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Indroduction: Estimating snow depth over Arctic sea ice is essential for
understanding climate processes and supporting operational forecasting.
Previous work has demonstrated the use of lidar backscattering pathlength
moments from Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) for snow
depth retrieval. However, passive microwave sensors like the Advanced
Microwave Scanning Radiometer 2 (AMSR-2) offer the potential for more
frequent and spatially extensive observations.

Methods:Wedeveloped a neural network (NN) algorithm to estimate snow depth
over Arctic sea ice using multi-channel brightness temperatures from AMSR-2,
combined with humidity profiles and surface temperatures from the Global
Modeling and Assimilation Office (GMAO) Goddard Earth Observing System
for Instrument Teams (GEOS-IT) product. The NN was trained with temporally
and spatially matched ICESat-2 snow depth data from the 2018–2019 winter
season. The trained NN was then applied to AMSR-2 clear-sky wide-swath
observations for the 2018–2019 and 2019–2020 Arctic winters, generating
daily snow depth estimates across Arctic sea ice.

Results: Validation against independent ICESat-2 data showed strong
performance: the NN-based AMSR-2 snow depth retrievals had a near-zero
bias and a root mean square error (RMSE) of 10 cm. Further validation using (a)
instantaneous matchups, (b) daily geolocation comparisons, and (c) monthly
Arctic-wide averages confirmed consistent results. Instantaneous comparisons
yielded a 9 cm RMSE with minimal bias, daily comparisons showed a 3 cm
underestimation and 9 cm RMSE, andmonthly averages exhibited a 1 cm bias and
10 cm RMSE.

Discussion: These results confirm the reliability of the neural network-based
method for snow depth retrieval from AMSR-2. The approach enables daily, long-
termmonitoring of snowdepth over Arctic sea ice, offering significant benefits for
climate research and operational applications such as snowstorm and blizzard
monitoring.
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1 Introduction

Snow depth is a key parameter for understanding the cryosphere
and its interactions with the climate system, hydrology, and
ecosystems. In the Arctic, snow depth on sea ice plays a crucial
role in modulating sea ice thermodynamics and surface energy
balance. Acting as an insulating layer, it regulates heat exchange
between the ocean and atmosphere (Sturm et al., 2002), affects sea
ice growth and melt (Maykut and Untersteiner, 1971), and
contributes to climate feedbacks (Holland et al., 2006). It also
impacts satellite-derived sea ice thickness estimates by altering
freeboard-to-thickness conversions in altimetry-based retrievals
(Kwok and Cunningham, 2008; Brucker and Markus, 2013;
Newman et al., 2014; Kwok et al., 2020). Moreover, as a seasonal
freshwater reservoir, snow depth influences ocean stratification,
atmospheric moisture transport, river runoff, and continental
freshwater availability through changes in precipitation and river
discharge (Laxon et al., 2012; Pflug et al., 2025).

Traditionally, snow depth has been measured using in situ
observations from weather stations and field surveys (Lejeune
et al., 2019; Ménard et al., 2019; Wagner et al., 2021), as well as
airborne suborbital snow radar missions such as Operation
IceBridge (Kurtz and Farrell, 2011; Kurtz et al., 2013; Kwok
et al., 2017). In situ measurements are considered the most
accurate, with errors typically within a few centimeters under
well-controlled conditions. Airborne radar systems, such as those
used in Operation IceBridge, provide high-resolution snow depth
estimates across broader spatial domains, with uncertainties
generally ranging from 5 to 10 cm depending on snow properties
and surface roughness (Kwok et al., 2017). Although these methods
offer high accuracy and fine spatial resolution, their spatial and
temporal coverage remains limited, especially in remote polar
regions where logistical challenges and harsh environmental
conditions restrict measurement frequency and continuity.

Passive microwave remote sensing, particularly using the
Advanced Microwave Scanning Radiometer 2 (AMSR-2) onboard
the Global Change Observation Mission 1st Water (GCOM-W1)
satellite, provides large-scale, frequent snow depth retrievals
(Comiso et al., 2008). However, AMSR data are constrained by
relatively coarse spatial resolutions (12.5 km to ~75 km for AMSR-
E) (Kelly, 2009; Takala et al., 2011). Conventional retrieval
algorithms, which rely on empirical relationships between
brightness temperature differences and in situ measurements
(Markus and Cavalieri, 1998), are subject to uncertainties due to
assumptions about snow properties, ice types, and atmospheric
conditions (Rostosky et al., 2018). Additionally, variability in
snow microphysics, including grain size evolution and layering,
further complicates retrieval accuracy (Sturm and Massom, 2016).
To mitigate these uncertainties, AMSR-2 daily snow depth products
are provided as 5-day running averages, primarily covering Arctic
regions dominated by first-year or seasonal sea ice (Meier, 2018).

Satellite radar altimeters, such as CryoSat-2 and Sentinel-1,
enable snow depth retrieval over sea ice (Kwok et al., 2020;
Lievens et al., 2022). These altimeters measure the height of the
snow-ice interface, representing the bottom of the snow layer, and
require information on the snow surface height to derive snow depth
estimates (Kacimi and Kwok, 2020; Kwok et al., 2020). This is
typically achieved by combining CryoSat-2 measurements with the

data from Advanced Topographic Laser Altimeter System (ATLAS)
instrument onboard the Ice, Cloud, and land Elevation Satellite-2
(ICESat-2), which provides snow surface elevation. While such
approaches yield valuable insights into snowpack characteristics,
their limited temporal resolution restricts their ability to monitor
snow depth changes on daily timescales.

Seasonal snow depths can be estimated using ICESat-2
ATL08 terrain elevation data (Neuenschwander et al., 2021;
Enderlin et al., 2022), ATL06 land ice elevation data
(Deschamps-Berger, et al., 2023), SlideRule Earth (Besso et al.,
2024; Fair, et al., 2024) and multiple reference digital elevation
models (DEMs) based on snow-on and snow-off measurements
(Shean et al., 2021; Hu X. et al., 2022). However, the snow depth
retrievals from currently available altimetry crossovers with snow-
on and snow-off measurements are sparse and noisy (Shean et al.,
2021). Moreover, the quality and vertical accuracy of reference
DEMs (Treichler and Kääb, 2017; Liu et al., 2020), and the
spatial resolution differences between ICESat-2 and the reference
DEMs, can affect the snow depth retrievals as well.

To address these limitations, Hu X. et al. (2022) and Lu et al.
(2022) developed a novel method for deriving snow depth using
vertically resolved, multiply scattered lidar signals returned from
within the snow layer. The ICESat-2 ATL03 global geolocated
photon dataset (Neumann et al., 2021) provides exceptionally
high vertical resolution, capturing both surface-returned photons
as well as subsurface photons that penetrate the snowpack and
undergo multiple scattering. This capability allows for high-
precision snow depth retrievals, offering detailed mapping of
snow cover, surface roughness, and optical properties on both
land surfaces and sea ice (Lu et al., 2017; Lu et al., 2022; van
Tiggelen et al., 2021; Hu Y. et al., 2022). ATLAS is a 532 nm
photon-counting laser altimeter with a 10-kHz pulse repetition rate,
a nominal 11-m footprint diameter with an along-track sampling
interval of 0.7 m at the Earth’s surface (Magruder and Brunt, 2018;
Martino et al., 2019; Neumann et al., 2019; Magruder et al., 2020).
ICESat-2 operates on a 91-day nominal repeat cycle, and its narrow
ground track results in sparse spatial sampling. This makes it
challenging to provide continuous observation coverage over
large areas. In contrast, passive microwave sensors such as
AMSR-2 offer near daily global coverage at a coarser spatial
resolution (10–25 km), making them more suitable for consistent
large-scale monitoring of snow and sea ice conditions.

