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Small object detection in UAV remote sensing imagery faces significant
challenges due to scale variations, background clutter, and real-time
processing requirements. This study proposes a lightweight transformer-based
detector, MLD-DETR, which enhances detection performance in complex
scenarios through multi-scale edge enhancement and hierarchical attention
mechanisms. First, a Multi-Scale Edge Enhancement Fusion (MSEEF) module is
designed, integrating adaptive pooling and edge-aware convolution to preserve
target boundary details while enabling cross-scale feature interaction. Second, a
Layered Attention Fusion (LAF) mechanism is developed, leveraging spatial
depth-wise convolution and omnidirectional kernel feature fusion to improve
hierarchical localization capability for densely occluded targets. Furthermore, a
Dynamic Positional Encoding (DPE) module replaces traditional fixed positional
embeddings, enhancing spatial perception accuracy under complex geometric
perspectives through learnable spatial adapters. Combined with an Inner
Generalized Intersection-over-Union (Inner-GIoU) loss function to optimize
bounding box geometric consistency, MLD-DETR achieves 36.7% AP50% and
14.5% APs on the VisDrone2019 dataset, outperforming the baseline RT-DETR by
3.2% and 1.8% in accuracy while achieving 20% parameter reduction and
maintaining computational efficiency suitable for UAV platforms equipped
with modern edge computing hardware. Experimental results demonstrate the
algorithm’s superior performance in UAV remote sensing applications such as
crop disease monitoring and traffic congestion detection, offering an efficient
solution for real-time edge-device deployment.
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1 Introduction

The rapid advancement of drone-based aerial imaging has brought about significant
transformations across various industries. With improvements in drone technology, an
increasing number of sectors are utilizing drones for cost-effective and efficient aerial data
collection, including agricultural monitoring (Zhang et al., 2021), urban planning, disaster
assessment, traffic surveillance, and environmental protection. Drones, equipped with high-
resolution cameras, are capable of capturing expansive images and providing valuable visual
data from hard-to-reach or complex areas, which proves essential for a wide range of
applications. Traditional object detection frameworks like Faster R-CNN (Ren et al., 2016)
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and YOLO (Redmon et al., 2016) rely heavily on anchor-based
proposals and Non-Maximum Suppression (NMS) for duplicate
removal. While effective in general scenarios, these components
become limiting factors in drone imagery: predefined anchors
struggle with extreme scale variations (e.g., 0.5 m–500 m
altitudes), and NMS frequently fails in dense object clusters
common to aerial views.

RT-DETR (Zhao et al., 2024) addresses these issues through an
end-to-end transformer architecture that eliminates anchors and
NMS via learnable queries. Moreover, its hybrid encoder—fusing
CNN’s robust local feature extraction with the transformer’s global
reasoning—significantly boosts detection performance on
challenging aerial imagery. However, when it comes to small
target detection in aerial imagery, several issues still need to
be addressed:

1. Limited Small Object Representation: RT-DETR excels in
global feature aggregation but lacks mechanisms tailored to
preserving the fine details of small objects. The inevitable
downsampling in CNN layers may lead to the loss of crucial
edge and texture information, thereby reducing detection
accuracy for small targets;

2. Inadequate Multi-Scale Feature Fusion: While incorporating
CNN-based local feature extraction, RT-DETR’s strategy for
fusing features across multiple scales is not fully optimized for
aerial scenarios. Small targets captured at varying altitudes and
perspectives require more robust multi-scale integration to
reliably capture their details;

3. Sparse QueryMechanism in Dense Scenes: The learnable query
mechanism, effective in many contexts, may not adequately
cover densely packed small targets. This sparsity in query
allocation can result in missed detections when multiple
small objects are clustered closely together;

4. Suboptimal Positional Encoding: RT-DETR typically employs
standard sine-cosine positional encodings. However, the
complex geometric variations inherent in drone imagery
might require more adaptive or learnable encoding schemes
to accurately localize small objects under varied perspectives;

5. Insufficient Edge and Context Enhancement: In aerial views,
small objects often blend into busy backgrounds. Without
explicit modules to enhance edge and contextual
information, RT-DETR may struggle to distinguish these
targets from their surroundings, especially in low contrast
or occluded settings;

6. High Computational Demand Affecting Real-Time
Performance: Although the removal of anchors and NMS
reduces some computational overhead, the transformer-
based architecture of RT-DETR still entails significant
resource consumption. This high computational demand
can be a bottleneck for real-time processing in drone
applications.

To tackle the challenges described above, we propose MLD-
DETR—a novel detection framework designed specifically for
drone-based aerial imagery. MLD-DETR is built upon four key
modules that work synergistically to enhance small object detection
by preserving fine details, optimizing feature fusion, and refining
localization. The key innovations of this model are as follows:

1. Multi-Scale Edge-Enhanced Feature Fusion (MSEEF) Module
for Enhanced Feature Extraction: This module integrates
multi-scale feature extraction with edge enhancement,
enabling the model to capture fine-grained details at various
scales while preserving object boundaries. This is especially
beneficial for detecting small and partially occluded objects in
complex, cluttered environments;

2. Layered Attention Fusion (LAF) Module for Optimized Small
Object Detection: To overcome the limitations of traditional
feature pyramids, the LAFmodule refines the feature hierarchy
using SPDConv for small-scale feature integration combined
with a CSP-OmniKernel fusion process. This design effectively
enhances small object detection in high-resolution aerial
imagery while maintaining computational efficiency;

3. Dynamic Position Encoding (DPE) Module for Improved
Spatial Representation: Recognizing that fixed positional
encodings are insufficient for the complex spatial
relationships in drone imagery, the DPE module introduces
a learned, adaptive positional encoding scheme. This enables
the model to dynamically adjust position representations,
significantly improving localization accuracy;

4. Inner-GIoUModule for Refined Localization: Traditional IoU-
based loss functions may not yield precise localization,
especially for small or occluded objects. The Inner-GIoU
module refines the intersection-over-union computation
within the inner regions of bounding boxes, enhancing
geometric consistency and robustness in localization.

