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Introduction: Agricultural expansion and intensification have driven substantial
land use/land cover (LULC) changes. These changes have caused a drastic
reduction in ecosystem services. Understanding the spatial and temporal
patterns of LULC change in relation to topographic attributes is essential for
effective watershed management, as it provides insights into landscape
heterogeneity and supports evidence-based conservation planning. This study
analyzed LULC dynamics from 1983 to 2022 in the Sigi River watershed (887 km2)
in the East Usambara Mountains, a biodiversity hotspot and critical water source
in northeastern Tanzania.

Methods: Multi-temporal Landsat satellite images were classified using the
Random Forest algorithm to assess LULC transitions across elevation and
slope gradients.

Results: The results revealed marked variations in LULC change across
topographic zones. The foothill and escarpment areas experienced extensive
deforestation and the rapid expansion of small-scale cultivation, whereas upland
areas exhibited relatively lower levels of change, primarily transitioning from
forest to spice agroforestry. These spatial patterns reflect the influence of
population pressure, socio-economic transformations, government land
policies, and the establishment of protected areas in the uplands. Slope
steepness further modulated LULC dynamics, with steeper slopes across all
elevations showing notable forest loss, while gentler slopes may have
undergone earlier land conversion, preceding the study period.

Discussion: The study underscores the importance of integrating topographic
attributes into LULC assessments to better understand landscape transformation
processes and support sustainable land-use planning and watershed
management.
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1 Introduction

A change in Land Use/Land Cover (LULC) is widely recognized
as a crucial driver of environmental transformations across various
disciplines, including soil science, hydrology, natural resource
conservation, and regional planning (Mwangi et al., 2017; Msofe
et al., 2019; Amini et al., 2022; Rotich et al., 2022; Abuhay et al., 2023;
Zarei et al., 2024). The expansion and intensification of agriculture,
combined with rapid population growth, are among the primary
drivers of LULC changes (cf.Abuhay et al., 2023; Kayitesi et al., 2022;
Mangi et al., 2022; Rotich et al., 2022). A critical concern within
these changes is the widespread conversion of forestlands and
shrublands into agricultural land, which poses significant
environmental and ecological challenges (Kirsten et al., 2016;
Mwangi et al., 2017; Kayitesi et al., 2022; Mangi et al., 2022).
These transformations have profound and far-reaching
consequences for ecosystem services, particularly those related to
soil and water resources at the watershed scale. In tropical regions,
LULC changes are typically fast-paced and pronounced, often
resulting in severe environmental impacts within short
timeframes (e.g., Mwangi et al., 2017). Addressing these
challenges requires a comprehensive approach to land
management that balances the competing demands of natural
resource conservation such as soil, water, and biodiversity with
the need for sustained agricultural productivity to support a growing
population (Shokri et al., 2025). This dual mandate presents a
significant challenge for national and local authorities,
practitioners, and watershed managers. In this context,
understanding the temporal and spatial dynamics of LULC
changes is essential for developing adaptive and sustainable land
management strategies. These strategies should align with the
principles of Integrated Watershed Management, ensuring the
preservation of ecological integrity while also meeting socio-
economic needs (Mwangi et al., 2016a; Mwangi et al., 2016b).
Against this background, this study is intended to contribute to
this understanding by assessing the patterns and drivers of LULC
changes. Results may provide valuable insights to inform the
development of sustainable land management practices.

The use of generalized LULC classes instead of detailed and finer
classes presents significant challenges in analyzing specific changes
within an area (Feng et al., 2022). For example, land uses such as tea,
sisal, and small-scale agricultural plots are often grouped under the
broad category of “agriculture”, which leads to overly simplified
LULC classifications. This limitation hampers the ability to
accurately capture the diversity of land uses and their changes.
To improve the precision of LULC assessment, it is essential to
incorporate more detailed LULC classes. With regard to possible
explanations the understanding of the relationship between LULC
changes and topographic features appears to be important. Such an
approach is crucial for optimizing land use in watersheds and
improving natural resource management. Assessments based on
oversimplified LULC maps, particularly those not considering
topographic features, are more likely to result in incorrect
conservation strategies or inaccurate modeling outcomes (cf.
Mwangi et al., 2017; Feng et al., 2022). Several studies have
demonstrated the influence of topographic features, such as
elevational gradient and slope characteristics (including slope
inclination and aspect), on LULC changes over time (Birhane

et al., 2019; Wang and Cheng, 2023). For instance, slope
inclinations, elevations, and slope orientations have been shown
to significantly influence land accessibility for cultivation and
associated activities, such as water management, crop selection,
erosion control, and machinery requirements (Wondie et al.,
2012; Birhane et al., 2019; Wang and Cheng, 2023). Furthermore,
the microclimate created by these topographic features can influence
planting decisions. Birhane et al. (2019) and Wang and Cheng
(2022) demonstrated that terrain attributes also affect land
susceptibility to natural disasters, such as floods and landslides.