Given the importance of large-scale, high-temporal-resolution
snow depth monitoring, integrating multiple remote sensing
datasets is necessary. Machine learning (ML) techniques provide
a promising data-driven approach to overcoming limitations
associated with conventional retrieval algorithms. By capturing
complex, nonlinear relationships between observed microwave
signals and snow depth, ML-based models can improve retrieval
accuracy and adaptability to varying sea ice conditions. This study
integrates AMSR-2 observations with ancillary datasets and trains a
neural network model using ICESat-2 snow depth data (Hu Y. et al.,
2022; Hu et al., 2023; Lu et al., 2022) as ground truth. By integrating
passive microwave and active altimetry, the results demonstrate that
machine learning enhances retrieval accuracy, adapts to
heterogeneous Arctic sea ice conditions, and generalizes
effectively across the Arctic winter region. By leveraging ICESat-
2’s high-precision snow depth estimates and AMSR-2’s broad spatial
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coverage, this study presents, for the first time, a daily global Arctic
winter snow depth monitoring system.

This paper is organized as follows. Section 2 describes the
datasets used in the study. Section 3 outlines the methodology
employed for snow depth retrieval. Section 4 presents the
resulting daily and monthly snow depth estimates over Arctic sea
ice. Section 5 provides a detailed discussion and validation of the
neural network-based retrieval system, including: (1) the system’s
capability for daily snowfall monitoring, (2) independent monthly
validation against ICESat-2 and CryoSat-2 freeboards as well as
standard AMSR-2 products over both first-year and multi-year sea
ice, and (3) an analysis of key sources of uncertainty. Finally, Section
6 summarizes the findings, outlines future plans and concludes
the paper.

2 Data

The neural network for snow depth estimation is trained using
input data from AMSR-2 brightness temperatures and numerical
weather model reanalysis over Arctic sea ice during the winter
season. Snow depth measurements from the active sensor
ICESat-2 serve as the ground truth for training. Details of the
datasets used in this study are provided in Sections 2.1–2.3, while
those used for independent comparison are described in
Sections 2.4, 2.5.

2.1 ICESat-2 snow depth

Hu X. et al. (2022) and Lu et al. (2022) developed an algorithm
for deriving snow depth using Monte Carlo lidar radiative transfer
simulations. Their approach utilizes the first-, second-, and third-
order moments of the lidar backscattering pathlength distribution.
These methods have been applied to ICESat-2 lidar measurements
over Arctic sea ice (Hu Y. et al., 2022; Lu et al., 2022). ATLAS
onboard ICESat-2 is a photon-counting lidar instrument with a
unique six-beam configuration, consisting of three beam
pairs—each pair containing one strong and one weak beam
(Neumann et al., 2021). Snow depth is retrieved using the
ICESat-2 Global Geolocated Photon Data (ATL03) from all three
strong beams. To enhance the signal-to-noise ratio, snow surface
photon returns are aggregated over 10 consecutive laser pulses. Each
pulse has an along-track sampling interval of approximately 0.7 m at
the Earth’s surface, resulting in an effective along-track resolution of
about 7 m (Hu Y. et al., 2022; Lu et al., 2022). In this study, ICESat-2

snow depth measurements from December 2018 to March 2019 are
used as the ground truth for training the neural network model.
Snow depth data from December 2019 to March 2020 are used for
validation of the AMSR-2 snow depths.

2.2 AMSR-2 brightness temperature

AMSR-2, a passive microwave sensor onboard the GCOM-W1
satellite (Cavalieri et al., 2014; Alsweiss et al., 2021), provides
brightness temperature observations across multiple microwave
frequencies and spatial resolutions, as summarized in Table 1.
The AMSR-2 Level 1C product, Common Calibrated Brightness
Temperature (GPM_1CGCOMW1AMSR-2), is obtained from the
NASA Goddard Earth Sciences Data and Information Services
Center (GES DISC) (Wesley, 2022).

This dataset includes five frequency channels: 10.65 GHz (24 ×
42 km), 18.7 GHz (14 × 22 km), 23.8 GHz (15 × 26 km), 36.5 GHz
(7 × 12 km), and 89.0 GHz (3 × 5 km), with each available in both
vertical (V) and horizontal (H) polarizations. The brightness
temperature data are resampled to a uniform grid of 10 × 10 km
for all frequencies, except for the 89 GHz channel, which is
resampled to 5 × 5 km.

2.3 Input variables

The input variables for the AMSR-2 neural network (NN) snow
depth retrieval over Arctic sea ice are summarized in Table 2. These
inputs include latitude, longitude, brightness temperatures (BT),
and brightness temperature differences (BTD). Specifically,
brightness temperatures at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz
are utilized, along with the following BTDs: (10.65–18.7 GHz),
(10.65–23.8 GHz), (10.65–36.5 GHz), (18.7–23.8 GHz),
(18.7–36.5 GHz), and (23.8–36.5 GHz).

In addition to microwave observations, relative humidity and
temperature data from the Global Modeling and Assimilation Office
(GMAO) Goddard Earth Observing System for Instrument Teams
(GEOS-IT) datasets are incorporated. This includes relative humidity at
surface levels (2 m and 10 m) as well as at key atmospheric pressure
levels (850 hPa, 500 hPa, and 250 hPa), providing critical information
on microwave radiance absorption for specific AMSR-2 channels.
Additionally, surface skin temperature and 2-m surface air
temperature are included as input parameters.

Both the training data and the AMSR-2 application of the
trained neural network for snow depth retrieval are focused on

TABLE 1 AMSR-2 channels.

Center
frequency (GHz)

Band
width (GHz)

Ground
resolution (km)

Beam width
(degree)

Polarization Re-sampled
interval (km)

10.65 0.1 24 × 42 1.2 Vertical and
Horizontal

10

18.7 0.2 14 × 22 0.65

23.8 0.4 15 × 26 0.75

36.5 1.0 7 × 12 0.35

89.0 3.0 3 × 5 0.15 5

Frontiers in Remote Sensing frontiersin.org03

Sun-Mack et al. 10.3389/frsen.2025.1591276

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1591276


Arctic sea ice. The Arctic sea ice extent is determined using sea ice
concentration data from the Near-Real-Time NOAA/NSIDC
Climate Data Record of Passive Microwave Sea Ice
Concentration, provided by the National Snow and Ice Data
Center (NSIDC) (Meier et al., 2024).