By integrating these four modules, MLD-DETR achieves a
balanced trade-off between detection accuracy, computational
efficiency, and robustness, making it specifically suitable for
UAV-based object detection applications where both precision
and real-time performance are critical. Unlike existing methods
that address UAV detection challenges separately, our integrated
approach synergistically combines multi-scale processing, edge
enhancement, and adaptive positioning to tackle the unique
challenges of aerial imagery in a unified framework.

The rest of the paper is organized as follows. Section 2 reviews
the related literature and highlights the limitations of current
approaches. In Section 3, we detail our proposed MLD-DETR
model and its novel modules, including MSEEF, LAF, DPE, and
the Inner-GIoU loss function. Section 4 presents extensive
experimental evaluations, ablation studies, and comparative
analyses, while Section 5 concludes the paper and discusses
potential future research directions.

2 Related work

In the early evolution of object detection, traditional methods
laid the groundwork for modern techniques. Region-based
approaches such as R-CNN (Girshick et al., 2014), Fast R-CNN
(Girshick et al., 2015), and Faster R-CNN (Ren et al., 2016)
integrated convolutional neural networks (CNNs) with region
proposal mechanisms, achieving significant improvements in
detection accuracy through end-to-end training and refined
feature extraction. Concurrently, single-stage detectors like YOLO
(Redmon et al., 2016) and SSD (Liu et al., 2016) emerged,
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emphasizing speed and efficiency by directly predicting object
bounding boxes and class probabilities in one pass. Despite their
remarkable performance, these traditional methods rely heavily on
predefined anchor boxes and post-processing steps such as Non-
Maximum Suppression (NMS), which can become bottlenecks when
handling objects at multiple scales, particularly in complex
aerial imagery.

The introduction of Detection Transformer (DETR) (Carion
et al., 2020) marked a paradigm shift in object detection by framing
it as a set prediction problem and leveraging a Transformer
architecture for end-to-end detection. Despite its elegant
formulation and elimination of traditional components such as
anchors and NMS, the original DETR suffered from slow
convergence and struggled with multi-scale and small object
detection. To overcome the limitations of the original DETR,
numerous variants have been proposed in recent years. For
example, Deformable DETR (Zhu et al., 2021) introduced a
deformable attention module that selectively samples key points,
accelerating convergence and enhancing multi-scale feature capture.
Building on this, Conditional DETR (Meng et al., 2021) improved
the query design by incorporating conditional embeddings that
adaptively leverage input features in complex scenes. In addition,
variants like DAB-DETR (Qi et al., 2021) and Anchor DETR (Xu
et al., 2022) further refined query embeddings and anchor designs to
boost localization precision. More recently, methods such as
D-FINE (Peng et al., 2024) and DEIM (Huang et al., 2024) have
been proposed to address challenges in bounding box regression and
matching, thereby further accelerating convergence and improving
detection accuracy. Recent work such as AUHF-DETR (Guo et al.,
2025) focuses on spatial attention mechanisms and wavelet
convolution for UAV detection. However, our approach differs
significantly by integrating multi-scale edge enhancement with
dynamic positional encoding, providing a more comprehensive
solution for the varied geometric perspectives and scale
challenges inherent in aerial imagery.

3 Materials and methods

In this section, we describe the methodology behind our
proposed MLD-DETR model for enhancing small object
detection in drone imagery. We begin by reviewing the baseline
RT-DETR architecture, followed by a detailed introduction of our
novel modifications. Specifically, we present the MSEEF module, the
LAF module, the DPE module, and the Inner-GIoU loss function.
Together, these components are designed to improve feature
extraction, localization precision, and overall detection
performance.

3.1 RT-DETR

RT-DETR (Real-Time Detection Transformer) is an advanced
object detection model designed to tackle the challenges of real-time
applications. It combines the power of transformers with efficient
design principles to deliver high-speed, high-accuracy object
detection. The architecture integrates a backbone network,
typically a Convolutional Neural Network (CNN) such as

ResNet, to extract feature maps from input images. These feature
maps are then processed through a transformer encoder-decoder
architecture, which learns the spatial relationships and context
within the image. The encoder generates key-value pairs that
capture relevant features, while the decoder uses these pairs to
predict object positions, class labels, and bounding boxes. Unlike
traditional methods that rely on anchor boxes or sliding windows,
RT-DETR uses a query-based mechanism, leveraging learnable
queries to directly output object predictions. This structure
simplifies the detection pipeline by eliminating the need for post-
processing techniques such as Non-Maximum Suppression (NMS).

RT-DETR incorporates several optimizations to achieve faster
inference speeds while maintaining high accuracy. These
optimizations include sparse attention mechanisms, which reduce
computational complexity by focusing attention on relevant image
regions, and multi-scale feature fusion, which improves
performance in complex scenes. The model is designed to meet
the stringent demands of real-time applications, such as drone-
based surveillance, where rapid and accurate detection is essential.
Figure 1 introduces the architecture of the RT-DETR model.

3.2 MLD-DETR

This paper introduces MLD-DETR, a model designed for object
detection in drone-based aerial imagery. As shown in Figure 2, the
backbone network incorporates a combination of advanced feature
extraction techniques and transformer architectures, which
enhances the processing of high-resolution images. The network
is equipped with several specialized modules that address key
challenges in object detection, improving both feature extraction
and detection capabilities. One of the main challenges in small object
detection is the difficulty of capturing detailed features at multiple
scales, especially in complex environments with occlusions. To
address this, we introduce the MSEEF module. This module
integrates multi-scale feature extraction and edge enhancement,
which improves the detection of small and occluded objects by
capturing fine-grained details and emphasizing boundary
information. This approach mitigates the loss of important
features due to scale variance and occlusions.

Another challenge in small object detection is the inefficiency
of traditional feature pyramids, which often fail to combine
small-scale features effectively and increase computational
costs. To solve this, the LAF module refines the feature
pyramid structure for small object detection. It combines
small-scale features through SPDConv and applies a CSP-
OmniKernel fusion process to reduce computational overhead
while enhancing detection accuracy. This enables the model to
better detect small objects without incurring significant
computational cost increases.

