remains the most critical for stand volume
estimation. The accuracy improvements from including cumulative
indices beyond the second year were still present, but the increase in
accuracy was more moderate compared to earlier growth stages.

4 Discussion

4.1 Evaluation of MODIS GPP accuracy

The comparison between MODIS-derived GPP and flux tower
measurements revealed that while MODIS captures the general
seasonal trends, it underestimates high GPP values during
periods of peak productivity and overestimates GPP during early

FIGURE 9
Predicted versus observed Eucalyptus stand volume for the SGB (A) and RF algorithms (C) for stands older than 3 years. Feature importance plots for
the SGB and RF algorithms are shown in panels (B, D), respectively.
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regrowth stages. This systematic bias is consistent with findings in
other ecosystems, including evergreen broadleaf forests (EBF),
where MODIS GPP has been shown to underestimate high flux
tower GPP values, especially during the peak of the vegetation
period when canopy photosynthesis reaches its maximum (Tang
et al., 2015; Wang et al., 2017).

The underestimation in MODIS GPP can be attributed to
multiple factors, particularly the algorithmic saturation at high
GPP levels. MODIS uses the light-use efficiency (LUE) model
and relies on satellite-derived LAI/FPAR inputs, which are
sensitive to canopy density. In highly productive ecosystems,
such as Eucalyptus plantations, the MODIS algorithm becomes
less sensitive to increases in photosynthesis as canopy density
increases, resulting in an underestimation of GPP (Pu et al.,
2024). The LUE is a plant functional type specific value.
Eucalyptus plantations are an extreme case, with very high
productivity clonal trees from a long history of breeding,
fertilization, pest and disease control, site preparation,
homogeneity of the plantation, deep rooting, and with elevated
LUE rates (Stape et al., 2004) that can be significantly higher than the
values typically used by MODIS. For instance, studies on Eucalyptus
plantations reported rotation-averaged LUE for wood production
ranging from 0.48 to 0.62 gC MJ−1 (Le Maire et al., 2013; Le Maire
et al., 2019), while the LUE for GPP was estimated at
1.59–1.97 gC MJ−1 for rainfed Brazilian Eucalypt plantations
(Nouvellon et al., 2012; Ryan et al., 2010), much higher than the
MODIS LUE value of ~0.57 gC MJ−1 for evergreen broadleaf forests.
This difference in LUE values contributes to the MODIS
underestimation of GPP, especially in Eucalyptus plantations
when canopy photosynthesis is at its maximum.

The representation of FPAR in MODIS also introduces
significant uncertainty. FPAR is derived as the maximum clear-
sky value over an 8-day period, which assumes that the maximum
FPAR is representative of clear conditions throughout the period.
This works well for many ecosystems but can cause issues in highly

productive areas like Eucalyptus plantations, where rapid canopy
changes and cloud cover can distort the estimate (Plummer, 2006).
This discrepancy leads to a consistent underestimation of GPP
during high productivity periods (Tang et al., 2015). During the
regrowth phase after harvesting (2010 and 2018), MODIS tends to
overestimate productivity. This likely stems from the regrowth
management such as planting of new seedlings or cuttings
together with growth of weeds and their control. It can be also
due to sparse canopy conditions that are misclassified as closed-
canopy evergreen broadleaf forests, leading to inflated FPAR values
and overestimated GPP. This effect is especially noticeable during
the first year of regrowth, when the canopy is not fully developed and
background reflectance contributes to the overestimation (Serbin
et al., 2013; Brown et al., 2020).

Furthermore, errors in the meteorological inputs can propagate
through the model and affect the accuracy of the GPP, but their
impact is less than that of FPAR-related errors. Studies have shown
that replacing coarse-resolution GMAO meteorological data with
site-specific observations does not significantly improve GPP
accuracy (Wang et al., 2017). In our study, the MOD17A2HGF
product uses GMAO reanalysis data and incorporates
enhancements like year-end gap-filling and climatology datasets.
However, despite these improvements, our analysis revealed that the
product exhibited poor performance (R2 = 0.38, rRMSE = 30.64%).
These results, consistent with Wang et al.’s (2017) findings, indicate
that FPAR remains a critical bottleneck for accurate GPP estimation.