2.4 Standard AMSR-2 5-daily averaged
snow depth

AMSR-E/AMSR-2 Unified L3 Daily 12.5 km Brightness
Temperatures, Sea Ice Concentration, Motion, and Snow Depth
Polar Grids, Version 1 (Meier, 2018) provides snow depth estimates
over sea ice. This standard AMSR-E and AMSR-2 snow depth
products rely on the relationship between passive microwave
brightness temperature (TB) at 19 GHz and 37 GHz, which is
sensitive to variations in snow cover (Markus and Cavalieri, 1998).
Snow depth retrieval is based on an empirical linear relationship
between the 37 GHz TB depression and measured snow depth.
These empirical coefficients are derived from airborne and in situ
measurements (Warren et al., 1999), allowing for large-scale snow
depth monitoring across the polar regions.

However, the standard AMSR-2 snow depth retrieval is most
effective for dry snow over first-year sea ice, particularly in seasonal
sea ice zones (Meier, 2018). The AMSR snow-depth-on-sea-ice
algorithm (Markus and Cavalieri, 1998; Kelly, 2009) relies on the
spectral gradient ratio between the 18.7 GHz and 37 GHz vertical
polarization channels. This method generally retrieves snow depths
50 cm or less, constrained by the limited penetration depth of the
18.7 and 36.5 GHz frequencies. Beyond this threshold, the
microwave signal saturates and becomes insensitive to additional
snow depth (Kelly, 2009; Meier, 2018). Accuracy decreases over
multi-year sea ice due to increased surface roughness and complex
snow layering, which introduce additional uncertainties. To improve
the stability and consistency of snow depth estimates, the standard
AMSR-2 daily snow depth products are provided as 5-day running
averages, helping to smooth short-term fluctuations caused by
atmospheric variability, sensor noise, and temporary surface
changes. The standard 5-day averaged AMSR-2 snow depth data
described here is utilized solely for validation and
comparison purposes.

2.5 IS2-CS2 snow depth

The IS2-CS2 dataset is a synergistic product that combines
observations from NASA’s ICESat-2, (abbreviated as IS2) and the
European Space Agency’s (ESA) CryoSat-2 (CS2) to enhance
measurements of Arctic sea ice properties, particularly snow
depth (Markus et al., 2017; Kwok et al., 2020; Kacimi and Kwok,

2022). Snow depth estimates are calculated by taking the differences
in freeboard measurements between ICESat-2 and CryoSat-2 Data
from both satellites are combined on a 25 × 25 km grid.

Due to limited coverage within a single day, IS2-CS2 provides a
monthly snow depth product for both first-year and multi-year sea
ice. Its snow depth retrievals are restricted to the Beaufort Sea,
Chukchi Sea, East Siberian Sea, Laptev Sea, and Kara Sea, as well as
the Arctic Ocean region defined by key gateways, including the
Bering Strait (Pacific Ocean), the Canadian Arctic Archipelago
(CAA), Fram Strait (Greenland), and the Barents Sea. Similar to
the standard 5-day averaged AMSR-2 data, IS2-CS2 snow depth is
primarily used for validation and comparison purposes.

3 Methodology

In this study, ICESat-2 snow depth is used as the target variable
for training the neural network, as it is derived from photon-
counting lidar measurements that are physically independent of
passive microwave retrievals and provide higher accuracy and
spatial resolution. This choice enables the model to learn a more
reliable relationship between AMSR-2 brightness temperatures and
true snow depth, improving retrieval performance compared to
training on existing passive microwave-derived products.

Vertically polarized brightness temperatures from AMSR-2 are
used to minimize surface emissivity effects from snow. To construct
the neural network training dataset, AMSR-2 measurements are geo-
collocated with ICESat-2 snow depth retrievals. AMSR-2 data, with a
spatial resolution of approximately 10 km, are reportedwith geolocation
coordinates corresponding to the center of each pixel. Around each
AMSR-2 pixel center, ICESat-2 snow depth footprints within a 1 km
radius are identified. This ensures that the high-resolution ICESat-2
measurements (~7 m in-track resolution) are spatially representative of
the AMSR-2 footprint, while remaining well within its boundary to
minimize sub-pixel variability and edge effects. Temporal collocation is
performed by selecting ICESat-2 data acquired within ±1 h of the
AMSR-2 overpass time. This 2-hour windowhelps limit the influence of
short-term changes in atmospheric or surface conditions, while still
allowing for sufficient ICESat-2 sampling coverage, especially in the
polar regions where the satellite ground tracksmay be sparse or offset in
time. Across winter season of 2018–2019, this collocationmethod yields
approximately one million matched pixels using the 1 km and ±1 h
thresholds. If the spatial threshold is expanded to 2 km, the number of
matched pixels increases significantly, reaching approximately
8.4 million per season. However, in this study, we adopt the 1 km
spatial and ±1 h temporal criteria to prioritize spatial representativeness
and temporal proximity over sample size, thus ensuring a higher-quality
training dataset.

The AMSR-2 neural network for snow depth estimation was
trained using a feedforward neural network implemented in

TABLE 2 Input parameters for NN AMSR-2.

Geolocation Latitude, longitude

GEOS-IT Surface skin temp (k), 2-m temp(k),relative humidity (%) at 2-m, 10-m, 850 hPa, 500 hPa, and 250 hPa

AMSR-2 Brightness Temp (BT) (k) BT10,BT18,BT23,BT36,BT89

AMSR-2 BT Difference (K) BTD10-18,BTD10-23,BTD10-36,BTD18-23,BTD18-36,BTD23-36
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MathWorks. The Levenberg-Marquardt training function
(Levenberg, 1944; Marquardt, 1963; The MathWorks, 2024) was
selected for its ability to efficiently handle large datasets with
numerous iterations. A single hidden layer was utilized, as
adding a second layer did not significantly improve accuracy but
substantially increased training time. The activation functions used
were the logarithmic sigmoid (logsig) and hyperbolic tangent
sigmoid (tansig) functions. The hidden layer consisted of
50 neurons, determined by incrementally adding neurons until
further increases no longer improved accuracy. Model
performance was evaluated using mean squared error (MSE). For
final training, data from the sampled winter months (December
2018 to March 2019) were split into 60% for training, 20% for
testing, and 20% for validation.

To prevent local minima during neural network training,
multiple runs were conducted using varied dataset samplings
(e.g., selecting every second or third pixel), different random
initial weights, and various proportions for training, testing, and
validation. Local minima were identified by unusually short
convergence times during training. Overfitting was mitigated by
utilizing a very large dataset (typically exceeding one million data
points), which encouraged the network to generalize, as well as by
minimizing the number of neurons in the hidden layer.
Unreasonable data, such as fill values, were filtered out to reduce
noise, and range limits were applied to exclude obviously erroneous
data, as retaining such data in the input set could hinder
generalization. Unnecessary input parameters were also removed
through a trial-and-error process to optimize the training. The
network’s reliability was confirmed by its comparable
performance when applied to the AMSR-2 neural network snow
depth results for the 2018–2019 winter training dataset and the
independent 2019–2020 validation dataset. This consistency
demonstrated that the network achieved global minima without
overfitting. During the initial training, potential input variables were
evaluated by adding one parameter at a time. After each addition, the
model’s performance was assessed by comparing its accuracy against
the training truth–ICESat-2 snow depth. If a parameter did not
improve accuracy, it was excluded. This process continued until the
final set of input variables was determined, as listed in Table 2.

