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Introduction: Forests in the Zambezi ecoregion play a critical role in sustaining
biodiversity and the livelihoods of over 100 million people across Southern and
Central Africa. However, these forests face growing threats fromhuman activities.
This study assessed forest-cover changes at the national scale within the Zambezi
ecoregion from 2000 to 2023.

Methods: A total of 600 Landsat images acquired for the years 2000, 2008, 2016,
and 2023 were used to analyze forest cover change. Forest cover was classified
using the Random Forest algorithm, integrated with Geographic Information
Systems (GIS) and landscape metrics to assess patterns of forest fragmentation
and ecological transformation.

Result: The results showed a significant reduction in forest area from 2,328,377.5
km2 to 1,817,513 km2, corresponding to an annual deforestation rate of 0.95%.
This decline was associated with a substantial decrease in the largest patch index,
signifying increased fragmentation driven primarily by patch dissection and
suppression. At the country level, annual deforestation rates above 1% were
identified in Malawi (2.07%), Burundi (1.92%), Zimbabwe (1.57%), and Tanzania
(1.06%), while lower rateswere observed in Zambia (0.93%), Mozambique (0.92%),
Angola (0.83%), and southeastern Democratic Republic of the Congo (0.72%).
Despite widespread forest loss, some limited forest stability and regeneration
offer potential for ecological restoration.

Discussion: The findings emphasize the increasing human-induced pressures on
forests within the Zambezi ecoregion and highlight the urgent need for
coordinated restoration initiatives by the Southern African Development
Community (SADC). Crucial steps include engaging local communities in
forest governance, promoting natural forest regeneration, and implementing
sustainable agriculture and clean-energy policies to conserve biodiversity and
maintain ecosystem services.
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1 Introduction

Forests contain most of Earth’s terrestrial biodiversity, with
approximately two-thirds located in tropical regions (Krebber
and Marcon, 2023). These ecosystems are crucial for climate
regulation, having sequestered 17% of global carbon emissions in
the 1990s, a figure that decreased to 6% by the 2010s (Hubau et al.,
2020). More than 1.5 billion people directly rely on tropical forests
for vital resources such as freshwater, medicines, and non-timber
forest products (Gould et al., 2024). However, deforestation
significantly undermines their ecological integrity, with an
estimated 10 million hectares lost annually since 1990 (Sarre, 2020).

For example, in South America, net forest loss between 2000 and
2020 accounted for 5% of the total forest area present in 2000,
translating to 0.44 million km2 (Potapov et al., 2022). Southeast Asia
experienced a net forest cover reduction of 105,490 km2, or 4.87%,
between 1992 and 2018 (Paradis, 2021). Similarly, Central Africa lost
approximately 9% of its tropical forest cover since 2000, amounting
to about 18 million hectares (Eba’a Atyi et al., 2022), with dry
tropical forests also severely affected.

Dry tropical forests, covering roughly 40% of tropical forested
areas (Chidumayo, 2013), include the Zambezi ecoregion in Central
and Southern Africa—the world’s largest tropical dry forest (Dewees
et al., 2010; Kamnitzer, 2024). Recognized among the 200 globally
significant ecoregions and the largest in sub-Saharan Africa, this
region primarily comprises miombo and mopane woodlands
(Timberlake and Chidumayo, 2011). These forests, spanning
eight countries (Zambia, Tanzania, the Democratic Republic of
Congo (DRC), Angola, Mozambique, Malawi, Zimbabwe, and
Burundi) (Ribeiro et al., 2015; Nduwarugira et al., 2017), support
diverse plant communities and numerous endemic wildlife species
(Ribeiro et al., 2020). Miombo woodlands, dominated by
Brachystegia, Julbernardia, and Isoberlinia, flourish on nutrient-
poor soils, whereas Mopane woodlands primarily consist of
Colophospermum mopane (De Cauwer et al., 2018; Ribeiro
et al., 2020).

Over 100 million people depend on the goods and services
provided by these forests (Dewees et al., 2010). However,
deforestation driven by agriculture, urbanization, mining,
charcoal production, and vegetation fires severely threatens
biodiversity and ecosystem services (Useni et al., 2017; Jew et al.,
2016). Agriculture alone accounts for approximately 70%–80% of
deforestation within this ecoregion (Masolele et al., 2024). Urban
expansion, notably in southern Katanga (DRC), charcoal production
due to limited electricity access, and mining activities, particularly
copper and cobalt extraction in Zambia and the DRC, have
intensified forest loss (Mwitwa et al., 2012; Useni et al., 2017;
Khoji et al., 2022; World Bank, 2024). Additionally, vegetation
fires have significantly contributed to forest degradation (Useni
et al., 2023).

Despite the severity of these threats, comprehensive studies
documenting forest decline in the Zambezi ecoregion remain
limited (Mgunda, 2023; Kamnitzer, 2024). Most existing analyses
rely heavily on regional policy reports, such as the Maputo
Declaration (SADC, 2022). According to this report, the extent of
Miombo woodlands declined from 2.7 million km2 in 2006 to
1.9 million km2 by 2021. Other studies have investigated
deforestation at the national scale, including research conducted

by Depicker et al. (2021), which highlighted a 12% reduction in
forest cover in the Kivu Rift (covering Burundi) over two decades;
Gondwe et al. (2019), who reported a 25% decline in Malawi’s forest
area between 2000 and 2017 in Malawi; Nzunda and Midtgaard
(2019) who found substantial forest loss in mainland Tanzania due
to small-scale agriculture and charcoal production; Phiri et al.
(2019), who estimated an annual deforestation rate of 0.62% in
Zambie; Potapov et al. (2012), who documented significant primary
forest loss in the DRC; and Cianciullo et al. (2023) who observed a
sharp increase in deforestation in Mozambique, especially in
protected areas. However, such national-level assessments provide
limited insights into regional deforestation patterns, thus
constraining the development of effective conservation and
management strategies at broader spatial scales. Moreover,
methodological differences in image analysis, influenced by
research objectives and data availability, may lead to
heterogeneous outcomes (Olander et al., 2008).