Our findings, which represents the first comprehensive
evaluation of the MOD17A2HGF GPP product specifically in
Eucalyptus plantations, highlights the need for site specific
comparison of MODIS GPP products to describe the
uncertainties and biases before using the GPP product. This
knowledge can be used afterwards to correct the MODIS GPP
product for specific use, or use the product in combination with
other information such as planting date, stand age, other
spectral indices.

TABLE 5 Performance metrics of RF and SGB models for predicting Eucalyptus stand volume in stands older than 4 years (n = 1,582).

# Variables RMSE (m3 ha−1) rRMSE (%) R2

RF SGB RF SGB RF SGB

1 Cgpp, Cpsn, Cndvi-L, Age 37.13 37.56 18.48 18.69 0.50 0.49

2 - Cgpp, Cgpp1Y
- Cpsn, Cpsn1Y
- Cndvi_L, Cndvi1Y_L
- Age

34.11 31.18 16.97 15.52 0.58 0.65

3 - Cgpp, Cgpp1Y, Cgpp2Y
- Cpsn, Cpsn1Y, Cpsn2Y
- Cndvi_L, Cndvi1Y_L, Cndvi2Y_L
- Age

32.73 29.15 16.29 14.50 0.62 0.69

4 - Cgpp, Cgpp1Y, Cgpp2Y, Cgpp3Y
- Cpsn, Cpsn1Y, Cpsn2Y, Cpsn3Y
- Cndvi_L, Cndvi1Y_L, Cndvi2Y_L, Cndvi3Y_L
- Age

32.21 28.19 16.03 14.03 0.63 0.71

5 - Cgpp, Cgpp1Y, Cgpp2Y, Cgpp3Y, Cgpp4Y
- Cpsn, Cpsn1Y, Cpsn2Y, Cpsn3Y, Cpsn4Y
- Cndvi_L, Cndvi1Y_L, Cndvi2Y_L, Cndvi3Y_L, Cndvi4Y_L
- Age

31.73 27.38 15.79 13.62 0.64 0.73

Bold values indicate the performance metrics of the best-performing model.
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4.2 Model performance for stand volume
estimation

The performance of the statistical models -MLR, RF, and SGB-
demonstrated the utility of integrating MODIS-derived indices with
traditional age-based methods to estimate Eucalyptus stand volume.
Among the predictors, cumulative NDVI emerged as the most
significant variable, followed by cumulative GPP and stand age.
The strong correlation between cumulative NDVI and stand volume
(R2 = 0.81) highlights its potential as a reliable indicator of plantation
productivity. The importance rankings derived from the RF and
SGB models corroborate these findings, with NDVI consistently
identified as the most critical predictor.

In our study, RF and SGB models achieved rRMSE values of
approximately 21% and R2 values of up to 0.85 by combining
cumulative values of MODIS NDVI and productivity indices
calculated at measuring date, and the age variable. A similar result
was obtained by Dos Reis et al. (2019), estimating Eucalyptus volume
using different machine learning methods. They reported that using
multispectral, SAR, or DEM variables alone did not provide accurate
estimates of volume compared to predictions based on age. However, a
combination of these variables with age led to better volume estimates,
specifically using the RFmethod (R2 = 0.71, rRMSE = 12.88%). Similarly,
Dos Reis et al. (2018) demonstrated that integrating vegetation indices
with machine learning methods resulted in lower RMSE values
compared to traditional approaches. Their findings underscore the
role of vegetation indices like NDVI in capturing canopy-level
variations, which align closely with the improvements observed in our
study when productivity indices such as GPP and PSN were combined
withNDVI and age for volume estimation. They emphasized thatmature
Eucalyptus plantations (4–6 years) tend to reflect higher contributions

from green leaves and lower contributions from shadows, and dry
branches compared to younger plantations (<4 years) (Ponzoni et al.,
2015). These spectral differences lead to stronger correlations with
infrared bands and vegetation indices that include these bands,
thereby enhancing volume estimation. Similarly, Dube et al. (2015)
highlighted the importance of integrating multi-source data consisting
of SPOT-5 raw spectral bands, 14 spectral vegetation indices, rainfall data,
and stand age for predicting Eucalyptus stand volume and related tree-
structural attributes. They reported accuracies of 17.63% and
0.83 respectively for rRMSE and R2 using SGB model.