While AMSR can penetrate some cloud cover to retrieve snow
depth, thick or persistent cloud cover, particularly in regions like the
Arctic and Southern Ocean, can degrade the quality of microwave
measurements and reduce the accuracy of neural network-based
retrievals. To mitigate this issue, it is important to apply a cloud
screen to filter out unreliable observations.

The Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP), instrument, aboard the CALIPSO satellite launched in
2006 as part of the A-Train constellation, operates both day and
night with repeat cycle of 16 days. CALIOP can detect a wide range
of cloud thicknesses, from thin cirrus clouds to thick cumulus
clouds. These capabilities enable more precise and comprehensive
assessments of global cloud cover, especially in polar regions where
passive remote sensing instruments face challenges in distinguishing
snow surfaces from low altitude clouds. A neural network-based
cloud detection algorithm for AMSR-2, developed using CALIOP
cloud identification as ground truth for training with spatially and
temporally collocated AMSR-2 and CALIOP lidar data, was applied
in this study to screen high confident cloudy scenes. While the

development and validation of the cloud screening neural network
algorithm will be presented in a separate publication, its application
is essential to the data processing in the current study. In this study,
each AMSR-2 pixel is first screened to exclude high-confidence
cloudy pixels before applying the neural network-based snow depth
retrieval. The proportion of excluded pixels varies daily, ranging
approximately from 10% to 18%, depending on the specific day,
month, and year of the winter season.

4 Snow depth results

The results presented here consist of the AMSR-2 snow depth
results along the temporally and geographically collocated ICESat-2
tracks, as well as snow depth results across AMSR-2 swaths.
Comparisons were made between AMSR-2 snow depth estimates
and the corresponding ICESat-2 snow depth values using the
training dataset from the Arctic winter season of 2019
(December 2018 – March 2019), with independent data from the
2020 winter season to validate the robustness of the estimates.
Weights and constants of the neural network were optimized
during the training phase and subsequently applied to
independent datasets over Arctic sea ice.

4.1 Results along the temporally and
geographically collocated ICESat-2 path

Figure 1 illustrates snow depth comparisons between AMSR-2
and ICESat-2 for both training (Figures 1a–c) and validation
(Figures 1d–f) datasets. The validation data in Figure 1 is from
January 2020. Data points were selected where the two instruments
were within 1 km of each other and recorded measurements
within ±1 h. Scatterplots in Figure 1a (training) and 1d
(validation) compare snow depths from ICESat-2 (x-axis) and
AMSR-2 (y-axis). Histograms in Figures 1b,e show snow depth
distributions for training and validation, respectively. Figures 1c,f
present the snow depth differences for training and validation,
respectively.

The training dataset contains about 3.5 million data points, but
the neural network tends to focus on the most frequently occurring
data. For snow depths greater than 60 cm or less than 7 cm, where
data is sparse, the training process largely ignores these regions (as
shown by the red histogram in Figure 1b). This issue is also reflected
in the standard deviation: AMSR-2 has a standard deviation of 8 cm,
while ICESat-2 has a larger spread with a standard deviation of
11 cm. From the statistics shown in Figure 1c, the neural network’s
predicted snow depths have minimal bias compared to ICESat-2,
with the root mean square error (RMSE) of 8 cm and a mean
absolute error (MAE) of 6 cm.

The validation dataset shows promising consistency with the
training results. Like the training data (Figure 1c), the validation data
shows no bias (Figure 1f). The validation RMSE and MAE are
slightly higher at 10 cm and 7 cm, respectively, compared to 8 cm
and 6 cm for training. Additionally, the correlation remains
consistent, with a value of 0.82 for training (Figure 1a) and
0.81 for validation (Figure 1d). These results demonstrate that
the training process is robust and performs well on unseen data.
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Figures 2a–h plot the snow depths from time and geolocation
matched AMSR-2 and ICESat-2 over Arctic sea ice for four
randomly selected days, each representing a validation month
during the Arctic winter of 2020. The lines of dots in Figures
2a,c,e,g indicated ICESat-2 tracks that are time matched and geo-
collocated with AMSR-2. The colors of the data points indicate
ICESat-2 snow depths, and some (not all) associated hours for each
track are labeled nearby. The four selected days are: 28 December
2019 (Figures 2a,b), 22 January 2020 (Figures 2c,d), 27 February
2020 (Figures 2e,f), and 2 March 2020 (Figures 2g,h). The snow
depth results (y-axis) from AMSR-2 are shown in Figures 2b,d,f,h,
where AMSR-2 in red and ICESat-2 in blue. X-axis presents the
hours (top row) and latitude and longitude (bottom row). Note the
spacing between hours on the x-axis is uneven, as the data points are
sequentially ordered by time for instances where AMSR-2 and
ICESat-2 are time-matched and geographically collocated.

Between the hours of 5:00 and 11:00 on 28 December 2019, as
shown in Figures 2a,b, the observations are primarily concentrated at
latitudes above 80°N, spanning the region between 60°W and 20°E. This
area is characterized by multi-year sea ice, where snow depths are
typically significant ~30–50 cm (Warren et al., 1999). In Figure 2b,
ICESat-2 data indicates snow depths as high as 60–80 cm (blue points).
AMSR-2 also shows large snow depths in this region, reaching up to
60 cm (red points), although not as high as ICESat-2. After 11:00,
during the hours from 11:00 to 23:00, AMSR-2 and ICESat-2 data agree
more closely, with both showing snow depths between 15–30 cm, a bias
of 0.7 cm, and a RMSE of 10 cm. The agreement is reflected in a
minimal bias of 0.7 cm and an RMSE of 10 cm.

Figures 2c,d shows that AMSR-2 accurately captures most of the
smaller snow depths compared to ICESat-2 on 22 January 2020,

particularly in the first-year snow region during hours 16–23.
However, around hours 13–14, AMSR-2 underestimates the snow
depths. Overall, AMSR-2 snow depths generally follow the same
patterns of increase and decrease as those observed by ICESat-2. The
comparison reveals a small bias of 2.3 cm and a RMSE of 8 cm.

The snow depths shown in Figures 2e–h are primarily from the
eastern Arctic sea ice on 27 February 2020, and 2 March 2020.
Notably, AMSR-2 captures most of the larger snow depths
accurately for 27 February 2020. However, it tends to
overestimate many snow depths on 2 March 2020. The mean
and standard deviation for AMSR-2 and ICESat-2 are identical
for 27 February 2020, both measuring 20 ± 8 cm. On 2 March 2020,
the statistics differ: AMSR-2 reports 23 ± 9 cm, while ICESat-2
reports 18 ± 6 cm.