To address these limitations, it is crucial to analyze the ecoregion
as a whole to understand the complex dynamics of deforestation and
fragmentation. Integrating remote sensing and Geographic
Information Systems (GIS) enables accurate regional-scale forest
monitoring, providing spatial-temporal data that improve our
understanding of ecological processes (Foody, 2023). Coupled
with landscape ecology approaches, these methods effectively
assess impacts of land-use changes amid increasing
anthropogenic pressures (Crowley and Cardille, 2020). Studies by
Hansen et al. (2013), Potapov et al. (2022), and Aleman et al. (2018)
demonstrate the efficacy of these techniques for large-scale
deforestation analyses, complementing traditional national-level
assessments. Moreover, advances in Machine Learning,
particularly through platforms like Google Earth Engine, enable
efficient processing of extensive datasets, significantly improving the
detection of forest cover changes and their impacts on biodiversity
and ecosystem services (Gorelick et al., 2017).

This study aims to quantify forest cover changes and
fragmentation patterns across the Zambezi ecoregion,
hypothesizing an increase in forest fragmentation, a decrease in
total forest cover, and a reduction in the largest patch index due to
intensifying anthropogenic pressures. Moreover, it anticipates that
these dynamics will vary significantly across countries, influenced by
socio-economic factors such as population density, energy access,
and agricultural intensity. Countries such as Malawi, Burundi, and
Zimbabwe, characterized by high population densities, limited
electricity access, and substantial agricultural land, are expected
to experience the most severe impacts.

2 Materials and methods

2.1 Study area

This study was conducted in the Zambezi ecoregion, spanning
Central and Southern Africa, covering an area of 5,017,124 km2

between latitudes 0°59′S and 26°53′S and longitudes 11°46′E and
40°37′E (Figure 1). The ecoregion encompasses eight countries:
Angola, Burundi, Malawi, Mozambique, the Democratic Republic
of the Congo (DRC), Tanzania, Zambia, and Zimbabwe (Ribeiro
et al., 2015; Nkengurutse et al., 2016).
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The Zambezi ecoregion features a semi-arid subtropical climate,
characterized by distinct seasonality, including a dry season lasting
between 5 and 8 months and a wet season of 4–7 months, typical of

summer-rainfall tropical forests (Malaisse, 2010). Miombo
woodlands are classified into dry and wet types based on an
annual rainfall threshold of 1,000 mm, with precipitation ranging

FIGURE 1
Location of the Zambezi Ecoregion in Southern and Central Africa, which extends across Southern and Central Africa, encompassing Angola,
Burundi, Malawi, Mozambique, southeastern DRC, Tanzania, Zambia, and Zimbabwe. Data on urban populations and population density were obtained
from the World Bank (2024).

TABLE 1 Key Indicators for each country in the Zambezi Ecoregion: Population density (2021), gross domestic product (GDP) (2023), electricity access
(2022), agricultural land area (2022), and urbanization rate (2023) were sourced from the World Bank (2024). Data on protected areas, expressed as a
percentage of the national territory, were obtained from Planet Protected (2024).

Countries Population
density
(per km2)

GDP (in
US dollars)

Electricity
access (%)

Agricultural Land
(% of total Land

area)

Urbanisation
rate (%)

Protected areas
(% of total land

area)

Angola 28 2,309 48.5 36.8 69 10.76

Burundi 489 200 10.3 82.8 15 7.64

Malawi 211 672 14 64.2 18 23.11

Mozambique 41 608 33.2 52.7 39 29.49

RDC 32.6 649 21.5 15.5 47 14.94

Tanzania 72 1,211 45.8 44.6 37 39.95

Zambia 26 1,369 47.8 32.1 46 41.27

Zimbabwe 41 1,592 50.1 39.5 33 28.26
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from approximately 600 mm in southern Zimbabwe to over
1,600 mm in southeastern DRC (Ribeiro et al., 2020). Average
annual temperatures across the region vary between 19°C and
25°C (McSweeney et al., 2010). Predominant soils include acidic
Ferralsols and Acrisols, iron-rich Lixisols and Cambisols, as well as
Arenosols and Regosols. These soils are generally nutrient-poor with
low cation exchange capacity, limiting agricultural productivity
(Ribeiro et al., 2020).

Miombo woodlands, the dominant vegetation type within the
Zambezi ecoregion, host around 8,500 plant species, of which
approximately 54% are endemic (Chirwa et al., 2008).
Recognized as a center of Zambezi regional endemism, this
biome supports high floral diversity and serves as a habitat for
one of Africa’s most significant remaining assemblages of
megafauna, marking it as a global biodiversity hotspot (Malaisse,
2010; Timberlake and Chidumayo, 2011). Socio-economically,
countries within the Zambezi ecoregion (Table 1) are heavily
reliant on subsistence agriculture, logging, and urban expansion,
activities that have significantly contributed to increasing
deforestation, particularly driven by agricultural expansion and
charcoal production (Ribeiro et al., 2020).

2.2 Source and selection of satellite data

This study utilized Landsat satellite imagery from TM (2000),
ETM+ (2008), OLI-TIRS 1 (2016), and OLI-TIRS II (2023) sensors,
all with a 30-meter spatial resolution. Approximately 150 scenes per
year (185 km × 185 km each), with cloud cover below 10%, were
selected to ensure high-quality data. These reference years were
strategically chosen to correspond with key policy events influencing
forest management in the Southern African Development
Community (SADC). Specifically, 2000 represents a baseline
preceding the SADC Protocol on Forestry (SADC, 2002).
2008 reflects socio-economic shifts due to the global economic
crisis and precedes the 2010 SADC Forestry Strategy (SADC,
2010). 2016 marks a significant period preceding the Maputo
Declaration (SADC, 2022), and 2023 offers a contemporary
evaluation of current forest conditions. Satellite imagery was
accessed via Google Earth Engine (GEE), a cloud-based platform
that supports large-scale geospatial analysis (Gorelick et al., 2017).

2.3 Image pre-processing

The images selected in Google Earth Engine (GEE) originate
from Collection 2, which converts calibrated Top-of-Atmosphere
(TOA) brightness temperatures from single and dual thermal
infrared bands of Landsat satellites 4–9 into atmospherically
corrected surface temperature products (Wulder et al., 2022). In
this analysis, the function applyScaleFactors was utilized within GEE
to convert raw digital numbers into meaningful physical units.
Specifically, optical bands were rescaled by multiplying by
0.0000275 and subtracting 0.2, whereas thermal bands were
adjusted by multiplying by 0.00341802 and adding 149.0
(Gorelick et al., 2017). These procedures generated corrected
bands, replacing the originals in each image (Wulder et al.,
2022). The function was applied to the entire Collection via the

map() method, ensuring data consistency. Concurrently, a cloud
mask was created using the QA_PIXEL indicator within GEE,
enabling the selection and refinement of scenes best suited for
the analysis by removing those heavily affected by clouds (Phan
et al., 2020).