While cumulative PSN (Cpsn) showed a relatively low
correlation with volume (R2 = 0.52) and contributed less to
predictive accuracy compared to NDVI and GPP, it still added
value to multi-variable models by reflecting that spatio-temporal
changes in foliage respiration have an effect on the final stand
productivity. Its impact was further amplified when the effects of
stand age and cumulative physiological changes, such as canopy
closure and biomass accumulation, were explicitly incorporated into
volume estimation, as will be discussed later in the next subsection.

The application of PCA within the MLR framework effectively
addressed multicollinearity issues, while maintaining comparable
accuracy to ensemble models. The use of principal components
instead of raw remotely sensed variables has been considered widely
in previous research (Dos Reis et al., 2019; Fayad et al., 2014; Rajab
Pourrahmati et al., 2018; Silva et al., 2016). Silva et al. (2016)
employed PCA to remove multicollinearity in MLR models by
selecting LiDAR-based predictors of volume in Eucalyptus
plantations in Minas Gerais State, Brazil, achieving high accuracy
(adj. R2 = 0.87, RMSE = 27.60 m3 ha−1). Similarly, Dos Reis et al.
(2019) extended the use of PCA to RF models, demonstrating that
PCA can integrate multispectral SAR variables effectively to improve

TABLE 6 Performance metrics of RF and SGB models for predicting Eucalyptus stand volume in stands older than 5 years (n = 933).

# Variables RMSE (m3 ha−1) rRMSE (%) R2

RF SGB RF SGB RF SGB

1 Cgpp, Cpsn, Cndvi-L, Age 41.13 41.37 18.49 18.60 0.36 0.35

2 - Cgpp, Cgpp1Y
- Cpsn, Cpsn1Y
- Cndvi_L, Cndvi1Y_L
- Age

38.19 36.68 17.17 16.49 0.44 0.49

3 - Cgpp, Cgpp1Y, Cgpp2Y
- Cpsn, Cpsn1Y, Cpsn2Y
- Cndvi_L, Cndvi1Y_L, Cndvi2Y_L
- Age

36.36 34.33 16.35 15.43 0.50 0.55

4 - Cgpp, Cgpp1Y, Cgpp2Y, Cgpp3Y
- Cpsn, Cpsn1Y, Cpsn2Y, Cpsn3Y
- Cndvi_L, Cndvi1Y_L, Cndvi2Y_L, Cndvi3Y_L
- Age

35.61 33.28 16.01 14.96 0.52 0.58

5 - Cgpp, Cgpp1Y, Cgpp2Y, Cgpp3Y, Cgpp4Y
- Cpsn, Cpsn1Y, Cpsn2Y, Cpsn3Y, Cpsn4Y
- Cndvi_L, Cndvi1Y_L, Cndvi2Y_L, Cndvi3Y_L, Cndvi4Y_L
- Age

35.42 32.47 15.92 14.60 0.52 0.60

6 - Cgpp, Cgpp1Y, Cgpp2Y, Cgpp3Y, Cgpp4Y, Cgpp5Y
- Cpsn, Cpsn1Y, Cpsn2Y, Cpsn3Y, Cpsn4Y, Cpsn5Y
- Cndvi_L, Cndvi1Y_L, Cndvi2Y_L, Cndvi3Y_L, Cndvi4Y_L, Cndvi5Y_L
- Age

34.68 31.82 15.59 14.30 0.54 0.61

Bold values indicate the performance metrics of the best-performing model.
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Eucalyptus volume estimation (RMSE = 22.33 m3 ha−1). However, our
analysis revealed that for machine learning models like RF and SGB,
using PCs derived from PCA did not lead to significant performance
improvements compared to using original variables. This is likely because
RF and SGB are inherently robust to multicollinearity, with RF using
random feature selection at each split to reduce dependency on correlated
features and SGB focusing on residual errors rather than absolute feature
relationships. As such, the inclusion of original predictors preserved
granularity and detailed information, which proved more beneficial for
model accuracy in our study. Nonetheless, PCA remains a useful tool for
dimensionality reduction and integrating diverse datasets, particularly
when working with simpler or parametric models like MLR.