Many LULC classification efforts have historically been limited
by the availability and quality of detailed land use and land cover
(LULC) products. These limitations are often driven by constraints
in spatial and temporal resolution, as well as the reliability of input
data sources (Feng et al., 2022). As a result, substantial uncertainty
can be introduced into classification outputs, which may obscure the
fine-scale heterogeneity and functional characteristics of terrestrial
ecosystems. Accurate and detailed LULC classification is particularly
critical in applications such as hydrological modelling, where land
cover features strongly influence surface and subsurface
hydrological processes. Recent technological advancements have
significantly improved the potential for accurate LULC mapping.
These include the increasing availability of long-term satellite
datasets offering high spectral, spatial, and temporal resolution,
and the development of advanced remote sensing products (Feng
et al., 2022; Muro et al., 2018; Xu et al., 2022). Alongside these
improvements, machine learning techniques—such as Random
Forest (RF), Support Vector Machines (SVM), and Decision
Trees—have become essential tools for LULC classification due
to their ability to model complex, nonlinear relationships and
handle high-dimensional input data (Feng et al., 2022). In this
study, we evaluated multiple classification algorithms, including
RF and SVM, during preliminary testing. Random Forest was
selected for final LULC classification based on its superior
performance in terms of overall accuracy, class-specific precision,
and robustness across diverse topographic and ecological settings.
RF also demonstrated greater consistency in handling mixed-pixel
effects and minimizing classification error in transitional areas,
which are common in mountainous and agroforestry-dominated
landscapes. The final RF model was trained using a combination of
spectral bands, vegetation indices, topographic variables, and
ancillary land cover data to enhance classification precision.

The Sigi River watershed in northeastern Tanzania is notable for
several reasons, including its relatively long time series of observed
data and significant LULC changes. Since Tanzania’s independence
in the 1960s, a substantial portion of the natural forestlands and
shrublands in the both upper and lower reaches of the watershed
have been converted into agricultural land (Hamilton and Bensted-
Smith 1989; Yanda and Munishi, 2007). This transformation has led
to a decline in both water quantity and quality in the downstream
reservoir, primarily driven by increased soil erosion and related
siltation (NERC, 1990; Yanda and Munishi, 2007; Duden and
Tollenaar, 2011; Tresierra, 2013). These changes have caused
numerous challenges for reservoir operations, including a rising
water supply shortage, which is further intensified by the growing
population in the area (NERC, 1990; Yanda and Munishi, 2007).

Although a few studies by Hamilton and Bensted-Smith (1989),
Reyes et al. (2006), Yanda and Munishi (2007) have investigated
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LULC changes in the Sigi River watershed, a comprehensive
catchment-scale assessment of spatially explicit and dynamic
LULC patterns over multiple decades is still lacking.
Furthermore, there is insufficient information regarding the
relationship between LULC changes and topographic features,
particularly how these changes vary across different slopes and
elevations within the region’s complex landforms. Previous
research has mainly focused on smaller sub-catchments or a
specific landscape, such as plateau areas (Hamilton and Bensted-
Smith, 1989; Reyes et al., 2006; Yanda andMunishi, 2007). To enable
more robust model-based evaluations of landscape adaptation at a
watershed scale, it is crucial to address existing knowledge gaps. In
this context, a major challenge is to develop advanced LULC maps
that offer detailed insights into past LULC changes over both time
and space. Accordingly, this study aims to identify and map
spatiotemporal changes in LULC across various topographic
features by integrating remote sensing techniques. The specific
research questions addressed in this study are as follows: (1)
What are the historical and current LULC patterns in the
watershed, and how do they vary across different elevation
classes? (2) How does the magnitude of LULC change differ
across elevations? (3) How does the magnitude of LULC change
vary by slope within different elevation ranges?.

This study presents the first digital LULC maps for a typical
watershed in northern Tanzania, providing a level of information
beyond any existing maps. The findings of this research can
create a plausible basis and inputs for hydrological modeling that
are intended to derive adaptive and resilient land uses and
management practices for the East Usambara Mountains, a
region recognized for its rich biodiversity and a crucial
regional source of water supply. Additionally, the developed
methods could be adapted for use in other regions with
similar objectives.

2 Materials and methods

2.1 Study area

The Sigi River watershed is located in northeastern Tanzania,
with geographic coordinates spanning from −5°12′S, 38°36′E
to −4°48′S, 38°70′E. It is situated within the East Usambara
Mountains and their foothills, transitioning into the coastal plain
(Figure 1). Our study covers the watershed area defined by the outlet
of the Mabayani Reservoir, which serves as a vital water resource for
the greater Tanga region, home to Tanzania’s second-largest port.
The total watershed area covers 887 km2, with elevation ranging
from 90 m to 1,200 m asl. The region has experienced substantial
environmental changes over decades, particularly due to
deforestation driven by the expansion of smallholder agriculture
linked to population growth. According to Yanda and Munishi
(2007), forest cover in the Sigi River watershed was reduced to 33%
(3,896 ha) between 1955 and 1995, while cultivated land increased
by 37% (4,341 ha) over the 11,728 ha area of the watershed. This
deforestation has led to severe soil erosion and sedimentation, which
have adversely impacted downstream water bodies, including the
Mabayani Reservoir. The siltation has threatened the reservoir’s
operational capacity, reducing its storage potential and posing a risk
to urban water supply (NERC, 1994; Yanda and Munishi, 2007).
Population figures for the study area have increased from 169,200 in
the 1980s to 238,260 in 2022 (URT, 2022).