Subsequently, the median of the processed images was
computed to obtain a representative composite image, which was
clipped to the study area using the clip() function. Finally, a
visualization scheme was established using near-infrared (NIR),
red (R), and green (G) bands with precise parameters (minimum
andmaximum values set to 0 and 0.3, gamma of 2), facilitating visual
interpretation (Gorelick et al., 2017). These bands were selected
based on their optimal properties for vegetation and land cover
analysis: the NIR band strongly reflects chlorophyll content, the R
band detects vegetation presence via chlorophyll absorption, and the
G band assesses vegetation health and canopy density (Imam, 2019).

2.4 Image classification

Two main land-cover classes were defined: Zambezi woodlands
and non-forest. The Zambezi woodlands class encompasses
Miombo woodlands, gallery forests, dry dense forests, montane
forests, and Mopane woodlands (Malaisse, 2010; De Cauwer
et al., 2018). Conversely, the non-forest class includes all other
land-cover and cover types.

Training areas were delineated using high-resolution satellite
imagery from Google Earth Engine (GEE) and Open Foris Collect
Earth (Bey et al., 2016). A stratified random sampling approach was
applied to select 1460 points for the non-forest class and 1520 points
for the Zambezi woodlands class from the 2023 imagery, ensuring
representative coverage across the ecoregion. Woodland areas were
delineated based on tree canopy cover, canopy texture, and spectral
tone typical of Miombo formations. Non-forest areas were identified
using similar visual and spectral criteria, particularly the absence or
fragmentation of tree cover. Classification employed the Random
Forest classifier, known for its robustness in handling complex
remote sensing data (Parmar et al., 2019). Parameters were
optimized to include two variables per node (Mtry = 2) and
100 decision trees, following recommendations by Phan et al.
(2020), enhancing classification accuracy and reducing overfitting.
Other parameters, including the maximum tree depth and the
minimum number of samples per leaf, were retained at their
default settings, allowing unrestricted tree growth (Probst
et al., 2019).

2.5 Accuracy assessment and area
estimation

Validation of the supervised classification followed established
best practices. Specifically, accuracy assessment adhered to
guidelines recommended in the literature (Olofsson et al., 2014).
Land-cover change analysis involved generating change maps for
three periods: 2000–2008, 2008–2016, and 2016–2023, using the
Raster Calculator tool in ArcGIS Pro. This temporal segmentation
was selected to effectively capture land-cover transitions occurring
over intervals long enough to reflect significant environmental
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changes (Burel and Baudry, 2012). These intervals provided a robust
assessment of key land-cover dynamics.

For each period, 700 sampling points were selected using
stratified random sampling, a method recommended by Olofsson
et al. (2013) to ensure representative coverage across different land-
cover classes. Allocation was as follows: 200 points for stable classes
(covering more than 30% of the study area) and 500 points for
dynamic classes. Stable classes refer to areas where pixel values
remained unchanged between observation dates, indicating no land
cover transformation. In contrast, dynamic classes represent areas
where changes in land cover were detected over time (Fichera
et al., 2012).

Accuracy metrics were calculated according to Equations 1,
3 from Olofsson et al. (2014). Overall accuracy represented the
percentage of correctly classified pixels within the entire dataset.
User accuracy indicated the proportion of pixels classified into a
specific category that matched ground conditions, while producer
accuracy represented the proportion of ground-reference pixels
correctly identified in the classification (Olofsson et al., 2013).
These accuracy metrics are widely recognized as key performance
indicators for remote sensing classifications (Nelson et al., 2021).

To quantify uncertainty, adjusted area estimates and associated
95% confidence intervals (standard error × 1.96) were computed
using Equations 10, 11 from Olofsson et al. (2014). Finally, quantity
and allocation disagreement were assessed following Equations
2–5 outlined by Pontius and Millones (2011), providing insights
into both the magnitude and nature of classification errors (Nelson
et al., 2021).

2.6 Analysis of landscape spatial
structure dynamics

The analysis of landscape composition and configuration in the
Zambezi ecoregion, both regionally and at the national level,
employed selected spatial indices chosen for their ecological
significance and ability to capture essential landscape features.
The indices include the Patch Number (PN), reflecting
fragmentation by quantifying patch density and landscape
subdivision. An increased PN typically indicates habitat
fragmentation and ecological disruption (McGarigal, 2015). Class
area and Percentage of Landscape (PLAND) were calculated to
quantify the spatial extent and relative proportion of each land-
cover class, respectively, providing valuable insights into land-cover
distribution patterns. The magnitude of deforestation was evaluated
by calculating periodic deforestation rates, defined as the ratio of
forest area loss (the difference between initial and final forest areas)
to the initial forest area (Useni et al., 2020). This measure enabled an
accurate assessment of annual deforestation trends by dividing it by
the number of years between the initial and final dates.

Additionally, classified maps were integrated into the ArcGIS
Pro Raster Calculator to generate change maps, which quantify and
spatially represent forest stability, regeneration, and loss.

Additionally, landscape spatial transformation processes (STPs)
were analyzed using the decision-tree algorithm proposed by
Bogaert et al. (2004), identifying processes such as expansion,
aggregation, creation, deformation, displacement, perforation,
shrinkage, removal, fragmentation, and dissection. These STPs

directly inform on the effects of anthropogenic disturbances,
revealing impacts on biodiversity and ecosystem services (Bogaert
et al., 2011). Distinctions between fragmentation and dissection
were established by comparing patch area, patch number, and
perimeter before and after transformation. Specifically, if the
ratio of final to initial area (t) is ≤0.75, the process is classified as
fragmentation; otherwise, it is considered dissection (de Haulleville
et al., 2018).

Finally, the dynamics of fragmentation were quantified using the
Largest Patch Index (LPI), a reliable indicator of habitat connectivity
and ecological integrity. Decreasing LPI values reflect diminished
habitat connectivity, potentially affecting ecosystem functionality
and species dispersal, with serious implications for biodiversity
persistence, especially under changing climatic conditions
(McGarigal, 2015).