4.2 Results across the AMSR-2 swath

4.2.1 Daily snow depth
Figure 3 presents daily snow depths over Arctic sea ice for

27 February 2020. In cases where there are overlapping swaths from
AMSR-2 or overlapping tracks from ICESat-2 within the same
region, snow depth values are averaged across all overpasses or
tracks. Figure 3a shows snow depths derived from ICESat-2 across
all Arctic crossing tracks throughout the day, with a daily mean
snow depth of 22 cm and a standard deviation of 9 cm. Figure 3b
illustrates averaged snow depths from AMSR-2, but only over
regions where ICESat-2 has overpasses, resulting in a mean of
20 cm and a standard deviation of 7 cm. Note, the AMSR-2
snow depths along ICESat-2 tracks shown here are matched by

FIGURE 1
Comparison of AMSR-2 and ICESat-2 SnowDepths: The top row (a–c) represents results from the training dataset (Arctic winter season 2019), while
the bottom row (d–f) shows results from the validation dataset for January 2020. The left panel displays scatterplots comparing snow depth estimates
from AMSR-2 (y-axis) and ICESat-2 (x-axis). The middle panel illustrates the normalized frequency distributions of snow depth for ICESat-2 (black) and
AMSR-2 (red). The right panel depicts the normalized frequency distributions of the snow depth differences (AMSR-2 minus ICESat-2).
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geolocation but not by observation time. Both ICESat-2 and AMSR-
2 data over ICESat-2 tracks reveal smaller snow depths (blue
regions) over first-year sea ice, primarily located between 170°W
and 60°E north of 70°N, and larger snow depths (green, yellow, and
red regions) over multi-year sea ice, mostly west of the Arctic Ocean

to ~170oW.The snow depth differences between AMSR-2 (on
ICESat-2 tracks) and ICESat-2 are shown in Figure 3c, with
ICESat-2 snow depths being slightly higher on average, resulting
in a bias of 3 cm and RMSE of 9 cm. Figure 3d depicts averaged snow
depths from AMSR-2 swaths for the entire day, with a mean of

FIGURE 2
Snow depth comparisons between AMSR-2 and ICESat-2 for four selected dates: 28 December 2019 (a, b), 22 January 2020 (c, d), 27 February
2020 (e, f), and 2March 2020 (g, h). (a, c, e, g) display the time and location-matched tracks between AMSR-2 and ICESat-2, with a color bar representing
ICESat-2 snow depth values. (b, d, f, h) compare AMSR-2 (red) and ICESat-2 (blue) snow depths. The x-axis indicates the hour of the day (top row of
x-label) and latitude/longitude (bottom row of x-label) of ICESat-2.
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22 cm and a standard deviation of 9 cm. The snow depth patterns
observed over first-year and multi-year sea ice in this figure are
consistent with those in Figures 3a,b. This result highlights the
strength of machine learning, as the neural networks trained on
ICESat-2 tracks can effectively generalize to wide-swath AMSR-2
data. Notably, AMSR-2 provides full coverage of the entire Arctic
Ocean within a single day, a significant advantage over other
active sensors.

4.2.2 Monthly snow depth
Figure 4 presents the monthly mean snow depths for February

2020. Although ICESat-2’s extremely high spatial resolution of 7 m
limits its coverage on a daily basis, it achieves near-global coverage over
the course of a month. As shown in Figure 4a, the global monthly mean
snow depth is 23 cm with a standard deviation of 10 cm. In contrast,
AMSR-2, which has a much lower spatial resolution (~10 km) but a
wider swath, retrieves monthly mean snow depths as depicted in
Figure 4b. The AMSR-2 monthly mean snow depth is also 23 cm,
with a standard deviation of 8 cm. The monthly mean snow depths
retrieved by AMSR-2 (Figure 4b show excellent agreement with those

from ICESat-2. Both datasets display similar spatial patterns, with
smaller snow depths over first-year sea ice and larger snow depths
over multi-year sea ice. The statistical measures for the two datasets are
also closely aligned; Figure 4c illustrates the difference betweenAMSR-2
and ICESat-2 snow depths, revealing a bias of 1 cm (with ICESat-2
values being slightly larger) and a too mean square error of 10 cm.
Figure 4d shows the spatial distribution of the standard deviation of
AMSR-2 (swath) snow depth retrievals. The standard deviation ranges
from less than 2 cm in the central Arctic Ocean to over 8 cmnear coastal
regions and marginal seas. The central Arctic exhibits more consistent
snow conditions, reflected in lower standard deviations.

5 Discussion

5.1 Daily monitoring for snowfall,
snowstorm or blizzard

Snowfall and snowstorms in the Arctic can vary significantly
from day to day. This work introduces a method for monitoring

FIGURE 3
Daily Snow Depths on 17 February 2020: (a, b) are daily snow depths from ICESat-2 and AMSR-2, respectively, with AMSR-2 snow depth values
sampled along ICESat-2 overpass tracks. (c) shows the differences in snow depth between AMSR-2 and ICESat-2 (AMSR-2 minus ICESat-2). (d) presents
the daily snow depths from AMSR-2 over its wide swath overpasses.

FIGURE 4
Monthly mean snow depths for February 2020: (a) ICESat-2, (b) swath AMSR-2, and (c) the difference (AMSR-2 minus ICESat-2), shown only along
ICESat-2 tracks, (d) the standard deviation of swath AMSR-2 shown in (c).
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daily snowfall and snowstorms by analyzing changes in snow depth
measurements over consecutive days. The approach involves
subtracting the snow depth of 1 day from that of the previous
day or earlier days to calculate regional snow accumulation over the
specified period across the entire Arctic sea ice. Figure 5 illustrates
this process. Figure 5a shows the snow depth on 4 February 2020,
while Figures 5b–d present the snow accumulation over one, two,
and 3 days, respectively. Note that persistent cloud cover in the
Central Arctic near Greenland (white area marked as “Overcast” in
Figure 5a) on 4 February 2020, prevented snow depth measurements
in that region. Regions such as the Laptev Sea, off the coast of Siberia,
frequently experience snowfall and snowstorms in early winter,
driven by the interaction between cold Siberian air masses and
Arctic cyclones. During the deep winter months, light snowfall and
blizzards can still occur over the sea ice. For example, from February
4 to 7 February 2020, snowfall persisted across the Laptev Sea and
parts of the Central Arctic. Snow accumulation during this period
measured 2 cm after 1 day, 4 cm after 2 days, and 6 cm after 3 days.
This study demonstrates a system for monitoring daily snowfall and
snowstorms, which is particularly valuable in remote regions like
Arctic sea ice, where ground-based observations are extremely
challenging.