The climate of the region is humid, characterized by a bimodal
rainfall pattern. Rainfall occurs primarily from March to May and
from October to December (Hamilton and Bensted-Smith, 1989),
with a dry season between January and February, marked by
occasional rainfall events. The upland areas receive an average
annual rainfall of 1,540 mm and have temperature around 20°C,
as observed at the Amani station, while the lowland Lanconi station

FIGURE 1
Location of the Sigi River watershed in northeastern Tanzania, highlighting the watercourse, sub-catchments, protected forests, and
weather stations.
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near the reservoir records an average of 1,173 mm of rainfall and
temperature averaging 27°C (Figure 2).

Geologically, the catchment is dominated by crystalline
bedrocks in the mountain block and escarpment regions, with
sedimentary bedrocks found in the foothills and coastal plain.
The soil in the mountainous areas are primarily classified as
Acrisols, which are nutrient-poor, acidic, and loamy in texture
resulting in low soil fertility that is quickly depleted by
continuous cultivation (Hartemink, 1997; Kirsten et al., 2016). In
contrast, soils at lower elevations are more fertile and better suited
for agriculture (Hartemink, 1997). The alluvial valleys are
characterized by Fluvisols, which are nutrient-rich and more
conducive to cultivation (Ministry of WaterUNDP and GEF, 2019).

2.2 Datasets and data preprocessing

This study used Landsat imagery from Landsat 5 (TM) for 1983,
1996, and 2009, and Landsat eight for 2022, obtained from the USGS
via Earth Explorer (http://earthexplorer.usgs.gov). The selected time
intervals were chosen to capture long-term LULC trends,
minimizing short-term variability and seasonal fluctuations.
Images were acquired during December to February, coinciding
with the short dry season, which is typically characterized by
reduced rainfall and lower cloud cover, increasing the likelihood
of cloud-free imagery suitable for analysis. For visual interpretation,
field verification, and the assignment of LULC labels for the selected
historical years (1983, 1996, and 2009), high-resolution imagery
from Google Earth and SPOT 4 (10 m resolution) were also used.

These images were crucial for accurate LULC classification during
the training data collection. Additionally, a 30-m-resolution Digital
Elevation Model (DEM) from the Shuttle Radar Topography
Mission (SRTM) was downloaded from the USGS and processed
using ArcGIS Pro (version 3.1.0) to derive topographic attributes.
Before extracting vegetation indices (VIs), the Landsat Level
2 Science Product (L2SP) data underwent several preprocessing
steps to ensure high-quality inputs for analysis. Atmospheric
correction was applied to convert the data to Top of Atmosphere
(TOA) reflectance. Radiometric correction, including adjustments
for TOA reflectance and brightness temperature, was performed to
minimize radiometric distortions. Geometric correction was applied
to ensure precise spatial alignment of the imagery. Additionally,
topographic correction was carried out using the C-correction
algorithm to account for the effects of terrain-induced
illumination variations (Yin et al., 2022). These preprocessing
tasks were executed using ArcGIS Pro and QGIS software to
prepare the data for vegetation index extraction and subsequent
land use/land cover analysis.

2.3 Land use/land cover (LULC) classification

The LULC classes was identified using a combination of field
surveys and expert knowledge, which were instrumental in
defining 13 distinct LULC classes (Table 1). The study area was
stratified into four elevation zones: Upland (>850 m), Escarpment
(350–850 m), Foothill (175–350 m), and Lowland (<175 m).
Additionally, the slope was classified into four categories based

FIGURE 2
Mean monthly temperature and rainfall at two stations, Amani (upland, 910 m asl) and Lanconi (lowland, 121 m asl) in the Sigi River watershed in
1990–2020 period. Source: Tanzania Meteorological Authority.
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on terrain steepness: gentle (<5°), moderate (5°–15°), steep
(15°–35°), and very steep (>35°) (Figure 3). These classification
criteria align with approaches used in previous studies (e.g.,

Wondie et al., 2012; Birhane et al., 2019; Wang and Cheng,
2022), which underscore the influence of both elevation and
slope on land cover patterns.

TABLE 1 List of the 13 selected LULC classes with their corresponding description of land properties.

LULC class Description

Forest (Primary and secondary) A continuous stand of trees with no evidence of farming or settlement. Trees can attain a height of up to 50m and are stratified into three
distinctive layers: 1) canopy; 2) emergent, and 3) understory. The minimum size of the continuous tree layer is 15 ha

Shrubland A continuous stand dominated by dense woody perennial plants and woody stems and stands of multi-stemmed plants from a single
base with the height of the stand often between 1 and 3 m but can reach up to 5 m

Teak Plantation Active fields under continuous teak tree cultivation

Other Tree Plantation Active fields under continuous rubber, pine, and eucalyptus tree cultivation

Small-scale cultivation Active agricultural fields under continuous permanent cultivation. The size of the continuous area under cultivation is <0.2 ha

Tea Plantation Active fields under continuous permanent tea cultivation

Sisal Plantation Fields that are under continuous permanent cultivation of sisal crops

Spice Agroforestry Discontinuous stand of a mixture of trees, dominated by clove trees and annual crops. The maximum size is 0.5 ha

Citrus Agroforestry Discontinuous stand of a mixture of tall trees, dominated by orange trees and annual crops

Built-up Area covered by human infrastructure (buildings, roads infrastructure, etc.)