3 Results

3.1 Spectral features, accuracy assessment,
area estimation, and mapping

Zambezi woodlands exhibited low reflectance in the visible
spectrum (Figure 2), particularly prior to the red band
(~665 nm). In contrast, a pronounced peak is observed in the
near-infrared region (~865 nm), which is characteristic of healthy
vegetation with dense canopy cover. This is followed by a gradual
decrease in reflectance across the shortwave infrared bands
(~1,610–2,200 nm).

Conversely, the non-forest class displayed generally higher
reflectance in both the visible and shortwave infrared regions,
reflecting sparse vegetation, bare soil, or anthropogenic surfaces.
One of the non-forest variants showed consistently low reflectance
across the entire spectrum, which may correspond to impervious
surfaces, heavily shaded areas, or water bodies. These spectral
contrasts confirm the clear separability between Zambezi
woodland formations and other land cover types.

FIGURE 2
Spectral reflectance profiles of Zambezi woodlands and non-
forest classes across the visible, near-infrared (NIR), and shortwave
infrared (SWIR) regions. Zambezi woodlands display a pronounced
reflectance peak in the NIR region (~865 nm), and a subsequent
decline in the SWIR range (~1,610–2,200 nm). In contrast, non-forest
classes show generally higher reflectance in the visible and
SWIR regions.
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TABLE 2 Classification accuracy assessment and area estimation for land-cover classes and cover change from 2000 to 2008, 2008–2016, and 2016–2023,
based on supervised classification of Landsat images using the Random Forest algorithm.

2000–2008

ZW stable ZW loss ZW gain NF stable Total

ZW stable 0,34 0,00 0,00 0,00 0,34

ZW loss 0,00 0,14 0,00 0,00 0,15

ZW gain 0,00 0,00 0,13 0,00 0,13

NF stable 0,00 0,00 0,00 0,38 0,38

Total 0,34 0,15 0,13 0,38 1,00

Accuracy measure

PA 99,56% 96,45% 98,74% 100,00%

PA SE 0,47% 1,88% 1,12% 0,00%

UA 98,51% 98,97% 100,00% 99,50%

UA SE 0,85% 1,03% 0,00% 0,50%

OE 99,15%

OA SE 0,23%

QD 0,01

AD 0,003

AD/QD ratio 0,55

Stratified estimators of area ± CI [% of total map area]

Area 33,99% 14,90% 13,47% 37,63%

95% CI 0,65% 0,67% 0,33% 0,37%

2008-2016

ZW stable ZW loss ZW gain NF stable Total

ZW stable 0,31 0,01 0,00 0,00 0,32

ZW loss 0,00 0,16 0,00 0,00 0,16

ZW gain 0,00 0,00 0,10 0,00 0,10

NF stable 0,00 0,00 0,00 0,43 0,43

Total 0,31 0,16 0,10 0,43 1,00

Accuracy measure

PA 100,00% 95,27% 95,40% 99,40%

PA SE 0,00% 2,12% 2,10% 0,54%

UA 96,10% 99,00% 99,00% 100,00%

UA SE 1,35% 0,99% 0,99% 0,00%

OE 98,50%

OA SE 0,22%

QD 0,01

AD 0,003

AD/QD ratio 0,21

Stratified estimators of area ± CI [% of total map area]

(Continued on following page)
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The supervised classification showed high accuracy, as indicated
by the results presented in Table 2. Overall accuracy, user accuracy,
and producer accuracy were high, with minimal errors. These
findings are supported by low quantity disagreement (QD) and
allocation disagreement (AD) metrics, which revealed only slight
discrepancies between classified and reference maps. The ratios of
AD to QD were consistently below 1, confirming that observed
differences were mainly due to quantity disagreements rather than
allocation errors (Table 2).

Visual analysis of land cover maps reveals a decline in
Zambezi woodlands between 2000 and 2023 (Figure 3). The
adjusted area estimates, calculated using confidence intervals
to account for sampling uncertainty, confirmed this
progressive increase in forest loss across the study periods
(2000–2008, 2008–2016, and 2016–2023) within the Zambezi
ecoregion (Table 2).

3.2 Dynamics of landscape composition

The analysis of landscape composition reveals a pronounced
decline in forest cover, amounting to a loss of 21.94% over 23 years.
The forested area decreased from 2,328,377.5 km2 (46.41% of the
ecoregion) in 2000 to 1,817,513.0 km2 (36.23%) in 2023,
corresponding to an annual deforestation rate of 0.95%. At the
national scale, forest cover exhibited widespread and significant
declines. In Angola and Zambia, where forests previously dominated
the landscape, non-forest areas have now become predominant. For
example, Angola’s forest cover declined from 725,351.50 km2

(56.54% of the national territory) in 2000 to 586,861.50 km2

(45.74%) in 2023, representing an annual deforestation rate of
0.83%. In Zambia, forest area decreased from 409,362.25 km2

(54.37%) in 2000 to 321,477.25 km2 (42.70%) in 2023,
corresponding to an annual deforestation rate of 0.93% (Figure 4).

TABLE 2 (Continued) Classification accuracy assessment and area estimation for land-cover classes and cover change from 2000 to 2008, 2008–2016, and
2016–2023, based on supervised classification of Landsat images using the Random Forest algorithm.

2008-2016

ZW stable ZW loss ZW gain NF stable Total

Area 30,63% 16,43% 10,13% 42,81%

95% CI 0,85% 0,74% 0,56% 0,36%

2016-2023

ZW stable ZW loss ZW gain NF stable Total

ZW stable 0,27 0,01 0,00 0,00 0,28

ZW loss 0,00 0,14 0,00 0,00 0,14

ZW gain 0,00 0,00 0,09 0,00 0,09

NF stable 0,00 0,00 0,00 0,49 0,49

Total 0,27 0,15 0,10 0,49 1,00

Accuracy measure

PA 100,00% 93,05% 95,74% 100,00%

PA SE 0,00% 2,56% 2,01% 0,00%

UA 96,60% 98,99% 99,01% 99,49%

UA SE 1,26% 1,00% 0,99% 0,50%

OE 98,57%

OA SE 0,22%

QD 0,01

AD 0,002

AD/QD ratio 0,19

Stratified estimators of area ± CI [% of total map area]

Area 26,92% 14,63% 9,61% 48,83%

95% CI 0,69% 0,83% 0,50% 0,49%

ZW: Zambezi woodlands, NF: non-forest, PA: producer’s accuracy, UA: user’s accuracy, OA: overall accuracy, QD: quantity disagreement, AD: allocation disagreement, CI: confidence interval.

