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Mangrove forests are vital blue carbon ecosystems whose security is increasingly
threatened by the non-native species Spartina alterniflora. Accurate remote
sensing-based identification and monitoring are crucial for invasive species
management; however, such methods have rarely been applied to determine
the distribution of S. alterniflora in Zhanjiang, China. Here, we combined five
supervised classification algorithms—random forest (RF), support vector
machine, maximum likelihood classification (MLC), minimum distance
classification, and Mahalanobis distance classification—with spectral bands,
spectral indices, and the gray-level co-occurrence matrix (GLCM) derived
from Sentinel-2 imagery to identify the optimal combination for monitoring
the spatial distribution of S. alterniflora on Donghai Island, Zhanjiang. The
sample dataset was divided into training and validation sets at a ratio of 7:3,
yielding a sub-dataset with Jeffries–Matusita distances of 1.893–2.000, which
satisfied classification requirements. The most accurate algorithm–feature
combination was MLC plus spectral features, which achieved a kappa
coefficient of 0.9061, an overall accuracy of 95.32%, and a similar extracted
area (72.51 ha) to that derived from visual interpretation (68.7 ha). The next most
accurate combinations were RF plus spectral bands + GLCM and RF plus spectral
bands + spectral indices + GLCM, with kappa coefficients of 0.8991, overall
accuracy of 94.96%, and extraction areas of 74.76 ha and 75.31 ha, respectively.
RF showed superior adaptability across different feature scenarios, resulting in
stable accuracy and minimal area error. According to visual interpretation, the
area of S. alterniflora increased by 3.35 ha over a 5-year period, indicating a
growth rate of 5.13%. By evaluating the accuracy of different classification
methods and features, this research can facilitate S. alterniflora extraction and
provide support for mangrove conservation efforts.
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1 Introduction

Mangrove forests represent a major blue carbon coastal ecosystem
that plays a significant role in carbon sequestration and storage (Ahmed
et al., 2017; Sidik et al., 2023). However, non-native species pose a
substantial threat to mangrove habitats by encroaching on the survival
space of native vegetation and disrupting local ecosystems and
biodiversity (Dawson et al., 2017). In 1979, China introduced
Spartina alterniflora (also known as Sporobolus alterniflorus) as an
ecologically engineered species, primarily for its functions in shoreline
stabilization and wind protection (Chung, 2006). S. alterniflora has also
been introduced to West Coast of North America, Europe, and
New Zealand, where it exhibits remarkable adaptability to various
environmental conditions, achieving rapid habitat expansion through
both sexual and asexual reproduction (Ainouche et al., 2004; Morris
et al., 2005; Hartley et al., 2020). Owing to its continued encroachment
on the habitats of native species, S. alterniflora has established itself as
the dominant plant in local saltmarshes (Zhu et al., 2016; Banerjee et al.,
2022). In 2022, China formulated a special action plan aimed at
controlling S. alterniflora, which aspired to eliminate ecological
hazards in coastal wetlands by 2025 and curtail the unrestricted
spread of this invasive species (National Forestry and Grassland
Administration, 2025). Zhanjiang City, which houses the largest
natural mangrove reserves in China, has been significantly affected
by S. alterniflora invasion, resulting in extensive clean-up efforts.
Effective monitoring of S. alterniflora is essential for identifying its
distribution and dispersal mechanisms, thereby enabling the
implementation of more effective removal strategies.

Traditional estimates of S. alterniflora extent rely on extensive
field surveys, which can be costly and inadequate for capturing the
overall distribution. In contrast, satellite remote sensing offers an
effective means of terrestrial observation by providing a wealth of
imagery for vegetation monitoring. Over the past 2 decades, multi-
source remote sensing imagery and spectral indices have been
frequently utilized for the long-term monitoring of S. alterniflora.
Spectral indices are derived through band math to highlight the
characteristic information of the target and reduce noise
interference. They have applications in agricultural monitoring,
water body extraction, etc., (Du et al., 2016; Li M et al., 2022). In
the application of S. alterniflora, Xu et al. (2018) extracted long-term
area data from Landsat TM and ETM + images of Changxing and
Hengsha Islands from 1987 to 2016; O’Donnell and Schalles (2016)
used Landsat 5 TM imagery and indices such as the normalized
difference vegetation index (NDVI) and modified soil adjusted
vegetation index (mSAVI) to extract 28 years of aboveground
biomass data for S. alterniflora along the Central Georgia Coast;
and Zhao et al. (2009) combined NDVI, mSAVI, enhanced vegetation
index (EVI), and moderate-resolution imaging spectroradiometer
imagery to analyze the spatiotemporal dynamic trends of S.
alterniflora on Chongming Dongtan from 2001 to 2006.

The Sentinel-2 image has a resolution of 10 m and has achieved
good classification application results in various fields. It can be used
for land cover classification and forest healthmonitoring, and has also
achieved remarkable results in disasters such as floods and avalanches
(Candotti et al., 2022; Chu et al., 2024; Sharma et al., 2024; Aryal et al.,
2025). To obtain more accurate information on S. alterniflora,
Sentinel-2 is highly favored. Tian et al. (2020) used it to extract
the expansion rate of S. alterniflora; Min et al. (2023) used Sentinel-2