Grassland The area of land predominantly covered with grass. Some of these areas are covered with a few (<10% cover) scattered trees, shrubs, and
herbs

Rocks An area dominated by rocks outcrops and not covered by vegetation or human infrastructure

Surface Water All water bodies on the surface like dams and rivers

FIGURE 3
Map of the Sigi River catchment with (A) elevation classes and (B) slope categories across elevation classes.
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To ensure representative sampling for LULC classification, a
stratified random sampling method was applied within each
elevation zone following the approach of Olofsson et al. (2014).
Specifically, 100 random samples were selected for each LULC class
within each elevation zone, resulting in a total of 5,200 samples per
year. Historical training data for the years 1983, 1996, and 2009 were
obtained from high-resolution imagery (Google Earth, SPOT 4), and
these samples were cross validated with field data to ensure the
correctness of the LULC labels. To address potential bias from equal
allocation of samples across classes, we additionally applied
weighted stratified random sampling, where the number of
validation samples was proportional to the actual area of each
class. The accuracy metrics obtained through this approach
showed only minimal differences compared to the original
method, confirming the robustness of the classification results.
Precision metrics were also included to provide a more
comprehensive evaluation of model performance. To select the
most appropriate classification model, we evaluated multiple
machine learning algorithms, including Random Forest (RF) and
Support Vector Machines (SVM), during the model development
phase. Random Forest consistently produced the highest overall
accuracy and class-specific precision, especially in complex,
topographically variable areas. Given its robustness and
reliability, RF was selected for final classification.

LULC classification was performed using the Random Forest
algorithm in ArcGIS Pro. The model incorporated Landsat spectral
bands (B1–B6), along with several derived indices including the
Normalized Difference Vegetation Index (NDVI), Normalized
Difference Built-up Index (NDBI), Modified Soil-Adjusted
Vegetation Index (MSAVI), Soil-Adjusted Vegetation Index
(SAVI), and Modified Normalized Difference Water Index
(MNDWI). A supervised classification approach was also
employed, using expert-driven sampling points and SPOT four
imagery to refine results. The Random Forest classifier, was
configured with 200 trees and a maximum depth of 500,
ensuring strong predictive performance. The dataset was divided
into 70% for training and 30% for validation, enabling a thorough
assessment of classification accuracy.

2.4 Post-classification and temporal
change analysis

Post-classification corrections were carried out using the ArcGIS
Pro Pixel Editor to rectify unrealistic transitions between LULC
classes, such as implausible changes (e.g., from agricultural
cultivation to forest) that are inconsistent with natural land cover
dynamics (Figure 4).

In addition to the LULC classification, temporal land cover
changes were analyzed using the OpenLand package in R. Sankey
diagrams were created to illustrate transitions between LULC classes
across the years 1983, 1996, 2009, and 2022, following the
methodology proposed by Aldwaik and Pontius (2012). Such
diagrams provide a comprehensive visual representation of land
cover dynamics, highlighting significant changes over time. To
further explore the spatial distribution of these changes, the final
LULC maps were overlayed with elevation and slope layers. This
spatial analysis offered valuable insights into the relationship
between LULC changes and topographic factors, enabling the
identification of spatial patterns and trends in the study area.

2.5 Model performance evaluation

The performance of the classification model was evaluated for
the years 1983, 1996, 2009, and 2022 using four key metrics:
Accuracy (ACC), recall, precision and the F1-Score, based on a
30% sample of the validation data. Accuracy was calculated as the
ratio of correctly predicted pixels (both true positives and true
negatives) to the total number of pixels, as shown in Equation 1:

ACC � TP + TN
TP + TN + FP + FN

(1)

where:
TP (True Positive): Number of features correctly predicted for

the observed category; TN (True Negative): Number of features
correctly predicted as not belonging to the observed category; FP
(False Positive): Number of features incorrectly predicted as

FIGURE 4
Illustration of the post-classification analysis applied to identify unrealistic LULC changes.
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belonging to the observed category; FN (False Negative): Number of
features incorrectly predicted as not belonging to the
observed category.

Recall was calculated as the proportion of correctly
predicted features within a given category, as expressed in
Equation 2:

FIGURE 5
Distribution of LULC in the Sigi River catchment for the year 2022 based on Landsat image analysis.
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Recall � TP

TP + FN
(2)

where:
TP: True Positives (correctly predicted instances of the observed

category); FN: False Negatives (incorrectly predicted instances that
do not belong to the observed category).

Precision was calculated as the proportion of correctly predicted
positive instances out of all instances predicted as positive. It
indicates how many of the predicted positive cases are actually
correct. As expressed in Equation 3:

Precision � TP

TP + FP
(3)

The F1-score was computed as the harmonic mean of precision
and recall, expressed in Equation 4:

F1 − Score � 2*TP
2*TP + FP + FN

(4)

Where, TP: True Positives (correctly predicted instances of the
observed category); FN: False Negatives (incorrectly predicted
instances not belonging to the observed category); FP: False
positive (incorrectly predicted instances belonging to the
observed category).

3 Results

3.1 Current LULC distribution

The LULC distribution in the Sigi River catchment for 2022
(Figure 5; Table 2) reveals that small-scale cultivation is the
dominant land use class, covering 360.4 km2, primarily in the

foothills and lowland regions, with minimal coverage in the
upland. Shrubland (213.4 km2) is the second most prevalent
class, concentrated in the foothills, followed by the escarpment
and least in the upland areas.