The classifications are statistically reliable, with significant area estimates and no substantial error margins.
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In other countries, Burundi’s forest cover decreased markedly
from 5,179.25 km2 (18.61% of national territory) in 2000 to
2,897.50 km2 (10.41%) in 2023, indicating an annual
deforestation rate of 1.92%. Malawi experienced a significant
decline from 37,201.50 km2 (31.05%) to 19,530.50 km2 (16.30%),
corresponding to a 2.07% annual deforestation rate. In
Mozambique, forest area decreased from 393,792.00 km2

(49.00%) to 310,816.25 km2 (24.95%) in 2023, with an annual
deforestation rate of 0.92%. These countries thus lost nearly half
their initial forest cover over the study period (Figure 4). In
southeastern DRC, forest cover declined from 239,073.25 km2

(10.19% of the national territory) in 2000 to 199,467.00 km2

(8.50%) in 2023, corresponding to an annual deforestation rate of
0.72%. Tanzania’s forested area fell from 388,819.50 km2 (40.48%) to
293,787.25 km2 (30.58%), translating to a 1.06% annual
deforestation rate. Finally, Zimbabwe’s forest area shrank from
129,598.25 km2 (33.10%) to 82,675.75 km2 (21.12%), representing
an annual deforestation rate of 1.57% (Figure 4). These findings
underscore extensive forest losses across all countries, with notably
high deforestation rates in Malawi and Burundi, indicative of
intensifying human pressures. However, Angola experienced the
greatest absolute forest loss.

Change detection analysis at the ecoregional scale reveals a
progressive decrease in stable forest proportion, from 35.06%

(2000–2008) to 28.20% (2016–2023), reflecting a consistent
decline in forest stability. Simultaneously, forest loss consistently
accounted for 13.60% (2000–2008), 14.96% (2008–2016), and
13.00% (2016–2023), suggesting persistent anthropogenic
pressure. Conversely, forest regeneration decreased notably, from
12.35% (2000–2008) to 9.17% (2008–2016), and then further
declined to 8.73% (2016–2023), indicating a reduced capacity for
natural regeneration (Figure 5).

At the national scale, Angola’s stable forest decreased from
46.22% (2000–2008) to 35.59% (2016–2023), while forest loss
increased slightly from 10.44% to 11.18%, and forest regeneration
remained relatively stable, shifting marginally from 9.68% to 9.99%.
In Burundi, stable forest declined from 7.90% to 5.39%, forest loss
decreased from 9.19% to 7.36%, and regeneration dropped from
8.49% to 4.72%. In Zambia, stable forest slightly decreased from
38.33% to 34.05%, forest loss decreased from 14.43% to 13.67%, and
regeneration notably declined from 14.81% to 7.31% (Figures 5, 6).

In the remaining countries, Malawi’s stable forest shrank
significantly from 19.99% to 10.17%, forest loss declined from
9.91% to 8.07%, and forest regeneration sharply dropped from
6.08% to 3.09%. Mozambique’s stable forest area fell from
30.45% to 23.62%, while forest loss increased from 17.77% to
19.36%, and regeneration remained relatively stable, rising
slightly from 13.29% to 13.41%. In southeastern DRC, stable

FIGURE 3
The maps illustrate changes in the spatial distribution of Zambezi woodlands derived from supervised classification of Landsat imagery for the years
2000, 2008, 2016, and 2023 using the Random Forest classifier. A marked decline in woodlands cover is observed between 2000 and 2023.
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forest declined from 33.79% to 31.24%, forest loss decreased from
14.57% to 10.87%, and regeneration dropped from 14.03% to 6.81%.
Tanzania’s stable forest decreased from 34.39% to 25.16%, forest loss
slightly declined from 13.69% to 12.82%, and regeneration reduced

from 12.34% to 6.74%. Finally, Zimbabwe’s stable forest decreased
from 14.08% to 12.16%, forest loss from 13.26% to 9.28%, and
regeneration from 14.26% to 6.71% (Figures 5, 6). Overall, these
findings highlight widespread forest loss across all countries,

FIGURE 4
Changes in forest cover proportions in Angola (A), Burundi (B), Malawi (C), Mozambique (D), south-eastern DRC (E), Tanzania (F), Zambia (G), and
Zimbabwe (H), derived from the supervised classification of 2000, 2008, 2016, and 2023 Landsat images using the Random Forest algorithm. The results
show a decline in forest cover proportions in all countries from 2000 to 2023.
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characterized by reduced landscape stability and a marked decline in
regeneration capacity—insufficient to offset the observed
deforestation.

3.3 Structural dynamics of the landscape

Between 2000 and 2008, forests in the Zambezi ecoregion
underwent significant structural changes characterized by
dissection, with a proportional area ratio (t) of 0.96. At the
national scale, a similar pattern of dissection—indicated by
simultaneous reduction in forest area and an increase in patch
number—occurred in Angola (t = 0.98), Mozambique (t = 0.92),
south-eastern DRC (t = 0.98), Zambia (t = 0.97), and Zimbabwe (t =
0.92). Conversely, Burundi, Malawi, and Tanzania experienced a
reduction in both forest area and patch number, indicative of
suppression (Figures 7, 8).

Between 2008 and 2016, the Zambezi ecoregion again
underwent dissection (t = 0.90), while national-level analyses
revealed varying spatial transformation processes. Angola (t =

0.83), Mozambique (t = 0.98), Zambia (t = 0.93), and Zimbabwe
(t = 0.88) continued experiencing dissection, whereas Malawi
showed clear fragmentation (t = 0.73), characterized by
substantial loss in forest cover and increased fragmentation.
Conversely, Burundi and south-eastern DRC exhibited
simultaneous reductions in forest area and patch number,
indicating suppression processes (Figures 7, 8).