In aerial imagery, the accurate capture of spatial relationships
between objects is often hindered by the complexity of the scene and
the need for fine-grained localization. The DPE module addresses
this challenge by optimizing positional encoding through dynamic
position representations. This enables better capture of spatial
relationships between objects in the image, particularly
improving the detection of small and occluded objects without
increasing computational complexity.
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Furthermore, localization errors in object detection, particularly
in cases of occlusion or tight bounding boxes, can degrade
performance. To tackle this issue, the Inner-GIoU module
focuses on refining the geometric consistency of predicted
bounding boxes. By improving the intersection-over-union (IoU)
of the inner regions between predicted and ground truth boxes, this
module enhances the precision of localization, especially in
occlusion scenarios.

The MLD-DETR architectureis motivated by three key
observations from UAV imagery analysis: Small objects lose 87% of
their features after standard FPN processing, necessitating our edge-
preserving MSEEF design; Traditional attention mechanisms fail to
distinguish between 3-5 pixel objects in dense scenes, which our LAF
module addresses through directional feature aggregation; Fixed
positional encodings assume uniform camera angles, while drone
perspectives vary by 40°, requiring our adaptive DPE approach.

FIGURE 1
RT-DETR network structure diagram.

FIGURE 2
MLD-DETR network structure diagram.
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Unlike existing approaches that address these challenges
independently, our key innovation lies in the synergistic
integration of multi-scale edge preservation, adaptive positional
learning, and inner-region geometric optimization. This unified
framework represents the first attempt to simultaneously tackle
boundary loss, perspective variation, and localization precision in
a computationally efficient transformer architecture specifically
designed for UAV platforms.

By integrating these advanced modules, MLD-DETR provides a
solution that balances detection accuracy, computational efficiency,
andmodel size. This makes it an adaptable and scalable approach for
UAV-based surveillance systems, offering robust performance in
various operational environments.

3.2.1 Detailed introduction of MSEEF backbone
The MSEEF module is designed to address key challenges in

drone-based object detection, particularly for small and distant
objects. This module integrates multi-scale feature extraction to
capture details across different object sizes, while enhancing edge
information to improve boundary detection. The fusion of multi-
scale, edge-enhanced features enhances detection accuracy and
robustness, especially in cluttered aerial scenes where objects
exhibit significant variations in scale and visual characteristics. As
such, MSEEF aims to provide a more effective solution for UAV-
based target detection in dynamic and cluttered scenes.

To achieve this, the MSEEF Block is designed to enhance feature
extraction by processing the input through multiple stages, enabling
the model to focus on small, distant, or boundary-sensitive objects.
Initially, the input feature map is split into five parallel branches.
Four of these branches first apply AdaptiveAvgPool2d at different
scales. This operation plays a crucial role in adapting to the size of
the input, allowing a specific output size to be achieved regardless of
the input’s dimensions. It works by dividing the input feature map
into regions and averaging the values within each region. This helps
capture multi-scale features by downsampling the input at different
sizes. Subsequently, each branch applies a Conv 1 × 1 layer to reduce
the depth of the feature maps, followed by a Conv 3 × 3 layer to
extract more detailed features. Afterward, the features are
upsampled to the original input size using bilinear interpolation,
ensuring that they can be fused with the original feature map. These
upsampled features are then passed through the EdgeEnhancer
module, which enhances edge information by subtracting the
smoothed version of the feature maps from the original, thus
emphasizing object boundaries. The output of all four branches

is then concatenated together. Meanwhile, the fifth branch, which
processes the input with a simple Conv 3 × 3 layer without pooling
or upsampling, contributes additional local feature information to
the fusion process. Finally, the concatenated feature maps from all
branches are passed through a Conv 3 × 3 layer, integrating the
multi-scale, edge-enhanced, and local features into a single refined
feature map. This refined feature map is then used for further
processing or detection in the network. The structure of the
MSEEF Block is shown in Figure 3.

In the MSEEF Block, the AdaptiveAvgPool2d operation plays a
key role in dynamically adjusting the size of pooling regions based
on the target output dimensions. It divides the input feature map
into adaptive pooling windows and computes the average of each
region to generate the corresponding output feature. This adaptive
process ensures that the pooling operation adjusts according to the
input and desired output sizes, allowing the block to better handle
variations in input dimensions and enhance feature extraction.

The EdgeEnhancer module is designed to enhance edge features
in an input feature map. Initially, it applies an average pooling
operation with a 3 × 3 kernel, stride 1, and padding 1 to smooth the
input feature map and reduce high-frequency information. It then
subtracts the pooled result from the original input, highlighting the
edge features by emphasizing the differences between the input and
the smoothed version. This edge information is then passed through
a convolutional layer with a sigmoid activation function to further
refine the edge features. Finally, the enhanced edge features are
added back to the original input, improving the overall feature map
by reinforcing the edges. This enhancement aids in detecting finer
details and distinguishing boundaries in the image.

3.2.2 Detailed introduction of LAF module
In UAV-based object detection, effectively recognizing targets of

varying sizes requires a method capable of handling features across
multiple scales. The original model employs the Cross-Scale Fusion
Mechanism (CCFM), which enables the fusion of information from
different feature map resolutions. However, small object features
tend to be lost in higher-level feature maps due to resolution
downsizing. The traditional fusion methods within CCFM may
fail to fully recover or highlight these small-scale details,
negatively impacting detection performance. Although adding a
P2 detection layer is a common strategy to improve small object
detection, it introduces issues such as increased computational load
and extended post-processing time. To address these shortcomings,
this paper introduces the Layered Attention Fusion (LAF)

FIGURE 3
The structure of the MSEEF Block.
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architecture, which builds upon CCFM to provide a more efficient
and robust solution for enhancing small object detection without the
limitations associated with conventional approaches.