Forest (primary and secondary), covering 154.3 km2, is
predominantly located in the upland regions, followed by the
escarpment and with the least area in the lowland. Tea
plantations (34 km2) and spice agroforestry (21.1 km2) are
concentrated in the escarpment and upland, while sisal
plantations (31.5 km2) are most common in the lowland and
foothills, and teak plantations (27.9 km2) and citrus agroforestry
(14.0 km2) are predominantly found in the foothills. The builtup
class, covering 12 km2, is primarily located in the foothills and
lowlands. These patterns reflect the topographic and climatic
suitability of different regions in the watershed, with agricultural
activities and plantations being most concentrated in the lower
elevation zones (foothills and lowland), while the upland and
escarpment areas are more dominated by forests (primary and
secondary) and specialized agroforestry systems.

3.2 Classification accuracy evaluation

The performance of the classification model was evaluated using
four metrics: recall, precision, accuracy, and the F1-score, calculated
for each LULC class across different time periods. Recall measures
the model’s ability to correctly identify positive cases, accuracy
reflects the overall correctness of the classifications, and the F1-
score provides a balance between recall and precision, particularly in
cases where there is class imbalance or costly false predictions. As
detailed in Figure 6, Forest (primary and secondary), along with
small-scale cultivation, consistently exhibited high recall, precision,

TABLE 2 Distribution of LULC classes (area segments) across elevation classes and total area of the Sigi River catchment based on the Landsat imagery of
2022.

LULC class Lowland km2 Foothills km2 Escarpment km2 Upland km2 Total km2

Forest (primary and secondary) 3.1 35.6 46.5 69.1 154.3

Shrubland 41.6 99 55.2 17.5 213.3

Teak Plantation 2.3 24.3 1.3 0 27.9

Other Tree Plantation 0.3 2.6 0.1 0 3.0

Small-scale cultivation 86.7 203.8 49.4 20.5 360.4

Tea Plantation 0 0 4.8 30.1 34.9

Sisal Plantation 20.4 11.0 0 0 31.4

Spice Agroforestry 0 5.2 7.8 8.1 21.1

Citrus Agroforestry 0.2 13.6 0.2 0 14.0

Built-up 5.0 6.0 0.4 0.5 11.9

Rocks 0.3 2.7 7 2.5 12.5

Grassland 0 0 0.2 0.2 0.4

Surface water 1.4 0.1 0.2 0.2 1.9

Total km2 161.3 403.9 173.1 148.7 887

Bold values are total area in km2.
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accuracy, and F1-scores throughout the study period. Shrubland
demonstrated moderate to high performance across the years,
although with some variation in its metrics. Teak plantations,
although generally classified with high accuracy, showed
moderate recall. Other LULC categories, such as tea plantations,
sisal plantations, spice agroforestry, and citrus agroforestry,
exhibited more variable performance across the time slices. Built-
up areas, rocks, grasslands, and surface water consistently achieved
high accuracy, although their recall and F1-scores varied.

3.3 Temporal LULC changes (1983–2022)

3.3.1 Overall LULC changes
The LULC changes in the Sigi River catchment from 1983 to

2022 are illustrated in Figures 7–9. Figure 7 presents classified
LULC maps for the four time slices, while Figures 8, 9 detail the
LULC changes across the three intervals (1983–1996,

1996–2009, and 2009–2022), highlighting total changes, net
gains and losses, and transitions using Sankey diagrams. The
Sankey diagrams are particularly effective for visualizing LULC
dynamics, as they reveal transition pathways and provide a
clearer understanding of spatiotemporal patterns. Forest
(primary and secondary) experienced a consistent decline
throughout the study period, with a net loss of 96 km2

between 1983 and 1996, increasing slightly to 97 km2 between
1996 and 2009, and then slowing to 23 km2 between 2009 and
2022. This trend highlights ongoing deforestation, with the most
significant losses occurring in the mid-period (1996–2009).
Small-scale cultivation, in contrast, showed a marked
increase, particularly between 1996 and 2009, with a net gain
of 180 km2. However, this growth slowed during the last interval
(2009–2022), with a net gain of only 49 km2, suggesting a
potential stabilization of agricultural expansion.

Shrubland and Sisal plantations followed contrasting patterns.
Shrubland increased significantly between 1983 and 1996, gaining of

FIGURE 6
Error matrix of estimated error of sample counts with, accuracy, recall, precision and F1-score for each LULC class across the four time slices (1983,
1996, 2009, and 2022).
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41 km2, but then experienced a sharp decline, losing 102 km2

between 2009 and 2022. Sisal plantations saw a modest gain of
1 km2 between 1983 and 1996, followed by a decline of 15 km2

during the last interval (2009–2022).

The detailed visualizations in Figures 8A–C, 9 emphasize these
transitions, showing not only gross changes but also net gains and
losses across the three time intervals. These figures and diagrams
provide a comprehensive understanding of the spatiotemporal

FIGURE 7
LULC distribution maps for the Sigi River catchment in 1983, 1996, 2009, and 2022 based on Landsat images analysis.
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dynamics of land use in the Sigi River catchment. The observed
patterns reflect the interplay of natural and anthropogenic factors,
including agricultural expansion, deforestation, and changes in land
management practices over the past 4 decades.

3.3.2 LULC transitions across elevation classes
Changes in LULC were analysed in relation to elevation classes,

with the findings visualized using Sankey diagrams (Figure 10).
These diagrams illustrate the transitions and shifts in major LULC
classes from 1983 to 2022. The analysis reveals distinct patterns and
dynamics across elevation gradients, with the foothill areas
exhibiting the most pronounced changes, while the upland areas
showed the least variability.