From 2016 to 2023, forest dynamics at the ecoregional scale were
once again dominated by dissection processes (t = 0.90). At the
national level, suppression was observed in Angola, Burundi,
Malawi, and south-eastern DRC, evidenced by declines in both
forest area and patch number. Conversely, dissection characterized
forest change inMozambique (t = 0.86), Tanzania (t = 0.89), Zambia
(t = 0.85), and Zimbabwe (t = 0.88), reflecting increasing
fragmentation through subdividing larger patches into smaller
ones (Figures 7, 8).

Analysis of the Largest Patch Index (LPI) showed a marked
reduction at the ecoregional level, from 47.28% in 2000 to 24.52% in
2023, highlighting increased habitat fragmentation. At the national
scale, Burundi experienced the greatest decline (from 47.28% to

FIGURE 5
Change maps illustrating shifts in forest cover across the Miombo ecoregion from 2000 to 2008, 2008–2016, and 2016–2023, derived from
supervised classification of 2000, 2008, 2016, and 2023 Landsat images using the Random Forest algorithm. The results highlight a marked regression in
forest cover between 2000 and 2023.
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24.52%), followed by significant decreases in Malawi, Zambia,
Mozambique, and Tanzania. Angola, Zimbabwe, and Tanzania
experienced relatively moderate declines, though still notable.

These results underscore the widespread fragmentation occurring
throughout the region, reinforcing concerns about habitat
continuity (Figure 9).

FIGURE 6
Changes in the proportion of stable forest, forest loss, and forest gain in Angola (A), Burundi (B), Malawi (C), Mozambique (D), south-eastern DRC (E),
Tanzania (F), Zambia (G), and Zimbabwe (H), derived from the supervised classification of 2000, 2008, 2016, and 2023 Landsat images using the Random
Forest algorithm. The proportion of stable forest, forest loss, and forest gain decreased in all countries between 2000 and 2023.
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FIGURE 7
Changes in the relative values of forest area and patch number in Angola (A), Burundi (B), Malawi (C), Mozambique (D), south-eastern DRC (E),
Tanzania (F), Zambia (G), and Zimbabwe (H), derived from the supervised classification of 2000, 2008, 2016, and 2023 Landsat images using the Random
Forest algorithm. Forest cover decreased in all countries between 2000 and 2023.
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4 Discussion

4.1 Methodological approach

The integration of machine learning algorithms with Google
Earth Engine (GEE) provides an effective means for monitoring and
analyzing large-scale forest dynamics (Gorelick et al., 2017). GEE’s
free access to Landsat archives, which are well-suited for assessing
forest changes due to their moderate spatial resolution and
consistent temporal coverage, remains a key advantage (Zhang
et al., 2019). However, the necessity of a stable internet
connection—which is often unreliable in certain parts of
Africa—presents a significant limitation. Despite this challenge,
GEE facilitates large-scale evaluations that help overcome many
data accessibility constraints (Gorelick et al., 2017).

The Random Forest algorithm further enhances classification
accuracy by efficiently handling large and heterogeneous datasets
while reducing overfitting (Phan et al., 2020). The integration of

Open Foris Collect Earth and Google Earth Pro was particularly
valuable for generating reliable training datasets, especially given the
vast extent of the Zambezi ecoregion (Bey et al., 2016). The decision
to classify only two major categories (Zambezi woodlands vs non-
forest) simplified the analysis but did not account for distinctions
between specific woodland types, such as Miombo and Mopane.
These subtypes may exhibit local variations in regeneration or
degradation patterns. Nevertheless, given the magnitude of
deforestation trends at the ecoregion scale, this limitation does
not significantly affect the overall conclusions.

Following the guidelines outlined by Olofsson et al. (2014)
provided a statistically robust approach to accuracy assessment
and area estimation, circumventing the common shortcomings
associated with the Kappa statistic (Pontius and Millones, 2011).
Key metrics—including overall, user, and producer
accuracies—quantified the reliability of classifications, while
adjusted area estimates clarified the extent of each land-cover
category. Similarly, quantity and allocation disagreements were

FIGURE 8
Visualization of spatial transformation processes in the countries of the Zambezi ecoregion (2018–2023), derived from the supervised classification
of Landsat images using the Random Forest algorithm.
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used to measure discrepancies between classification outputs and
validation data.

Landscape dynamics were analyzed using indices derived from
Class Area (CA) and Patch Number (PN) for each land-cover class,
recognized as critical indicators of spatial structure (McGarigal,
2013). CA enabled the calculation of PLAND, both of which are
essential metrics for assessing landscape composition and dynamics
(McGarigal, 2015). Additionally, CA served as the basis for
computing the Largest Patch Index (LPI), a widely used indicator
of fragmentation (McGarigal, 2013), previously applied by Useni
et al. (2020) to evaluate Miombo fragmentation within the former
Lufira Biosphere Reserve. However, area-based indices are
inherently constrained by study scale, as parcel sizes and overall
landscape extent define upper and lower analytical limits
(McGarigal, 2015). While the use of medium-resolution imagery
partially mitigates these constraints, subtle shifts in landscape
configuration may still go undetected. Furthermore, CA and PN
were incorporated into the algorithm developed by Bogaert et al.
(2004) to identify spatial transformation processes. While this
algorithm has been widely applied at local scales to analyze
configuration changes and their underlying drivers (Mpanda
et al., 2022; Useni et al., 2024b), it may have limitations in
capturing the full spatial and temporal complexity of
deforestation processes.

4.2 Deforestation trends in the Zambezi
ecoregion and its countries

Analysis of forest trends in the Zambezi ecoregion reveals a
substantial decline in forest cover, mirroring previous findings
reported by Kamnitzer (2024) between 1980 and 2020. These
results also align with studies from specific sub-regions, such as
Katanga in southeastern DRC (Khoji et al., 2023; Useni et al., 2024b),
Malawi (Gondwe et al., 2019) and main land Tanzania (Nzunda and
Midtgaard, 2019). Furthermore, they are consistent with broader

assessments of African tropical forests and global forest trends
(Potapov et al., 2022; Aleman et al., 2018; Hansen et al., 2013),
despite variations in percentages and methodologies.