Overall, our results demonstrate the potential of integrating
MODIS productivity indices with age-based methods for accurate
and scalable volume estimation in Eucalyptus stands.

4.3 Prediction of volume by considering
growth stage-specific variables

Incorporating cumulative MODIS indices across different
growth stages led to a marked improvement in predictive
accuracy, primarily due to their ability to capture temporal
dynamics and integrate information on physiological changes
during growth. Compared to the best model using only four
variables of Cgpp, Cpsn, Cndvi_L (cumulative value of each
index at the measuring date) and Age (Table 2), the SGB model
with additional accumulated variables including Cgpp1Y, Cpsn1Y,
and Cndvi1Y_L (representing cumulative values of each index 1 year
after plantation) increased accuracy by 19.67%, achieving an RMSE
of 22.63 m3 ha−1, rRMSE of 17.15%, and R2 of 0.90 (Table 3).

Further analysis on stands older than a given age (3–5 years)
exhibited improvements in prediction accuracy as more cumulative
indices were added, highlighting the value of these variables in
representing integrated growth processes over time. For instance, for
stands older than 3 years, adding cumulative values of MODIS
indices at 1–3 years after plantation to the four base variables (Cgpp,
Cpsn, Cndvi_L, Age) revealed an increasing enhancement in model
accuracy by 20.35%, 7.83%, and 5.12%, respectively. Referring to the
Supplementary Table S1, the same trend was observed for stands
older than 4 and 5 years. However, the first 2 years of growth had a
significantly higher impact on estimation accuracies.

This trend highlights the critical role of early growth stage indices,
particularly during the first 2 years of stand development, in improving
model performance. During these early years, rapid physiological
changes such as canopy closure have a profound effect on
productivity metrics. While NDVI captures these dynamics by
integrating changes in leaf area index (LAI) and absorbed radiation
(Marsden et al., 2010; Le Maire et al., 2011), providing a robust basis for
subsequent volume predictions, the inclusion of GPP and PSN indices
enhances this capability by reflecting gross and net carbon assimilation
processes that are directly linked to stand productivity. The role ofGPP in
volume estimation is particularly evident in its representation of gross
photosynthetic activity, which contributes to–but does not solely
determine–biomass accumulation. Younger stands benefit from high
photosynthetic rates during canopy development, whereas middle-aged
and mature stands show sustained growth as carbon assimilation
stabilizes. Studies by Le Maire et al. (2011) and Marsden et al. (2010)

highlighted the importance of cumulative NDVI as a proxy for integrated
photosynthetically active radiation (PAR), which is strongly correlated
with stand productivity. They reported significant improvements in
Eucalyptus plantation volume and height predictions when integrating
NDVI time serieswith bioclimatic data and stand age, achievingR2 values
of 0.90 and 0.92, respectively. Similarly, Marsden et al. (2010) highlighted
that cumulative NDVI during the first 2 years of growth was highly
correlated with Eucalyptus stem wood production (R2 = 0.78), which is
consistent with our result. Our results also show the importance of GPP
and PSN in predicting volume, as they directly represent photosynthetic
activity, which is critical for biomass accumulation. However, NDVI
emerges as themost significant variable in themajority of themodels due
to its ability to effectively capture canopy dynamics and temporal changes
in greenness. But it can be important at early growth stages, but then at
mid-age to late rotation the information of GPP really brings important
new information.

The improvement trends can be further understood in light of
findings discussed in Section 4.1, where we evaluated MODIS GPP
against flux tower data. Similar to the observed saturation effects in
high-productivity periods, GPP and NDVI exhibit limitations when
canopy density becomes extremely high, reducing sensitivity to
incremental changes in biomass or photosynthetic activity. This
phenomenon is more likely to occur in older stands (>4 years) where
canopy closure is complete, leading to reduced variability in MODIS
indices Furthermore, the number of samples in our study decreases
significantly as older stands are analyzed, with the total dataset of
4,130 samples reducing to 2,488, 1,582, and 933 for stands older than
3, 4, and 5 years, respectively. This reduction in sample size may
affect the robustness and generalizability of the models for older
stands. However, the accuracy of machine learning algorithms relies
more on the representativeness and proportion of training samples
than their absolute quantity (Fu et al., 2023), which partially
mitigates the impact of reduced sample sizes in older stands.