In the foothill areas, significant loss of Forest (primary and
secondary) was consistently observed, accompanied by an increase
in small-scale cultivation. The escarpment and lowland areas
followed similar trends, with notable forest loss in the
escarpment and a more pronounced expansion of small-scale
cultivation in the lowlands. Shrubland showed an increase in the
foothills and lowlands between 1983 and 1996, followed by a decline
from 2009 to 2022. In contrast, upland and escarpment areas
experienced a gradual and consistent increase in shrubland
throughout the study period.

The foothills experienced substantial increases in teak
plantations and citrus agroforestry, while the lowlands saw an

expansion of sisal plantations between 1983 and 1996, followed
by a decrease from 2009 to 2022. In the upland and escarpment
regions, tea cultivation and spice agroforestry demonstrated steady
growth throughout the study period. Notably, spice agroforestry
became increasingly prominent in the escarpment by 2009, while tea
cultivation remained dominant in upland areas across all
time intervals.

The analysis highlights distinct transitions in LULC across
elevation classes. In the lowland, foothill, and escarpment areas,
substantial portions of forest (primary and secondary) were
converted into shrubland. A significant proportion of shrubland
subsequently transitioned into small-scale cultivation. In the upland
areas, forest loss primarily contributed to the expansion of small-
scale cultivation. From 1983 to 2022, plantations of teak, citrus, and
sisal expanded extensively from shrubland in the lowland and
foothill areas. In contrast, in the escarpment and upland areas,
spice agroforestry expanded primarily from small-scale cultivation,
while tea cultivation notably increased, often replacing forest
(primary and secondary) areas in these regions.

3.3.3 Effect of slope steepness on LULC changes
An in-depth analysis of land use and land cover (LULC)

transitions across slope steepness gradients and elevation classes
from 1983 to 2022 reveals pronounced spatial patterns (Figure 11).
The Sankey diagrams clearly demonstrate that slope steepness plays

FIGURE 8
Total and net changes in LULC classes during three time intervals: (a) 1983–1996, (b) 1996–2009, and (c) 2009–2022. Gross change = gross gain +
gross loss; Net change = gross gain – gross loss.
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FIGURE 9
Sankey diagram showing the distribution and transition of LULC between the years 1983, 1996, 2009, and 2022. Node and links represent the
number of LULC pixels in the image that either remained or changed over the years.

FIGURE 10
Sankey diagrams showing the distribution and transition of LULC across elevation classes for the four time slices (1983, 1996, 2009 and 2022). The
nodes and links in the diagrams represent the number of LULC pixels that either remained in the same class or transitioned to a different class during each
time interval.
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a significant role in influencing the direction and intensity of LULC
changes, particularly forest loss and the corresponding land use
gains. Across all elevation classes, steep slopes experienced the most
substantial forest (primary and secondary) loss over the 39-year
period. This trend is especially evident in the foothill zone
(175–350 m), where a total of 33 km2 of forest was lost on steep
slopes, followed by 28 km2 in both the escarpment (350–850 m) and
upland (<850 m) regions. The Sankey flows illustrate that this forest
loss did not occur in isolation; it was largely accompanied by gains in
specific LULC categories. Classes that benefited most from forest
loss on steep slopes include:

- Shrubland: Significant expansion occurred across all elevation
classes, particularly on steep and very steep slopes. In the
foothills, for example, shrubland gained approximately 12 km2,
much of it sourced from degraded forest.

- Small-scale cultivation: This class consistently increased on
steep slopes where forest cover declined. The foothill and
escarpment regions show strong transitions from forest to
smallholder agricultural areas.

- Spice agroforestry: This class exhibited marked expansion in
the escarpment and upland zones, particularly on steep and
very steep slopes. In the upland steep slope class, for example,
spice agroforestry increased from 2 km2 in 1983 to 11 km2 in
2022, indicating a clear pattern of forest conversion to this
economically motivated land use.

In contrast, on gentle and moderate slopes, while forest loss was
also evident, the transitions favored different land use types. In the
foothills, citrus agroforestry expanded predominantly on gentle
slopes, suggesting that accessibility and slope stability influenced
the type of agroforestry practiced. Similarly, shrubland and small-
scale cultivation were more prevalent on moderate slopes in lowland
and foothill areas, likely due to their relative ease of conversion and
lower risk of erosion. Overall, the Sankey diagram in Figure 11
vividly captures these dynamics, illustrating not only the magnitude
of forest loss but also how different land use classes capitalize on that
loss depending on topographic conditions.

4 Discussion

This study presents a catchment-scale analysis of land use/land
cover (LULC) changes in the Sigi River watershed over the past
4 decades. Through the integration of remote sensing techniques
with topographic attributes, spatiotemporal LULC patterns and
their relationships with elevation and slope were identified. The
findings reveal significant land cover transitions, primarily driven
by agricultural expansion, deforestation, and shifts in land
management practices. These insights enhance our
understanding of landscape dynamics and offer a foundation
for developing adaptive land use strategies in the East
Usambara Mountains.