At the country level, forest-dominant landscapes in Angola and
Zambia have been largely replaced by non-forest cover. In Angola,
the cessation of civil war in 2002 triggered rapid land-use changes,
driven by population growth, an influx of oil-related revenue, and
governance challenges (Pacheco et al., 2021). As the largest forested
country in the ecoregion, Angola ranks among the top nations
driving global forest loss, according to FAO (2021). Findings in this
study confirm the trends reported by Chiteculo et al. (2018),
highlighting significant forest declines in Huambo Province, and
FAO (2021) at the national level. In Zambia, deforestation is linked
to weak forest governance, characterized by legislative
inconsistencies, limited administrative capacity, and inadequate
resources (Kalaba, 2016). These shortcomings have enabled
unregulated fuelwood extraction, charcoal production, mining,
and agriculture, exacerbating forest loss (Mwitwa et al., 2012).
Despite efforts to decentralize forest management and increase
local participation, coordination and monitoring challenges
persist. These findings align with Phiri et al. (2019), who
documented accelerated deforestation in Zambia since the 1990s.

Other countries, including Burundi, Malawi, and Mozambique,
have experienced extensive forest losses, with forest cover declining
by nearly half over the study period. In Burundi and Malawi, high
population densities—combined with a heavy reliance on
subsistence agriculture (Masolele et al., 2024) and limited
electricity access (World Bank, 2024)— have intensified pressure
on forests for energy production. These countries also face severe
funding shortages for biodiversity conservation and restoration
initiatives (Polisi et al., 2017; World Bank, 2024). The findings
here align with the observations of Depicker et al. (2021) in
Burundi, where deforestation began in the 1980s and has since
accelerated, as well as those in the FAO (2021) report identifying
Malawi among the nations with substantial deforestation rates.
Moreover, the results confirm the patterns recorded by Pacheco
et al. (2021) in Mozambique, showing increasing forest loss since
2000—despite variations in data sources and methods. Lisboa et al.
(2024) attribute this intensifying pressure to agriculture, logging,
and timber production. Although recent sustainable forest
management strategies have been proposed, implementation
remains a major challenge (Pacheco et al., 2021).

Significant forest losses have also occurred in southeastern DRC,
Tanzania, and Zimbabwe. In southeastern DRC, mining expansion
over the past two decades has led to the conversion of forested land
into extraction sites and infrastructure (Mwitwa et al., 2012; Useni
et al., 2017). Rapid urban growth has heightened demand for food
and charcoal, exacerbated by limited electricity access (Kabulu et al.,
2018; Useni et al., 2018; World Bank, 2024). Enforcement of the
2002 Forest Code remains constrained by governance challenges
and socio-economic barriers (Gonzalez, 2018). Similar patterns
emerged in the Katanga Copperbelt following the liberalization of
the mining sector in 2002 (Cabala et al., 2017). In Tanzania,
agriculture, widespread charcoal production, and weak policies
limiting forest-to-farmland conversion drive extensive
deforestation (Doggart et al., 2020; World Bank, 2024).
According to the FAO (2021), Tanzania ranks among the top ten
contributors to global forest loss. In Zimbabwe, deforestation results

FIGURE 9
Evolution of the forest LPI in the countries of the Zambezi
ecoregion, derived from the supervised classification of Landsat
images using the Random Forest algorithm. The decline in this index
indicates an increasing trend of forest fragmentation.
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from agriculture, infrastructure expansion, logging, wildfires,
mining, and charcoal production (Gotore et al., 2019).
Additionally, wood use for tobacco curing accounts for nearly
one-quarter of total deforestation (Kamnitzer, 2024). The trends
identified here align with Gotore et al. (2019), indicating that
deforestation, first reported in the 1990s, intensified after 2000.
Such declines in forest cover undermine biodiversity, ecosystem
services, and overall ecological resilience within the Zambezi
ecoregion (Lisboa et al., 2024).

The ecoregion’s annual deforestation rate of 0.95% slightly
exceeds Kamnitzer (2024) estimate of 0.75% for 1980–2020 and
ranks higher than rates reported for some humid tropical forests,
notably the Amazon (0.30%), Southeast Asia (0.31%), and the
Congo Basin (0.56%) between 2000 and 2020 (FAO, 2021).
While methodological differences partially explain these
disparities, dry tropical forests are inherently prone to
climatic variability and susceptible to drought stress, which
can amplify anthropogenic impacts (Timberlake and
Chidumayo, 2011). National-level deforestation rates mirror
these overarching trends, surpassing 1% per year in many
countries. Malawi’s 2.07% aligns with (FAO, 2021) estimates
for 2010–2020. Burundi’s 1.92% moderately corresponds to
Depicker et al. (2021) estimate of 1.6% for 1958–2016.
Zimbabwe’s 1.57% is close to the UNDP’s (2022) rate of 1.9%
between 2000 and 2010, while Tanzania’s 1.06% approximates
FAO’s (2021) 0.88%.

Conversely, Mozambique’s 0.92% is higher than Cianciullo
et al.’s (2023) 0.23% for 2000–2016 but closer to FAO’s (2021)
0.59%. Zambia’s 0.93% annual rate falls within (Phiri et al., 2019)
0.54%–3.05% bracket, yet surpasses FAO’s (2021) 0.41% for primary
forests alone. Angola’s 0.83% aligns with FAO’s general range of
0.74%–0.80% for 2000–2020 (FAO, 2021). Meanwhile, southeastern
DRC’s rate of 0.72% is about double the national 0.38% reported by
(Eba’a Atyi et al., 2022) between 2001 and 2019. These apparent
discrepancies stem from differing definitions, methodologies, and
time frames, yet the overarching pattern of forest contraction
remains consistent.

Landscape configuration analysis at both the ecoregional and
national scales reveals a substantial decline in forest cover, primarily
driven by suppression, fragmentation, and dissection processes.
Suppression, often triggered by conversion to agriculture or built-
up areas, leads to biodiversity loss and facilitates the spread of
invasive species (Ribeiro et al., 2020). Fragmentation and
dissection—driven by infrastructure development—are
particularly pronounced in mining and agricultural areas
(Mwitwa et al., 2012), increasing habitat isolation, disrupting
ecosystems, and affecting vulnerable species (Khoji et al., 2023).
Numerous studies in southeastern DRC corroborate these findings
(Khoji et al., 2024; Useni et al., 2024a; Mpanda et al., 2022).

Furthermore, the sustained decline in the Largest Patch Index
(LPI) highlights significant forest fragmentation, often attributed to
expanding road networks for transporting agricultural and mineral
products (Khoji et al., 2023). Such fragmentation undermines
regional biodiversity (Lisboa et al., 2024). Similar patterns are
observed in southeastern DRC and Zambia, where mining exerts
additional fragmentation pressures (Mwitwa et al., 2012).