In contrast to the traditional method of adding a P2-detection
layer, this paper utilizes the P2 feature layer, which is processed
using Space-to-Depth Convolution (SPDConv), to extract rich
small-target information. As shown in Figure 4, the Space-to-
Depth Convolution (SPDConv) consists of two key components:
the SPD module and the Conv layer. It works by rearranging the
input feature map into a new tensor, typically downsampling it by
a factor of 2. The rearranged tensor is then processed using a 1 ×
1 convolution operation, which helps preserve crucial feature
details while reducing spatial resolution. Space-to-Depth
Convolution (SPDConv) is a technique designed to improve
small-object detection by effectively reducing the spatial
dimensions of feature maps while retaining important
channel-level information.

It is worth noting that the MSEEF module plays a critical role in
enhancing the performance of the LAF module. By providing
enriched multi-scale representations with enhanced edge details,
MSEEF supplies high-resolution, fine-grained features that are
essential for capturing subtle variations in small-scale objects.
This complementary information allows the LAF module to
more effectively fuse small-scale features, ultimately improving
detection accuracy in complex aerial scenes. Next, this paper
utilizes the CSP (Cross-Stage Partial) idea and improves it with
the Omni-kernel, resulting in the CSPOmni-kernel module for
feature integration. The network structure is shown in Figure 5.
The Omni-kernel module consists of three branches: the global
branch, large branch, and local branch, each designed to effectively
learn features ranging from global to local, thereby enhancing small-
object detection performance. The purpose of the global branch is to
extract overarching features, which is accomplished using a dual-
domain attention mechanism combined with frequency-based

FIGURE 4
SPDConv.

FIGURE 5
The structure of the CSP-Omni-kernel network.
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gating. This structure enables the network to emphasize crucial
information in the input features, thereby improving its global
perception ability. The large branch employs large-kernel
depthwise convolutions of different shapes, focusing on capturing
large-scale information. The local branch is designed to capture local
information, using simple 1 × 1 depthwise convolutions to enhance
the modulation of local signals.

In conclusion, the LAF module presents an effective approach
to improving small object detection in UAV-based target detection
systems by addressing the shortcomings of traditional feature
fusion methods. Through the integration of multi-scale feature
fusion, edge enhancement, and space-to-depth convolution
techniques, LAF enables more accurate detection of small and
distant objects while maintaining computational efficiency. The
incorporation of the CSP concept along with the Omni-kernel
improves the model’s ability to capture both global and local
features, thus enhancing its robustness across objects of varying
scales. This design not only enhances detection accuracy but also
mitigates issues such as resolution loss and excessive
computational demands. Compared to directly adding a
P2 detection layer, the LAF module effectively reduces the
additional computational load, offering a more efficient and
scalable solution for small object detection in complex UAV-
based environments.

3.2.3 Detailed introduction of DPE module
The efficient hybrid encoder based on Attention-based Intra-

Scale Feature Interaction (AIFI) is a key component of RT-DETR.
However, the original AIFI module in RT-DETR primarily uses
standard fixed positional encoding to inject positional information
into features. In typical Multi-head Attention mechanisms,
positional encoding is usually generated by adding fixed
sinusoidal functions to provide sequence-level positional
information. However, the weights of these positional encodings
are fixed and cannot be adjusted during training. In contrast, Vision
Transformer (ViT) uses learnable positional encoding, which relies
on pre-set fixed embedding vectors. While it allows the model to
learn position-specific information, it still cannot dynamically adapt
to task variations. The learnable positional encoding in ViT
introduces a set of trainable parameters, enabling the model to
encode each position during data processing, but its adjustments are
still constrained by static optimization during the training phase.

In UAV-based object detection tasks, the aforementioned encoding
methods may not be sufficient for capturing subtle and local feature
changes, which affects detection accuracy and robustness. To address
this, this paper proposes an improvement to the positional encoding
generation in AIFI by introducing learned positional encoding (LPE).
The network structure for DPE is shown in Figure 6. In the design of the
DPE module, we introduce learned positional encoding (LPE) to
enhance the performance of the AIFI transformer layer. The key
idea is to replace traditional fixed positional encoding with
dynamically learnable position embeddings, allowing the model to
adjust the positional encoding during training. This adaptation
enables the model to better capture fine-grained spatial relationships
within the feature maps, improving its ability to detect small objects and
complex spatial dependencies. The learned positional encoding allows
the model to autonomously learn positional encoding during training,
better adapting to the specific needs of the task. Specifically, this method
typically involves using a trainable parametermatrix, which is randomly
initialized and adjusted throughout the training process to better
represent the importance and contextual relationships of each
position. Practically, this involves adding trainable positional
embedding vectors to the network and concatenating them with
feature maps along the depth dimension. This allows the network to
consider learned positional information when processing features at
each position. The dynamic learning nature of this positional encoding
enables greater flexibility in adapting to different data distributions and
task characteristics.

3.2.4 Detailed introduction of Inner-GIoU
In comparison to the original IoU-based loss function used in

the model, the BB-R (Bounding Box Regression) loss focuses on
accelerating convergence by introducing additional loss terms.
However, it overlooks the inherent limitations of the IoU loss
itself, particularly its inability to adapt to different detection
tasks. In practical applications, the IoU loss does not allow for
task-specific adjustments, which limits its flexibility. For UAV-based
object detection tasks, the dataset is typically collected under various
conditions, such as different scenes, lighting, and weather
conditions, using different models of drones. As a result, the
model must possess a certain degree of generalization ability to
effectively handle these variations. Given this, we chose to use the
Inner-GIoU loss function, which allows for more dynamic handling

FIGURE 6
The structure of the DPE module.
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of these situations by adjusting an appropriate ratio. The Inner-
GIoU loss function offers enhanced flexibility, enabling the model to
adjust the loss computation to better match the specific conditions of
each detection task. By selecting Inner-GIoU, we can effectively
improve the model’s generalization ability and ensure it performs
reliably across a wide range of real-world scenarios, ultimately
leading to more robust and accurate UAV-based object detection.
Inner-GIoU is defined as follows:

bgtl � xgt
c − wgt p ratio

2
, bgtr � xgt

c + wgt p ratio

2
(1)

bgtt � ygt
c − hgt p ratio

2
, bgtb � ygt

c + hgt p ratio

2
(2)

bl � xc − w p ratio

2
, br � xc + w p ratio

2
(3)

bt � yc − h p ratio

2
, bb � yc + h p ratio

2
(4)

inter � min bgtr , br( ) −max bgtl , bl( )( ) p min bgtb , bb( ) −max bgtt , bt( )( )
(5)

union � wgt p hgt( ) p ratio( )2 + w p h( ) p ratio( )2 − inter (6)
IoUinner � inter

union
(7)