Figure 6 provides another example. As mentioned in Section 2.5,
the standard AMSR-2 daily snow depth product (Meier, 2018)
provides 5-day running mean values. Figures 6d–f display snow
depth results from the standard AMSR-2 product. Figures 6d,e show
snow depths from 2 February 2019, and 5 February 2019,
respectively. Figure 6f represents the snow accumulation between
Day 2 and Day 5, calculated by taking the difference between the
snow depths on February 5 and 2 February 2019. In the East Siberian
Sea, the standard AMSR-2 product indicates a snow accumulation of
just under 2 cm. In contrast, Figures 6a–c show snow accumulation
data from this study, with an accumulation of ~6 cm, compared to
the 2 cm indicated by the standard AMSR-2 product. While the two
methods report different snow accumulation values, they both
highlight similar areas of snowfalls, as shown by the yellow
circles. The standard AMSR-2 snow depth product represents a
5-day running average, which can result in muted values. Therefore,
it is not surprising that the standard AMSR-2 product shows lower

snow accumulation compared to the results from this work. Another
important point to note is the snow depth coverage. The standard
AMSR-2 product is limited to snow cover on first-year sea ice and
does not provide snow depth retrievals over multi-year sea ice (Kelly,
2009; Meier, 2018), as shown over Central Arctic in Figures 6d–f. In
contrast, the AMSR-2 snow depth retrievals presented in this paper
cover both first-year and multi-year sea ice, as illustrated in
Figures 6a–c.

5.2 Independent validation

As mentioned earlier, snow depth has been the focus of
numerous algorithmic studies (Warren et al., 1999; Kwok et al.,
2017; Kwok et al., 2020; Hu Y. et al., 2022; Kacimi and Kwok, 2022;
Lu et al., 2022), making it essential to understand how the current
approach compares with other algorithms. Figure 7 illustrates the
monthly snow depth results over Arctic sea ice for four winter
months—December, January, February, and March—across two
winter seasons (2018–2019 and 2019–2020). From left to right,
Figure 7 presents results from ICESat-2 (Figure 7a), AMSR-2
(Figure 7b), IS2-CS2 (Figure 7c), and standard AMSR-2
(Figure 7d). In the Beaufort Sea, Chukchi Sea, East Siberian Sea,
and Laptev Sea regions, all four snow depth datasets exhibit an
increase in snow depth from December to March, as shown in the
top four rows of Figure 7 for 2018–2019 and the bottom four rows
for 2019–2020. This progression is evident in Figure 7, with colors
transitioning from dark blue in December to light blue in March for
both winter seasons, except in the standard AMSR-2 dataset
(Figure 7d), where the colors shift from light blue to green-blue.
There is good agreement in snow depth patterns, including highs
and lows, among ICESat-2, AMSR-2, and IS2-CS2 over sea ice in
regions where IS2-CS2 provides snow depth coverage (Figure 7c).

In the central Arctic, snowpacks are not uniform and tend to
have variations in depth and structure, often forming what one
might call “snow valleys” and “snow peaks.” ICESat-2 snow depth,
with its aggregated spatial resolution of ~7 m, captures these features
in detail, as shown in Figure 7a. The other snow depth
datasets—AMSR-2 (7–10 km resolution), IS2-CS2 (24 km

FIGURE 5
(a) AMSR-2 snow depth measurements for 4 February 2020. (b) Snow accumulation from 4 February to 5 February 2020. (c) Snow accumulation
from 4 February to 6 February 2020. (d) Snow accumulation from 4 February to 7 February 2020.
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resolution), and standard AMSR-2 (24 km resolution)—represent
averaged snow depth, appearing as smoothed reddish-
yellow patterns.

Another notable aspect is the variation in coverage among the
different snow depth datasets. Snow depths from ICESat-2 and
AMSR-2 (Figures 7a,b) provide full coverage of the Arctic Ocean.
Snow depth from IS2-CS2 is limited to the Arctic Ocean region
defined by the gateways into the Pacific Ocean (Bering Strait), the
Canadian Arctic Archipelago (CAA), and the Greenland (Fram
Strait) and the Barents Seas, as shown in Figure 7c (Kacimi and
Kwok, 2022). Standard AMSR-2, on the other hand, only provides
snow depth over first-year sea ice (Kelly, 2009; Meier, 2018).
Consequently, the AMSR-2 snow depth from this work is the
only dataset offering complete snowpack coverage across the
entire Arctic Ocean.

The enhancedmonthly snow depthmaps from the neural network-
based AMSR-2 retrievals offer significantly broader spatial coverage
compared to IS2-CS2 and standard AMSR-2 datasets, particularly over
multi-year sea ice and peripheral Arctic regions. This expanded
coverage enables a range of important applications in sea ice
research, climate studies, and operational forecasting.

One major benefit is the improvement in sea ice mass balance
estimates. Snow depth is a critical parameter for converting satellite

freeboard measurements into ice thickness. With more complete
and frequent snow depth data, especially in regions and months
where IS2-CS2 data are sparse, researchers can derive more accurate
estimates of sea ice volume and its seasonal evolution. These
improvements are particularly valuable for assessing long-term
changes in Arctic sea ice in the context of climate change.

The detailed snow depth data also support sea ice
thermodynamic modeling. Snow insulates the underlying ice,
regulating heat exchange and influencing ice growth and melt
rates. Monthly maps with comprehensive coverage allow for
better initialization and validation of thermodynamic sea ice
models, leading to improved simulations of ice processes across
varying Arctic conditions. From a modeling perspective, the
monthly AMSR-2 snow depth maps can be used to validate
outputs from regional climate models like RACMO, MAR, and
HIRHAM. These datasets are particularly useful for evaluating
model performance in marginal seas and transition zones
between first-year and multi-year ice, where snow accumulation
patterns can vary widely.

In addition, these AMSR-2 datasets with global Arctic Sea
coverage are valuable for atmospheric reanalyses and operational
forecasting systems, such as those from European Centre for
Medium-Range Weather Forecasts (ECMWF) or NASA’s GMAO.

FIGURE 6
(a, b, c) show snow accumulation data from this study. (d, e, f) display snow depth results from the standard AMSR-2 product. (c, f) show snow
accumulation from 2 February 2019 to 5 February 2019, respectively.
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Accurate snow depth inputs can enhance model initialization and
improve forecasts of sea ice extent and condition. The ability to
monitor snowfall and snow accumulation continuously throughout

the winter also helps characterize storm events and assess their
impacts, contributing to a deeper understanding of Arctic
precipitation variability and trends.

FIGURE 7
Monthly snow depths from left to right: (a) ICESat-2, (b) AMSR-2, (c) IS2-CS2, and (d) standard AMSR-2, covering two winter seasons: December
2018 (top row) to March 2019 (fourth row), and December 2019 (fifth row) to March 2020 (bottom row).
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Finally, the improved snow depth information has practical
applications in Arctic logistics. Snow conditions over sea ice affect
surface roughness, albedo, and bearing capacity—all of which are
important for planning shipping routes, ice road construction, and
other Arctic operations. By providing broader coverage and higher
temporal resolution, the AMSR-2 snow depth maps, daily and
monthly, can inform safer and more efficient navigation and
planning in the Arctic.