FIGURE 11
Sankey diagrams showing the distribution and transition of LULC classes as affected by slope characteristics across elevation classes between 1983,
1996, 2009 and 2022.
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4.1 LULC change across elevation zones

Significant LULC changes were observed in the foothills and
escarpment regions, while changes in the upland areas were
relatively minor. The primary changes involved deforestation and
the expansion of small-scale cultivation. Earlier studies in the Sigi
River catchment have noted that substantial LULC changes in the
upland occurred prior to 1983, beginning in the early 1900s with the
introduction of coffee and tea cultivation by German and British
colonizers, respectively (Milne, 1937; Hyytitiinen 1995). After
World War I, the British replaced poorly performing coffee with
tea, which then became the dominant crop in the upland areas
(Milne, 1937; Hamilton and Mwasha, 1989). In addition, Sikh
Sawmills, a subsidiary of the Tanzanian Wood Industry
Corporation, conducted logging operations in the East Usambara
Mountains until the mid-1980s. These activities were criticized for
causing habitat destruction and damaging non-harvested trees,
leading to severe ecological impacts, including significant soil
erosion (Newmark, 2002). However, from 1983 onwards, LULC
changes in the upland have been less pronounced, likely due to the
implementation of various regulations and external interventions,
such as the designation of nature protection areas and the
promotion of sustainable agricultural practices.

Due to the high rate of deforestation in the past, significant
efforts have been made to rehabilitate and conserve the area through
the establishment of protected areas conservation agriculture since
1988. The gazettement of protected areas, such as Amani, Kambai
and Nilo Nature Reserves, has restricted local communities from
encroaching on forestlands, thereby reducing the rate of
deforestation and expansion of small-scale cultivation (Kessy,
1998; Hall et al., 2014). Newmark (2002) and Hall et al. (2014)
observed that most reserve adjacent to protected areas did not
experience high rates of deforestation or small-scale cultivation
expansion, particularly in the upland and headwater areas of the
Sigi River catchment. However, the foothills and escarpment
experienced a higher rate of deforestation and small-scale
cultivation expansion, as much of the land, particularly primary
and secondary forests, is public lands. This made forests vulnerable
to deforestation, as land can be cleared for cultivation without
special permits. Consequently, this has led to a high rate of
deforestation in these regions. The presence of protected areas
has also strengthened conservation efforts to reduce LULC
fragmentation. Over the years, various projects have been
launched to counteract trends in LULC change (Hamilton and
Bensted-Smith, 1989; Kessy, 1998; Yanda and Munishi, 2007;
Hall et al., 2014). However, these projects primarily focused on
the upland areas, promoting agroforestry practices to curb the
formerly rapid expansion of small-scale cultivation (Bullock et al.,
2014). The effects of these efforts are evident in our study, where a
distinct portion of small-scale cultivation areas in the upland have
been transformed into spice agroforestry, indicating that the goals of
these conservation projects have been partially achieved. On the
other hand, there are reports that cardamom agroforestry, in
particular, has led to encroachment on natural forests (Reyes
et al., 2006).

Population growth appears to be a significant driver of the
observed land use and land cover (LULC) changes in the lowland,
foothill and escarpment areas. These regions, with higher population

densities than the upland areas, face considerable pressure on arable
land, which has predominantly been converted from primary and
secondary forests to small-scale cultivation. The expansion of small-
scale agriculture in these areas is largely driven by population growth
and the increased demand for land to sustain livelihoods (Bwagalilo
et al., 2015; Basche and DeLonge, 2019; Clement et al., 2021). In this
context, the frequency of man-made fires used to clear land for
cultivation has also risen. Newmark (2002) reported that in 1998,
over 600 ha of forest (<600 m asl) in the East Usambara Mountains
were destroyed by fires that spread from nearby agricultural fields
into adjacent forested areas. Additionally, much of shrubland, which
is often abandoned after cultivation, has been converted into small-
scale agricultural land. These areas are relatively easy to clear due to
the absence of strict regulations governing land development. As a
result, the rate of small-scale cultivation expansion is higher in the
lowland, foothill and escarpment areas compared to the
upland regions.

External market demands on agricultural products and
government policies have played a significant role in shaping the
differential land use and land cover (LULC) changes across elevation
zones. Crops are often cultivated in response to high economic
returns (Kihiyo, 1992; Kimaro et al., 1994; Bayliss, 2008). The
decline in global markets for certain commercial crops such as
sisal and tea, combined with shifts in government policies towards
privatization, have led to increased unemployment. In response,
local communities have turned to alternative income sources, often
encroaching on forested areas to cultivate high-return crops (Kihiyo,
1992; Reyes et al., 2006; Kimaro et al., 1994). This dynamic has
driven significant changes in land use and land cover (LULC) in the
lowland, foothill, and escarpment areas, which are characterized by
large areas of public land, less protected forests, and easier
accessibility compared to the uplands. Our study found a notable
decrease in sisal cultivation following the shift from communal
farming to private ownership in 1996 (Figure 8). This transition
coincided with substantial forest loss and an increase in small-scale
agriculture in both the foothill and escarpment regions.