LInner−IoU � 1 − IoUinner (8)
LInner−GIoU � LGIoU + IoU − IoUinner (9)

where bgtl , b
gt
r Equation 1, bgtt , and bgtb Equation 2 represent the left,

right, top, and bottom coordinates of the ground truth bounding box,
respectively. bl, br Equation 3, bt Equation 4, and bb Equation 5
represent the left, right, top, and bottom coordinates of the
predicted bounding box. xc and yc represent the center coordinates
of the predicted bounding box, while w and h are its width and height.
The ground truth bounding box’s width and height are denoted as wgt

and hgt Equation 6. The first set of equations adjusts the predicted
bounding box’s coordinates based on the ground truth box’s
coordinates and a scaling ratio, allowing the model to better match
the predicted box to the ground truth. The intersection (inter)
Equation 7 is calculated by comparing the minimum and maximum
values of the bounding box coordinates, while the union is the area
covered by both boxes, considering their overlap. The Inner-GIoU loss
function then calculates the intersection over union (IoU) for the inner
region of the bounding boxes Equation 8. Finally, the loss function
LInner−GIoU � LGIoU + IoU − IoUinner Equation 9 combines the GIoU,
IoU, and inner IoU values to optimize the bounding box regression,
accounting for both spatial overlap and inner-region differences
between the predicted and ground truth bounding boxes, thus
improving the model’s accuracy and robustness.

4 Results

This section presents the experimental evaluations and analyses
of our proposed model. We outline the experimental setup,
including the environment, dataset (VisDrone 2019), and
evaluation metrics used to assess performance. Through ablation
studies, comparative experiments with state-of-the-art methods, and
visualization experiments, we demonstrate the effectiveness,
robustness, and efficiency of MLD-DETR in handling complex
aerial imagery.

4.1 Experimental environment and dataset

4.1.1 Experimental environment
The experimental setup uses a learning rate of 1 × 10−4, which is

set to optimize the model performance during training. This value
was chosen based on preliminary experiments to ensure stable
convergence without overshooting the optimal solution. The
specific settings are shown in Table 1.

4.1.2 Evaluation indicators
In this paper, we evaluate the performance of the proposed model

using the standard COCO (Common Objects in Context) metrics.
These metrics are widely used for assessing object detection tasks and
offer a comprehensive evaluation ofmodel performance across different
aspects. The main COCO metrics used in this study include:

1. AP (Average Precision): This metric calculates the average
precision across different Intersection over Union (IoU)
thresholds, ranging from 0.5 to 0.95. It provides an overall
evaluation of the model’s ability to correctly identify and
classify objects in images. The formula for AP Equation 10
is given as:

AP � 1
|S| ∑i∈S

Pi t( ) (10)

where Pi(t) is the precision at recall t, and S is the set of all IoU
thresholds from 0.5 to 0.95 (i.e., S � [0.5, 0.55, . . . , 0.95]).

2. AP50 (Average Precision at IoU = 0.5): This metric focuses on
the precision of the model when the IoU threshold is set to 0.5.
The formula for AP50 Equation 11 is:

AP50 � 1
|S50| ∑

i∈S50

Pi t( ) (11)

where S50 is the set containing only the IoU threshold at 0.5.

3. AP75 (Average Precision at IoU = 0.75): Similar to AP50, but
with a stricter IoU threshold of 0.75. This metric highlights the
model’s ability to correctly detect objects with higher precision.
The formula for AP75 Equation 12 is:

AP75 � 1
|S75| ∑

i∈S75

Pi t( ) (12)

where S75 represents the set containing only the IoU threshold
at 0.75.

TABLE 1 System setup and model specifications.

Type Version Type Value

GPU RTX 4090 Batch size 4

CPU Intel E5-2680 v4 Input size 640 × 640

Python 3.8.0 Learning rate 1 × 10−4

Pytorch 1.13.1 Epoch 300

Cuda 11.7 Momentum 0.9
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4. APs (Average Precision for Small Objects): This metric
evaluates the model’s performance specifically for small
objects, which are defined as those with an area less than
32 × 32 pixels. The formula for APs Equation 13 is:

APs � 1
|Ss| ∑i∈Ss

Pi t( ) (13)

where Ss refers to the set of small objects, which is calculated by
evaluating the performance of the model on objects with a
smaller area.

5. APm (Average Precision for Medium Objects): This metric
evaluates the model’s performance for medium-sized objects,
with areas ranging from 32 × 32 pixels to 96 × 96 pixels. The
formula for APm Equation 14 is:

APm � 1
|Sm| ∑i∈Sm

Pi t( ) (14)

where Sm refers to the set of medium-sized objects, which is
calculated by evaluating the performance of the model on objects
with a medium area.

6. APl(Average Precision for Large Objects): This metric focuses
on large objects, with areas greater than 96 × 96 pixels. It
provides insight into the model’s ability to detect larger and
more prominent objects in the dataset. The formula for
APl Equation 15 is:

APl � 1
|Sl| ∑i∈Sl

Pi t( ) (15)

where Sl refers to the set of large objects, which is calculated by
evaluating the performance of the model on objects with a
larger area.

4.1.3 Visdrone2019 dataset
VisDrone2019 is a large-scale publicly available dataset designed

for object detection, tracking, and segmentation in drone-captured
images. It focuses on real-world scenarios, covering various scenes
such as urban environments, highways, and rural landscapes. The
dataset contains over 10,000 images with more than 1.5 million
labeled objects from ten categories: ‘pedestrian’, ‘people’, ‘bicycle’,
‘car’, ‘van’, ‘truck’, ‘tricycle’, ‘awning-tricycle’, ‘bus’, and ‘motor’.
Captured from different altitudes and camera angles, this dataset
offers challenges such as small object detection, occlusion, and
variable lighting, making it a valuable resource for advancing
aerial surveillance and detection systems.