Direct comparisons are challenging due to the different coverage
areas of each algorithm. To facilitate a quantitative comparison,
snow depth values from all four datasets will be extracted exclusively
from regions where IS2-CS2 provides valid snow depth
measurements (Figure 7c). For simplicity, this area will be
referred to as the “IS2-CS2 Region.” Figure 8 presents the
monthly relative frequency histograms of snow depth within the
IS2-CS2 region for all four snow depth datasets. Figure 8a displays
monthly relative frequency histograms of snow depth over first-year

sea ice in IS2-CS2 region for the four winter months, December to
March, of 2018–2019 and 2019–2020. Figure 8b shows snow depth
over multi-year sea ice. The various snow depths are represented as
follows: ICESat-2 (blue), AMSR-2 (red), IS2-CS2 (green), and
Standard AMSR-2 (orange). The mean and standard deviation
for each of the four snow depth algorithms are shown next to
their respective histograms. Overall, the snow depth estimates from
the four datasets agree within their respective standard deviations.
However, the Standard AMSR-2 snow depth shows the largest mode
in December for both winter seasons, a difference that gradually
diminishes and disappears by March.

As noted earlier, ICESat-2 in Figure 8a, with its extremely high
spatial resolution, captures fine-scale snow “valleys” and “peaks,”
resulting in the largest snow depth variability (standard deviation)
among the algorithms, ranging from 8.6 (March 2020) to 12.9
(December 2019) cm. In contrast, IS2-CS2 snow depths are more
uniform and exhibit the smallest variability, with a standard

FIGURE 8
Monthly relative frequency histograms of snow depth in the IS2-CS2 region for the two winter seasons (December to March) of 2018–2019 and
2019–2020. (a) shows snow depth over first-year sea ice, while (b) represents multi-year sea ice. The snow depths are indicated as follows: ICESat-2
(blue), AMSR-2 (red), IS2-CS2 (green), and Standard AMSR-2 (orange). The mean and standard deviation for each of the four snow depth algorithms are
displayed next to their corresponding histograms.
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deviation of 2.4 (January 2020) to 3.4 (March 2019 and 2020) cm.
The standard deviation for AMSR-2 ranges from 3.6 (March 2019)
to 5.1 (December 2019) cm, while for Standard AMSR-2, it is 4.1
(March 2020) to 4.9 (February 2020) cm. Since both AMSR-2 and
Standard AMSR-2 use data from the same instrument, their snow
depth variations are similar. However, AMSR-2 exhibits a slightly
larger spread due to its neural network algorithm, which utilizes all
six channels listed in Table 1, whereas Standard AMSR-2 relies only
on the 18.7 GHz and 36.5 GHz channels.

Figure 8b shows the snow depth results over multi-year sea ice in
IS2-CS2 region from ICESat-2, AMSR-2, and IS2-CS2. The three
datasets show excellent agreement in snow depth estimates over
multi-year sea ice. However, the mode of the snow depth from IS2-
CS2 tends to be smaller compared to both ICESat-2 and AMSR-2,
especially in December and January, with the differences becoming
less pronounced in February and March. Figures 8a,b demonstrate
that snow depths over multi-year sea ice are consistently thicker
than those over first-year sea ice. During all four winter months of
both the 2018–2019 and 2019–2020 seasons, the difference in mean
snow depth between multi-year and first-year sea ice remains
consistent at 9–10 cm across all three datasets.

To further evaluate the reasonableness and reliability of AMSR-2
neural network-based snow depth, we draw on validation studies
and comparisons with independent IceBridge measurements. Lu
et al. (2020) validated ICESat-2-derived snow depths by comparing
them with co-located IceBridge snow depth measurements over
Arctic sea ice. The comparison showed good agreement, with an
RMSE of 7.8 cm, corresponding to 29.2% of the mean snow depth.

Although IceBridge measurements are not temporally aligned
with the current AMSR-2 dataset, we conduct a comparative
analysis to assess the reasonableness of the AMSR-2 snow depth
retrievals. Specifically, we use IceBridge snow radar data collected
during an 8-day period in March 2017 (days 3–24) and compare
them with AMSR-2-derived snow depth from March 2020 over the
same spatial domain, along the IceBridge flight tracks. As shown in
Figure 9, the IceBridge snow depth exhibits a broader distribution
with a mean of 26.8 ± 11.4 cm, while the AMSR-2 retrievals show a
narrower peak centered around a mean of 28.7 ± 6.2 cm. Despite the
different years of observation, the two datasets show comparable
mean snow depths, though with distinct variability characteristics.
Due to IceBridge’s high spatial resolution (on the order of meters), it
can capture the full range of snow depth variability, including both
shallow and deep snow. In contrast, AMSR-2’s coarser resolution
(tens of kilometers) results in a spatially averaged snow depth
estimate, which tends to smooth out local variability. Despite
these differences, AMSR-2 snow depth shows a bias of
approximately 4 cm with AMSR-2 snow depth larger and an
RMSE of 10 cm relative to IceBridge, suggesting a reasonable
level of agreement—particularly given that the datasets come
from different years.

5.3 Uncertainty

Overall, there is good agreement between AMSR-2 and ICESat-2
(Figures 1a,b) for snow depths less than ~50 cm over both first-year
and multi-year sea ice. Similarly, reasonable consistency is observed
among ICESat-2, AMSR-2, IS2-CS2, and Standard AMSR-2 (Figures

7, 8) for snow depth estimates across both sea ice types. However,
despite this general agreement, uncertainties remain in AMSR-2
snow depth retrievals, particularly as snow depth increases. This
section examines the key factors contributing to these uncertainties.

One primary source of uncertainty arises from the non-linearity
in the relationship between snow depth and brightness temperature.
At shallow snow depths, variations in snow depth lead to
pronounced changes in brightness temperature, making retrievals
more sensitive. However, as snow depth increases, this sensitivity
diminishes, causing the relationship to flatten. This behavior is
evident in Figures 1a,d, where the neural network algorithm
retrieves snow depth effectively up to approximately ~50 cm.
Beyond this threshold, the retrievals become increasingly
saturated, making it difficult to distinguish further increases in
snow depth. This saturation effect can be attributed to the
physical properties of microwave radiation in deeper snowpacks.
As snow depth increases, radiation emitted from the lower layers
undergoes scattering and absorption before reaching the surface,
resulting the observed brightness temperature to become saturated
and less responsive to additional increases in snow depth.
Additionally, larger snow grains, which are more prevalent in
deeper snow, enhance microwave scattering at higher frequencies
(e.g., 37 GHz and 89 GHz), further exacerbating this saturation
effect (Rostosky et al., 2018).

Another source of uncertainty is the neural network’s ability to
learn and generalize from its training data.While AMSR-2 does have
inherent limitations in sensitivity to deep snow depending on the
frequencies used in the training, the reduced retrieval performance
for snow depths exceeding ~50 cm in this study is primarily due to
the scarcity of such cases in the training dataset. As shown in the
histograms in Figure 1b, snow depths greater than 50 cm are
underrepresented, ~4.5% of training data, preventing the network
from effectively learning the relationship between brightness
temperatures and deep snow conditions.