4.2 LULC transitions across elevation zones

Figure 10 illustrates that in foothill, lowland, and escarpment
areas, forest (both primary and secondary) were first converted to
shrubland before being transformed into small-scale cultivation. It
appears that shrubland acted as a transitional land cover during the
deforestation process from forest (primary and secondary) to small-
scale agriculture. In contrast, the upland areas followed a different
path, where forest (primary and secondary) was directly converted
to small-scale cultivation without passing through a transitional land
cover. This distinction underscores the varying dynamics of land
transformation across different elevations, driven by a range of
factors. For example, in the foothill, lowland, and escarpment areas,
the transition typically begins with the opening of primary and
secondary forestland through activities like timber harvesting,
charcoal production, and fuelwood collection. As the forest
becomes degraded, the land is gradually repurposed for
agricultural crops, and over time, the remaining trees are cleared,
making way for small-scale cultivation (Newmark, 2002; Yanda and
Munishi, 2007). In contrast, in the upland areas, forest (primary and
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secondary) is initially encroached upon, with the understory cleared
to make space for the cultivation of spice crops like cardamom (cf.
Reyes et al., 2006; Reyes et al., 2009).

4.3 Impact of slope steepness on
LULC dynamics

The pronounced loss of both primary and secondary forests
on steep slopes may be attributed to the earlier clearing of forests
in flat and gently sloping areas before 1983. Population growth
in recent decades has driven settlements into steeper terrain,
necessitating agricultural expansion in these areas. Additionally,
land tenure patterns have played a critical role in shaping land
use dynamics. While gentle and moderately sloping areas are
predominantly designated as forest reserves for government teak
plantations, cash crop estates, and large-scale citrus
agroforestry, village-owned lands on steeper slopes have
become the primary areas for small-scale cultivation (Yanda
and Munishi, 2007). Local households have increasingly
encroached on steeply sloped forestlands due to the fertility
of these soils, which offer higher organic matter and nutrient
content, enhancing crop productivity (Hamilton and Bensted-
Smith, 1989; Mwanyoka, 2005; Yanda and Munishi, 2007; Reyes
et al., 2009). Notably, our findings indicate that upland areas
with steep slopes exhibit the highest coverage of small-scale
agriculture compared to other slope classes. This trend may be
linked to historical land-use patterns, where tea plantations
established primarily by the British after World War I, often
replacing abandoned German coffee plantations were
preferentially located on gentler slopes (Milne, 1937;
Hamilton and Mwasha, 1989). In contrast, in the foothill and
lowland areas, small-scale cultivation is more concentrated on
gentle slopes, likely due to greater accessibility, ease of
management, and technological applications (Newmark, 2002;
Yanda and Munishi, 2007). Our results highlight that steep
slopes have experienced significant LULC transitions,
primarily through the conversion of forests to shrubland then
small-scale agriculture. Given the susceptibility of these areas to
soil erosion and water resource degradation, they should be
prioritized for targeted soil and water conservation measures.
While afforestation efforts have been implemented in the
foothills, agroforestry may offer a more sustainable approach
for steep slope areas, mitigating erosion while supporting local
livelihoods.

4.4 Evaluation of classification accuracy

The performance of our models in identifying various land-
use/land-cover (LULC) classes reveals important insights into the
strengths and limitations of the classification process. Our results
show that the models effectively distinguished between forestland
(both primary and secondary) and small-scale cultivation yet
faced challenges in accurately classifying shrubland and teak
plantations. This discrepancy likely arises from the visual
similarities between shrubland, small-scale cultivation, and
young teak plantations, which complicates the differentiation

process and can lead to reduced classification precision (cf. Zhao
et al., 2014; Feng et al., 2022). Furthermore, the varying
performance metrics for more complex LULC categories, such
as tea plantation, sisal plantations, spice agroforestry, and citrus
agroforestry reflect the inherent diversity and complexity within
these land-use systems. These classes represent a wide range of
vegetation types, management practices, and environmental
conditions, contributing to significant variability in their
spectral signatures and spatial patterns. The diverse nature of
these land-use systems presents additional challenges for
accurate classification, highlighting the need for more refined
techniques and additional data sources. To address these
challenges and enhance classification accuracy, we
incorporated high-resolution, multi-temporal imagery,
complemented by field observations. His integration not only
improved the model’s ability to differentiate between similar
land-use types but also provided valuable insights into the
nuanced characteristics of these complex land-use systems (cf.
Feng et al., 2022). These strategies proved effective in refining the
model’s ability to differentiate between land-use types and
underscored the importance of leveraging both remote sensing
data and ground-truth observations in capturing the diverse
dynamics of land-use change.

5 Conclusion

This study demonstrates that the integration of remote sensing
and GIS techniques offers a powerful framework for analyzing
temporal landscape dynamics. The Random Forest classifier, in
particular, consistently produced high-accuracy LULC maps,
effectively managing complex datasets and diverse spectral
signatures. These results underscore the reliability of this
approach for capturing and analyzing temporal changes in land
use/land cover (LULC), which can significantly enhance
environmental management efforts.

LULC changes exhibited considerable variation across elevation
classes. In the foothill and escarpment areas, deforestation and the
expansion of small-scale cultivation were prominent, whereas
upland areas followed a unique transition directly from forest to
cultivation. These spatial patterns are influenced by a combination
of factors, including population growth, government policies, and
economic shifts. Additionally, Slope characteristics played a pivotal
role, with steeper slopes showing pronounced forest loss across all
elevation zones, while agroforestry expansion followed distinct
elevation-based trajectories.

The refined LULC maps generated in this study are invaluable
for improving GIS-based hydrological models, such as SWAT
model. These maps will contribute to better-informed land-use
planning, supporting the optimization of land use by balancing
environmental conservation, sustainable resource utilization, and
the preservation of critical ecosystem services.
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