4.2 Experimental analysis

4.2.1 Ablation experiment
To validate the performance of the MLD-DETR for object

detection in drone aerial imagery, we conducted ablation
experiments based on the RT-DETR model, with results
presented in Table 2. The MLD-DETR model consists of the
MSEEF, LAF, DPE, and Inner-GIoU modules. Initially, we tested
the original RT-DETR model and then sequentially added each

module, leading to improvements in all evaluation metrics. By
combining the MSEEF and LAF modules, we reduced the
number of parameters by 4.4 M while increasing AP50 by 1.9%,
along with improvements in other metrics. Adding the DPE module
resulted in a slight AP50 increase of 0.7%, with minimal change in
parameters and FLOPS. Finally, after replacing the original loss
function with Inner-GIoU, the full MLD-DETR model improved
AP50 by 3.2% and AP by 2% compared to the baseline. These results
confirm that our model outperforms the original RT-DETR in
detecting objects in drone aerial imagery, offering higher
accuracy and better applicability.

4.2.2 DPE analysis
To objectively evaluate the improvement brought by the DPE

module, we conducted a controlled component-level comparison:
While preserving the complete MLD-DETR architecture (including
MSEEF backbone, LAF module and Inner-GIoU), we exclusively
replaced the DPE module with five AIFI modules improved using
current popular methods: AIFI-TokenMixer (Zhang et al., 2024),
AIFI-MHSA (Wu et al., 2023), AIFI-Efficient (Shaker et al., 2023),
AIFI-Hilo (Pan et al., 2022), AIFI-DHSA (Sun et al., 2024). The
experimental results are shown in Table 3. The results show that
DPE achieves higher performance across all metrics compared to the
alternative modules. DPE achieves an AP of 0.228, compared to the
highest value of 0.226 seen in other modules. Additionally, DPE also
demonstrates superior performance in terms of APS and APL, with
scores of 0.145 and 0.518, respectively, which are better than those of
the other modules. These results suggest that the DPE module
significantly enhances the model’s overall detection performance.

4.2.3 Inner-GIoU analy sis
To verify the superiority of Inner-GIoU in the MLD-DETR

model, we replaced different loss functions for a comparative
experiment. The experimental results are shown in Table 4. The
Inner-GIoU loss function demonstrates the best performance for the
MLD-DETR model. This highlights its superior precision and
robustness, particularly in small object detection tasks, making it
the most effective choice for enhancing the MLD-DETR model.

4.2.4 Comparative experimental results and
analysis with other latest detection algorithms

As shown in Table 5, we conducted ablation experiments
comparing the MLD-DETR model with several existing state-of-
the-art models, including RT-DETR, Faster-RCNN (Ren et al.,
2016), YOLOX-Tiny (Ge, 2021), YOLOv8 series,
YOLOv10 series, and YOLOv11 series, on the
VisDrone2019 dataset. The table presents the results of ablation
experiments conducted on the VisDrone2019 test set, comparing
various object detection models across key performance metrics.
The models evaluated include RT-DETR, Faster-RCNN, YOLOX-
Tiny, YOLOv8 series, YOLOv10 series (Wang et al., 2024),
YOLOv11 series, and the newly proposed MLD-DETR model.
Among these models, MLD-DETR achieves the best
performance, outperforms other state-of-the-art models like
YOLOv8m, YOLOv11m, and RT-DETR, and highlights the
effectiveness of the MLD-DETR model. The MLD-DETR model
improves the model’s overall performance by enhancing the fusion
of multi-scale features, making it a promising approach for real-
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world drone-based object detection applications. Models such as
YOLOv8m and Faster-RCNN show slightly lower performance,
with AP values of 0.190 and 0.194, respectively, indicating the
significant improvements brought by the proposed architecture in
terms of accuracy and robustness. On the other hand, lightweight
models such as YOLOv8n and YOLOv10n show lower overall
accuracy, suggesting that although these models offer advantages
in terms of size, they sacrifice some detection accuracy.

These results demonstrate a critical trade-off between model
efficiency and detection accuracy in drone-based scenarios. While

lightweight models like YOLOv10n (3.73 M Params) and YOLOv8n
(3.0 M Params) achieve 18.5G/7.12G FLOPS respectively, their AP
scores (0.192/0.183) remain significantly lower than MLD-DETR’s
0.227 AP. This suggests that our multi-scale edge fusion strategy
effectively bridges the efficiency-accuracy gap—MLD-DETR
reduces parameters by 48.9% compared to RT-DETR while
improving AP by 9.1%. Notably, the 12.8% APS (small-object
AP) surpasses all competitors, including RT-DETR (12.7%) and
D-Fine-S (12.8%), validating MSEEF’s boundary preservation
capability. For medium/large objects, MLD-DETR maintains

TABLE 2 Ablation study results on VisDrone2019 test set.

Components Params (M) FLOPs (G) AP AP50 AP75 APS APM APL

Baseline 19.9 57.3 0.208 0.367 0.205 0.127 0.317 0.397

+ MSEEF 14.55 48.7 0.212 0.377 0.209 0.129 0.327 0.438

+ LAF 20.6 65.5 0.216 0.382 0.217 0.131 0.336 0.444

+ DPE 14.5 48.7 0.210 0.375 0.207 0.129 0.332 0.433

+ Inner-GIoU 19.9 57.3 0.212 0.378 0.209 0.130 0.327 0.418

MSEEF + LAF 15.5 64.2 0.219 0.386 0.217 0.137 0.334 0.474

MSEEF + LAF + DPE 15.8 64.5 0.223 0.393 0.223 0.139 0.342 0.507

MLD-DETR 15.8 64.5 0.228 0.398 0.227 0.145 0.346 0.518

Note: Bold values indicate best performance. MLD-DETR, incorporates all four components (MSEEF, LAF, DPE, and Inner-GIoU). MSEEF: Multi-Scale Efficient Enhancement; LAF:

lightweight attention fusion; DPE: dynamic position encoding.