These multiple pressures contribute to increasing instability
within forest ecosystems, often manifested as a gradual erosion of

ecological resilience. This instability is evident in the decline of stable
forest cover between 2000 and 2023, which compromises essential
ecosystem functions, including carbon sequestration, hydrological
regulation, and soil erosion control (Ryan et al., 2016).

Although large areas of forest have been lost, data from multiple
localities also indicate pockets of forest regeneration. This
regeneration capacity, particularly notable in Miombo woodlands,
is attributed to species’ resprouting and recovery abilities (Montfort
et al., 2021; N’tambwe et al., 2024). However, the rate of natural
regeneration lags behind forest clearing, particularly in regions
where small-scale agriculture and fuelwood harvesting quickly
disturb regenerating stands (Ryan et al., 2016). Consequently, the
ability of these regenerating forests to restore ecological balance
remains constrained.

4.3 Implications for forest management in
the Zambezi ecoregion

Our findings confirm a pronounced reduction in forest cover
throughout the Zambezi ecoregion, driven by high deforestation
rates and intensifying fragmentation. Nonetheless, we identified
instances of relative stability and regeneration, albeit insufficient
to reverse net losses. On one side, persistent anthropogenic pressures
weaken the ecological resilience and service provision of these
forests, which support over 100 million people (Dewees et al.,
2010). On the other hand, the inherent capacity of Miombo
woodlands to regenerate (Montfort et al., 2021; N’tambwe et al.,
2024), remains a positive factor. However, the progress of natural
succession remains hindered by ongoing land-use demands (Khoji
et al., 2023). Alleviating these pressures is essential for maintaining
forest viability.

Adherence to SADC’s forest conservation objectives (SADC,
2023) is paramount. Enhancing local community participation in
forest governance fosters ownership and accountability. For
example, the Wildlife Conservation Society’s projects in
Tanzania’s Ruaha-Katavi corridor combine forest restoration with
alternative livelihoods—beekeeping, livestock health
improvements—to produce long-term economic benefits
(Kamnitzer, 2024). SADC’s policies also advocate integrated
monitoring frameworks to safeguard Miombo ecosystems,
although consistent implementation remains challenging without
coordinated oversight (SADC, 2023). Establishing dedicated
committees to track compliance and progress could
improve outcomes.

Rehabilitating degraded landscapes demands both natural and
assisted regeneration, building on successful experiences like those
in Niger, Mali, and Senegal (Reij and Garrity, 2016). Reforestation
with fast-growing native species can further enhance carbon storage,
soil health, and biodiversity (Kyalamakasa et al., 2021). In addition,
agricultural policies must reconcile food security with resource
conservation. Conservation agriculture, emphasizing minimal soil
disturbance, permanent ground cover, and crop rotation, can
prevent further conversion of forests (Gliessman, 2018). This
approach is particularly pertinent in nations where agriculture
spans large proportions of land, as in Burundi (83%), Malawi
(64%), and Mozambique (53%) (World Bank, 2024).
Agroecological practices trialed in Malawi’s Nkhotakota region
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have notably supported biodiversity protection while sustaining
yields (Pangapanga-Phiri et al., 2024).

For countries heavily dependent on tobacco, such as Zimbabwe,
Malawi, and Tanzania, diversifying cropping systems and adopting
agroforestry practices help reduce wood consumption for curing
while improving land productivity. In the North Kivu region of
eastern DRC, for instance, integrating Tephrosia vogelii has boosted
soil fertility and mitigated erosion (Dumont et al., 2015). Charcoal
dependence, closely linked to limited electrification, highlights the
need to scale up renewable energy sources like solar and biogas
(World Bank, 2024). Studies suggest that increasing renewables
correlates positively with forest conservation (Ponce et al., 2021).
Curbing the impacts of urbanization involves promoting sustainable
urban planning and expanding protected areas, as demonstrated by
Angola, where 10% of national territory is under protection (Planet
Protected, 2024).). Such efforts include creating buffer zones and
urban parks, following successful models in Addis Ababa (Ethiopia)
or Cali (Colombia) (McCarthy, 2022). In mining areas like Zambia
and southeastern DRC, sustainable mining practices—site
rehabilitation, environmental impact mitigation, and responsible
waste management—are essential. The “Forest Smart” framework
from PROFOR (2016) offers a notable model that integrates forest
stewardship within mining operations.

Finally, while this study quantified deforestation dynamics in the
Zambezi ecoregion, it did not identify the specific drivers responsible
for forest loss, thereby limiting a comprehensive understanding of
the processes underpinning this decline. Nonetheless, it offers a
robust foundation for exploring deforestation drivers, using
spatiotemporal data and fragmentation indicators that can be
employed to model anthropogenic impacts and inform the
sustainable management of forest ecosystems.

5 Conclusion

This study quantified the spatiotemporal dynamics of forests in
the Zambezi ecoregion from 2000 to 2023 by integrating Landsat
imagery classified using the Random Forest algorithm, Geographic
Information Systems, and landscape structure indices. The findings
confirm a significant decline in forest cover, with an annual
deforestation rate of 0.95%, along with increased fragmentation,
as evidenced by a rising number of patches and a decrease in the
largest patch index. Anthropogenic pressures are reflected in forest
patch suppression and dissection processes. Additionally, similar
deforestation trends were observed across all countries, with
particularly high rates in those characterized by very high
population density, limited electricity access, and extensive
agricultural land, such as Malawi, Burundi, and Zimbabwe. These
results indicate that forest cover in the Miombo ecoregion is under
increasing pressure, driving its deforestation. By providing a detailed
analysis of deforestation and fragmentation dynamics at the
Miombo ecoregion scale, this study makes a valuable
contribution to current knowledge. However, it is limited by its
focus on deforestation without incorporating specific drivers of
forest loss and degradation.

Despite these limitations, the findings underscore the urgency of
developing regional forest restoration strategies, including natural
regeneration, reforestation, and ecologically sustainable agricultural

practices. The identified constraints highlight the need for further
research on the underlying drivers of deforestation and forest
degradation in the Zambezi ecoregion to enhance the
understanding of disturbances affecting these forests.
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