Our results confirm that the early-growth stage of Eucalyptus
plantations provides valuable information to predict the stand volume
in the subsequent years, even at the end of the rotation. However, our
comparisonwith eddy-covariance data revealed that the early growthGPP
was not correctly estimated with MODIS. Improving the MODIS
estimation of GPP in these early stages could further enhance the
predictive performance of our models. One potential approach is
refining MODIS-derived FPAR, which plays a crucial role in GPP
calculations. Recent advancements, such as the sensor-independent
LAI/FPAR climate data record (CDR) developed by Pu et al. (2024),
address spatial–temporal inconsistencies and accuracy limitations in
MODIS and VIIRS products by integrating multiple satellite sources
and employing advanced gap-filling techniques (Pu et al., 2024). This
refined dataset has demonstrated superior stability and accuracy,
suggesting its potential for improving early-stage productivity estimates
in plantation forests. Additionally, given that MODIS FPAR relies on
biome property look-up tables (BPLUT), its accuracy may be limited
when applied to highly productive or intensivelymanaged plantations like
Eucalyptus, which undergo harvesting cycles every 6–7 years.
Additionally, MODIS GPP calculations use a fixed LUE value for each
biome type based on BPLUT, which may not capture species-specific
variations in photosynthetic efficiency. Refining both FPAR estimates and
incorporating plant functional type-specific LUE values could improve the
accuracy of GPP predictions. Wang et al. (2017) found that MODIS GPP
estimates were more sensitive to FPAR quality than to meteorological
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inputs, suggesting that refining MODIS FPAR sources, such as
incorporating improved datasets like global land surface satellite
(GLASS) FPAR, could improve GPP estimates (Wang et al., 2017).

5 Conclusion

This study highlights the potential of integrating MODIS-derived
indices, particularly the combined use of NDVI andGPP, with traditional
age-based approaches for estimating Eucalyptus stand volume. Our
analysis highlights key limitations in the use of MODIS GPP alone
for stand volume estimation, as it represents gross photosynthetic activity
but does not fully capture biomass accumulation processes, especially in
the absence of complementary information.

The findings emphasize that cumulative indices provide a more
reliable basis for biomass estimation than instantaneous values,
reinforcing the importance of longer-term vegetation trends. Notably,
the early growth stage of Eucalyptus plantations emerges as a critical
period for predicting stand volume in later years. However, MODIS GPP
data are subject to noise and uncertainty particularly in the first year after
logging due to difficulties in accurately representing sparse canopies,
rapid physiological changes, and inherent limitations in theMODISGPP
algorithm. The use of cumulative values helps to mitigate this short-term
variability, but this underline the challenge of addressing biases in
MODIS GPP and ensuring accuracy during early growth stages.
While MODIS GPP incorporates a broader range of environmental
variables, which should theoretically improve volume estimation
accuracy compared to NDVI alone, our results show that the
uncertainty of MODIS GPP during early growth stages reduces
model efficiency. As a result, including NDVI in the model remains
necessary to help counterbalance this effect.

It is worth mentioning that, despite the improvements in our
volume estimation due to our dedicated approach to integrate the
growth dynamics into the modeling framework, an uncertainty
analysis will help quantify the reliability of the MODIS GPP
product in our specific study context, addressing both systematic
errors and random noise. By understanding the magnitude and
sources of uncertainties, we can better refine our models and
increase their robustness, particularly in early-growth stages and
high-productivity periods where MODIS tends to struggle. This
analysis would contribute directly to the research objectives by
identifying key areas for product refinement and providing
insights into how these uncertainties might affect operational use
in vegetation monitoring and biomass estimation. Acknowledging
these uncertainties allows for informed decision-making when using
MODIS GPP in conjunction with other data sources.

From an operational perspective, our findings suggest that
MODIS-derived indices, when aggregated over appropriate
timeframes, can significantly enhance the estimation of stand
volume, particularly for middle-aged to mature stands.
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