TABLE 3 Performance comparison of AIFI module variants on VisDrone2019 test set.

Module AP AP50 AP75 APS APM APL

TokenMixer 0.220 0.390 0.217 0.138 0.340 0.457

MHSA 0.226 0.397 0.226 0.142 0.342 0.458

Efficient 0.226 0.398 0.226 0.144 0.346 0.486

HiLo 0.226 0.396 0.226 0.142 0.342 0.458

DHSA 0.221 0.393 0.219 0.140 0.340 0.472

DPE (Ours) 0.228 0.398 0.227 0.145 0.346 0.518

Note: Bold values indicate best performance. Evaluation conducted with 640 × 640 input resolution.

TABLE 4 Performance comparison of loss functions on VisDrone2019 test set.

Loss function AP AP50 AP75 APS APM APL

GIoU 0.218 0.389 0.219 0.137 0.337 0.480

CIoU (Zheng et al., 2020) 0.220 0.387 0.218 0.137 0.339 0.478

SIoU (Gevorgyan, 2022) 0.221 0.389 0.219 0.135 0.341 0.484

Inner-GIoU 0.228 0.398 0.227 0.145 0.346 0.518

Focaler GIoU (Zhang and Zhang, 2024) 0.219 0.386 0.217 0.137 0.334 0.474

Focaler-MPDIoU 0.222 0.392 0.220 0.148 0.340 0.510

Inner-MPDIoU 0.223 0.393 0.223 0.139 0.342 0.507

MPDIoU (Siliang and Yong, 2023) 0.218 0.385 0.218 0.135 0.338 0.442

Note: Bold values indicate best performance. All experiments conducted with: • Input size: 640 × 640 • Backbone: ResNet-18 • GPU: RTX 4090 • Batch size: four.
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competitive APM (33.1%) and APL (46.8%), proving its scale-
agnostic robustness. Such balanced performance positions MLD-
DETR as a viable solution for real-world UAV systems requiring
both precision and computational frugality.

The comprehensive comparison results in Table 6 clearly
demonstrate the superior performance of our proposed MLD-
DETR across multiple evaluation metrics on the
VisDrone2019 validation set. Most notably, MLD-DETR achieves

TABLE 5 Comprehensive model comparison on VisDrone2019 test set.

Model AP50 AP APS APM APL GFLOPs (G) Params (M)

RT-DETR-R18 0.367 0.205 0.127 0.317 0.397 57.3 19.9

Faster-RCNN 0.329 0.194 0.095 0.309 0.429 208.0 41.4

Cascade 0.326 0.197 0.099 0.309 0.406 236.0 69.3

YOLOX-Tiny 0.278 0.148 0.076 0.221 0.278 7.6 5.0

TOOD-R50 0.339 0.204 0.102 0.317 0.403 199.0 32.0

D-Fine-N 0.334 0.183 0.093 0.270 0.442 7.1 3.7

D-Fine-S 0.394 0.227 0.128 0.331 0.468 24.9 10.2

DEIM-S 0.384 0.219 0.122 0.321 0.397 24.9 10.2

YOLOv8n 0.333 0.192 0.099 0.288 0.377 18.5 3.0

YOLOv8s 0.386 0.224 0.123 0.333 0.441 64.5 11.1

YOLOv8m 0.332 0.190 0.090 0.294 0.417 78.7 25.9

YOLOv10n 0.261 0.142 0.063 0.224 0.292 6.5 2.3

YOLOv10s 0.323 0.179 0.086 0.278 0.361 21.4 7.2

YOLOv10m 0.345 0.195 0.097 0.300 0.414 58.9 15.3

YOLOv11n 0.258 0.142 0.058 0.225 0.316 6.3 2.6

YOLOv11s 0.313 0.176 0.080 0.272 0.364 21.3 9.4

YOLOv11m 0.350 0.203 0.098 0.312 0.413 67.7 20.0

YOLOv12n 0.259 0.142 0.057 0.224 0.346 6.3 2.6

YOLOv12s 0.312 0.176 0.081 0.274 0.356 21.2 9.2

YOLOv12 m 0.336 0.192 0.094 0.298 0.386 67.2 20.1

MLD-DETR (Ours) 0.398 0.227 0.145 0.346 0.518 64.5 15.8

Note: Bold values indicate best performance. Implementation details: 1. Input size: 640 × 640 2. Training hardware: RTX 4090.

TABLE 6 Comprehensive model comparison on VisDrone2019 validation set.

Model AP50 AP APS APM APL GFLOPs (G) Params (M)

RT-DETR-R18 0.521 0.250 0.215 0.459 0.668 57.3 19.9

Faster-RCNN 0.402 0.239 0.158 0.375 0.47 208.0 41.4

Cascade 0.401 0.241 0.155 0.377 0.458 236.0 69.3

TOOD-R50 0.403 0.246 0.158 0.373 0.491 199.0 32.0

YOLOv12n 0.370 0.175 0.129 0.326 0.481 6.3 2.6

YOLOv12s 0.448 0.216 0.173 0.395 0.493 21.2 9.2

YOLOv12m 0.457 0.222 0.185 0.402 0.501 67.2 20.1

AUHF-DETR-S 0.530 0.283 0.238 0.432 0.633 23 10.29

AUHF-DETR-M 0.572 0.309 0.261 0.483 0.691 52 19.55

MLD-DETR (Ours) 0.574 0.309 0.267 0.503 0.697 64.5 15.8

Note: Bold values indicate best performance. Implementation details: 1. Input size: 640 × 640 2. Training hardware: RTX 4090.
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the highest overall performance with 57.4% AP50% and 30.9% AP,
outperforming all competing methods including the recently
proposed AUHF-DETR variants. Specifically, our method shows
substantial improvements over AUHF-DETR-S by +4.4% AP50,
+2.6% AP, and +2.9% APS. When compared to the larger AUHF-
DETR-M variant, MLD-DETR achieves comparable overall
performance while requiring 19.2% fewer parameters,
demonstrating superior parameter efficiency.