Beyond the training representation challenges in the retrieval
algorithm, differences in spatial resolution between ICESat-2 and

FIGURE 9
Relative frequency distributions of snow depth measured from
IceBridge (March 2017, blue) and retrieved from AMSR-2 (March 2020,
red). The mean and standard deviation for each of the two snow
depths are displayed next to their corresponding histograms.
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AMSR-2 contribute to uncertainty. ICESat-2 measurements are
based on a 10-shot laser average, yielding a horizontal resolution
of approximately 7 m, while the resampled AMSR-2 footprint covers
a much larger 10 × 10 km area. Within this footprint, snow depth
can vary significantly due to surface roughness features such as
wind-formed snowdrifts, ridges, and depressions. Consequently,
representing snow depth with a single AMSR-2 value introduces
uncertainty, as subpixel variability cannot be fully accounted for.
Lower frequency channels are often relied upon for their ability to
retain sensitivity to snow depth in case where higher frequency
channels become saturated over deep snow. However, AMSR-2
lower frequency channels come with much coarser spatial
resolutions, 35 × 62 km for 6.9 GHz and 24 × 42 km for
10.7 GHz, which further exacerbate the mismatch with the high-
resolution ICESat-2 data and increase uncertainty due to subpixel
variability.

Additionally, uncertainties vary with latitude due to
differences in satellite coverage and data density. As a polar-
orbiting satellite, ICESat-2 has a higher overpass density at high
latitudes than at lower latitudes, as shown in Figure 4a. This
results in a greater density of training data at high latitudes (e.g.,
80°–90°) compared to lower latitudes (e.g., 60°–70°).
Consequently, snow depth retrievals over sea ice at lower
latitudes tend to have higher uncertainties due to the relatively
sparse training data available in these regions, as clearly
illustrated in Figure 4d.

The snow depth retrieval process begins with a neural network-
based cloud mask that screens out pixels identified as cloudy with
high confidence, typically thick clouds. The snow depth retrieval is
then applied to the rest of snow pixels. This mask, neural network
trained with AMSR-2 as input and CALIOP as the reference, is
essential for ensuring accurate retrievals. However, if the cloud mask
fails to detect clouds, particularly thick clouds, and incorrectly
classifies a cloudy pixel as clear, snow depth retrieval will still
proceed. This misclassification can lead to underestimation errors
in the retrieved snow depth, adding another layer of uncertainty to
the dataset.

In this study, AMSR2 data for the Arctic Ocean during winter
seasons are limited to nighttime observations. When conducting
snow depth studies in summer, an additional source of error arises in
ICESat-2 snow depth retrievals due to photon count noise from solar
background radiation and the detector’s dark current. These noise
sources can contaminate the observed photon pathlengths,
particularly those associated with snow multiple scattering. If
solar background noise is not properly removed from daytime
measurements, snow depth may be overestimated by
approximately 5–20 cm (Lu et al., 2022). To address this,
retrieval algorithms typically utilize the solar background photon
counts provided in the ATL03 product. In contrast, the detector’s
dark count—approximately five to six orders of magnitude weaker
than the snow signal—introduces a negligible bias of less than 0.2 cm
(Lu et al., 2022).

6 Summary

A neural network method has been developed to retrieve
snow depth on sea ice over the Arctic during winter months. The

algorithm utilizes various input data, including radiances and
brightness temperature differences from AMSR-2, atmospheric
temperature and humidity profiles from GMAO-IT, and sea ice
extent from Near-Real-Time NOAA/NSIDC Climate Data
Record of Passive Microwave Sea Ice Concentration.

By combining spaceborne lidar and microwave data with
state-of-the-art artificial neural networks, this study offers a
significant advancement by providing daily, Arctic-wide
coverage over both first-year and multi-year sea ice,
surpassing the spatial and temporal limitations of existing
datasets such as ICESat-2, IS2-CS2, and Standard AMSR-2.
These daily estimates enable continuous monitoring of
snowfall and snowstorms during Arctic winters and support
improved scientific understanding, operational forecasting,
and community preparedness. Trained with ICESat-2 data, the
retrievals yield unbiased estimates with an RMSE of 8 cm and
show strong agreement across multiple independent validation
approaches, including instantaneous, daily, and monthly
comparisons, with RMSE values ranging from 9 to 10 cm and
minimal biases. In key Arctic regions where IS2-CS2 provides
valid estimates, AMSR-2 snow depth differences ranged from 0 to
4 cm, remaining within the standard deviation of IS2-CS2 across
all months during the 2018–2019 and 2019–2020 winter seasons.
Compared to Standard AMSR-2, the neural network estimates
are slightly thinner (by 1–5 cm), yet offer improved temporal
resolution and broader applicability, including over multi-year
sea ice. To further evaluate the robustness and reliability of the
method, associated retrieval uncertainties were also thoroughly
analyzed and discussed.

A possible alternative approach to snow depth retrieval would
involve deploying a high-density array of laser beams alongside
radar instruments. In this scenario, lidar would measure the snow
surface, while radar would measure the ice surface, with snow depth
derived from their difference, similar to the IS2-CS2 methodology.
However, such a mission would require an investment of hundreds
of millions of dollars and would likely take at least a decade to
develop, build, and launch.

In contrast, the method presented in this study leverages
existing satellite observations, incurring virtually no additional
cost. By utilizing the fine spatial resolution and high accuracy of
ICESat-2 snow depth measurements, this approach enables the
reconstruction of daily snow depth records spanning the
AMSR-E observational period (June 2002–December 2011)
and the AMSR-2 era (May 2012–present). Moreover, this
method is highly time-efficient—while a new satellite mission
would take over a decade to realize, nearly 20 years of snow
depth records can be processed in a matter of months rather
than years.

Through comprehensive validation and comparisons with
ICESat-2, IS2-CS2, and standard AMSR-2 datasets, this study
demonstrates that high-accuracy snow depth retrieval can be
achieved efficiently and cost-effectively through innovative
algorithm development and a strategic approach, utilizing
existing satellite observations rather than relying on new satellite
missions. However, given the limitations and uncertainties discussed
earlier, the deployment of a new satellite with enhanced capabilities
at high resolution could further refine this method and improve
retrieval accuracy.
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The current study focuses on Arctic snow measurements during
the winter months, where relatively stable and predominantly
nighttime conditions allow for more reliable satellite
observations. However, extending the analysis to the summer
season presents significant challenges for both ICESat-2 and
AMSR-2. During the Arctic summer, ICESat-2 measurements are
affected by increased background noise from continuous sunlight.
The presence of solar photons introduces contamination in the
photon detection process, making it more difficult to distinguish
actual surface returns from background noise. Similarly, AMSR-2
faces substantial challenges in summer due to changes in the
physical properties of the snowpack. The presence of liquid water
from melting snow and rainfall alters the microwave emissivity,
reducing the contrast between snow-covered and bare ice surfaces.
This effect weakens the sensitivity of AMSR-2’s spectral signatures
to snow depth variations. Furthermore, increased atmospheric
moisture and cloud cover during summer storms can introduce
additional interference, complicating the retrieval of accurate snow
depth measurements. To address these challenges, future algorithm
development will require modifications to improve retrieval
accuracy under summer conditions. Such algorithm refinements
will be essential for extending the current snow retrieval framework
to year-round Arctic monitoring.
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