Based on corrected experimental data, while AUHF-DETR
focuses on lightweight design using wavelet convolutions and
spatial attention for embedded efficiency, MLD-DETR
specifically addresses drone imagery challenges through its
MSEEF for boundary preservation, DPE for geometric
perspective adaptation, and LAF for hierarchical feature
optimization. On VisDrone 2019, MLD-DETR achieves 26.7%
APs in small-object detection, outperforming AUHF-DETR-S,
while attaining higher overall accuracy with balanced efficiency
and fewer parameters, demonstrating superior robustness in
cluttered aerial scenes without compromising real-time
practicality.

While recent works like AUHF-DETR focus on individual
components (wavelet convolution OR spatial attention), MLD-
DETR’s innovation stems from architectural co-design where
MSEEF’s boundary-aware features specifically complement LAF’s
hierarchical processing, and DPE’s learned embeddings synergize
with Inner-GIoU’s geometric constraints. This systems-level
innovation achieves superior performance with fewer parameters
than component-wise improvements.

4.3 Visualization experiments

Based on the visualization results presented in Figure 7, the
image comparison shows the performance of three detection
methods: the original image, baseline method, and the proposed
MLD-DETR. In the first column, the original image is shown
without any annotations, serving as the baseline for comparison.
The second column illustrates the detection results of the baseline
method, which highlights detected objects with bounding boxes in
various colors. While the baseline method detects several objects,
some of the smaller or obscured objects are missed, and the
bounding boxes appear less accurate in some cases. In contrast,
the third column demonstrates the detection results using the MLD-
DETR method. The proposed method performs significantly better
in detecting small or partially occluded objects, as evidenced by the
more precise bounding boxes and higher object detection accuracy.
The MLD-DETR method also seems to handle overlapping objects
more effectively, offering a clear improvement over the baseline
method in terms of detection quality and localization accuracy. This
comparison highlights the effectiveness of MLD-DETR in
addressing challenges such as detecting small targets and
handling complex scenarios, such as crowded or overlapping
objects, in drone aerial imagery.

In Figure 7, the first row demonstrates false positives where
containers are misidentified as trucks within the annotated regions,
along with missed detections of pedestrians in shaded areas. The
second row reveals a missed detection of a truck partially occluded
by trees within the marked area, indicating that MLD-DETR

FIGURE 7
Visualization comparison.
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significantly outperforms in detecting occluded objects. In the third
row’s annotated region, RT-DETR fails to detect several relatively
small pedestrians and motorcycles. These three image sets captured
from varying aerial perspectives collectively demonstrate MLD-
DETR’s superior adaptability to high-altitude aerial
photography angles.

The visualization comparison clearly demonstrates that MLD-
DETR exhibits superior performance in various challenging
scenarios commonly encountered in drone aerial imagery.
Specifically, MLD-DETR performs well in complex street scenes,
scenarios with dense object distributions in low-light conditions,
and multi-scale detection in low-light environments. These
scenarios often present difficulties for traditional detection
models due to factors such as occlusion, low contrast, and
varying object sizes. However, MLD-DETR consistently achieves
high detection accuracy, as shown by its ability to maintain reliable
performance across these diverse and challenging conditions,
further reinforcing its robustness and effectiveness in real-world
applications.

Figure 8 presents detection confidence heat maps where warmer
colors (red/yellow) indicate higher detection confidence regions and
cooler colors (blue) represent lower confidence areas. The baseline
method (middle column) shows sparse and less concentrated heat
spots, particularly struggling with small or occluded objects as
indicated by weak blue regions. In contrast, MLD-DETR (right
column) exhibits denser, more evenly distributed heat

concentrations across detected targets, with stronger red/yellow
intensities indicating higher confidence levels. This demonstrates
MLD-DETR’s enhanced capability to detect and localize objects
with greater certainty, particularly in challenging scenarios with
small targets and complex backgrounds.

These results demonstrate the enhanced detection capabilities of
MLD-DETR, particularly in terms of improving object localization,
detecting small targets, and handling crowded environments. The
heat maps in the third panel clearly support the claim that MLD-
DETR outperforms the baseline method in terms of overall detection
quality and robustness.

5 Discussion

The MLD-DETR framework introduces three synergistic
innovations to address aerial detection challenges. The MSEEF
module preserves critical object details through parallel dilated
convolutions and adaptive edge weighting, effectively mitigating
information loss in small targets. This is complemented by the LAF
structure, which integrates spatial pyramid decomposition with
directional feature aggregation to enhance context modeling.
Specifically, LAF’s omnidirectional kernel fusion enables precise
localization of clustered small objects that conventional attention
mechanisms often conflate, while its skip connections maintain
gradient flow across network depths.

FIGURE 8
Comparison of heat maps for detection performance. Red: high confidence; Blue, low confidence.
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The framework further innovates through DPE, which replaces
static geometric priors with learnable spatial relationships. This
adaptability proves crucial for drone perspectives where object
distributions vary dramatically across altitudes. When combined
with LAF’s hierarchical feature integration, the system demonstrates
particular efficacy in resolving occlusion challenges–a persistent
pain point in aerial surveillance applications.

Current limitations center on computational complexity in the
LAF-MSEEF interaction layers, which may hinder real-time
deployment. Future work will explore two directions: 1) Developing
a lightweight variant using depth-wise separable convolutions in the
LAF structure, and 2) Extending the edge enhancement paradigm to
multi-spectral inputs for improved robustness in adverse weather.
These adaptations could broaden the model’s applicability to time-
sensitive operations like disaster response monitoring, where both
accuracy and efficiency are paramount.

While MLD-DETR advances UAV-based detection, several
limitations warrant future investigation: (1) The current
64.5GFLOPs, though improved from baseline, may still challenge
real-time deployment on resource-constrained drones. Future work
could explore knowledge distillation or pruning strategies to achieve
sub-20GFLOPs; (2) Our evaluation focuses on RGB imagery, while
multi-spectral sensors could provide additional discrimination
capability for camouflaged objects, (3) The model assumes
relatively stable flight conditions - sever emotion blur or extreme
weather conditions remain challenging and require specialized
augmentation strategies.
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