to map the time and location of S. alterniflora removal work. In terms
of classification algorithms, maximum likelihood classification (MLC)
belongs to the statistical method category and is applied in mineral
identification (Ondieki, 2022); support vector machine (SVM) and
random forest (RF) belong to machine learning algorithms, which
improve classification accuracy by adjusting optimal parameters and
are applied in urban land classification and tree species classification
(Hanif et al., 2023; Saim and Aly, 2025). In the case of S. alterniflora,
Ai et al. (2017) utilized GF-1 WFV data based on phenological
characteristics and extracted time-series information on S.
alterniflora in the Yangtze River Estuary using SVM and MLC
methods. Zhang et al. (2021) applied RF algorithms to key features
from Sentinel-1 and Sentinel-2 imagery to extract area data from the
Yellow River Delta. Additionally, advance in deep learning technology
have led to the increasing application of algorithms such as U-Net,
convolutional neural networks, and extreme gradient boosting to S.
alterniflora extraction (Fu et al., 2022; Li Y et al., 2022b; Zhu et al.,
2022). Furthermore, currently the most popular one is Google Earth
Engine (GEE), which integrates mainstream classification algorithms
and has Sentinel-2 and Landsat series data that can be filtered and
called online (Min et al., 2023; Hosseini et al., 2024). It has also been
applied in fields such as agriculture and S. alterniflora extraction
(Zhou et al., 2024).

Compared to other regions, Zhanjiang has relatively limited and
incomplete statistical data on the distribution of S. alterniflora. Liu
et al. (2018) noted the presence of S. alterniflora patches in
Zhanjiang during nationwide data extraction, and further field
surveys revealed that the extent of S. alterniflora in the mangrove
protection area reached 12.59 ha and encompassed five counties and
districts within the city (Xin et al., 2018). Subsequently, Huang et al.
(2021) employed object-based classification techniques to extract
the area of S. alterniflora for 2016–2018, which indicated a
substantial increase to 157.05 ha, highlighting the severe scale of
S. alterniflora invasion in this region. However, remote sensing-
based evaluations of S. alterniflora in Zhanjiang remain relatively
scarce, and no studies have determined the most suitable
classification methods and features for this region.

Therefore, in this study, we employ Sentinel-2 imagery to extract
S. alterniflora patches on Donghai Island, Zhanjiang. five remote
sensing classification methods including RF, SVM, MLC, Minimum
Distance Classification (MDC), and Mahalanobis Distance
Classification (MaDC) are combined with spectral bands, spectral
indices, and texture features for use, 1) to compare the accuracy of
different methods in the extraction results, 2) to compare the
classification effects of different features and their combinations,
3) to observe the best classification combination by pairing the
methods with the features. This research provides an important
reference for future research on blue carbon ecosystems in western
Guangdong and contributes to the management and control of
invasive species in this region.

2 Materials and methods

2.1 Study area

Donghai Island (Figure 1) covers an area of 289 km2 (latitude
20°55’–21°05’ N; longitude 110°11’–110°33’ E), making it the largest
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island in Guangdong Province and the fifth largest island in China.
The island experiences a subtropical monsoon climate, regulated
year-round by maritime influences, with an average annual
temperature range of 22.7°C–23.5°C and annual precipitation of
1,395.5–1,723.1 mm. S. alterniflora grows in mangroves near
Beishan Harbor and as abundant independent patches within a
large number of tidal flats, which together form an area
approximately 4.4 km long, accounting for the largest expanse of
S. alterniflora in Zhanjiang, China.

2.2 Datasets

2.2.1 Data sources and processing
Remote sensing images were selected for the study area during

periods with no cloud cover or tidal inundation. After careful
screening, a Level 2A image was obtained on 11 July 2023. This

image was processed using the Sen2Cor v2.11 plugin and resampled
to 10-m resolution. Radiometric correction and clipping were
performed to extract the target area using ENVI 5.6 software.
Spectral bands B1 and B10 were removed, whereas the remaining
bands were retained to calculate vegetation indices and texture
features; spectral band information is provided in Table 1. This
approach ensured an accurate assessment of vegetation
characteristics and facilitated the analysis of S. alterniflora
distribution within the target region.

2.2.2 Construction of SIs and texture features
In this study, we selected four vegetation indices, NDVI, EVI,

red-edge NDVI, and green NDVI, along with two additional indices,
the modified normalized difference water index and mSAVI, to
differentiate between water bodies and intertidal zones. In addition,
we employed the gray-level co-occurrence matrix (GLCM) to extract
second-order texture features, such as homogeneity, contrast,

FIGURE 1
Maps of the study area: (a) yellow area shows Guangdong; (b) red box shows Donghai Island; (c) red line represents the target study area.
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dissimilarity, entropy, angular second moment, and correlation.
First-order statistics like mean and variance were also included in
the data set.

Visual interpretation of land-cover types was conducted using
two primary data sources as references. The first source comprises
previous literature (Xin et al., 2018; Huang et al., 2021) and the

TABLE 1 Spectral band information of Sentinel-2 data.

Band number Central wavelength (nm) Bandwidth (nm) Spatial resolution (m)

B1 443.9 27 60

B2 496.6 98 10

B3 560.0 45 10

B4 664.3 38 10

B5 703.9 19 20

B6 740.2 18 20

B7 782.5 28 20

B8 835.1 145 10

B8A 864.8 33 20

B9 945.0 26 60

B10 1,373.5 75 60

B11 1,613.7 143 20

B12 2,202.3 242 20

FIGURE 2
Flowchart of the classification process employed in this study.

Frontiers in Remote Sensing frontiersin.org04

Chen et al. 10.3389/frsen.2025.1606549

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1606549


second included very-high-spatial-resolution imagery obtained
from Maxar and Google Earth. Based on these reference data,
912 sample points were established and subsequently divided into
training and validation sets at a 7:3 ratio. Among the sample points,
409 pixels represented S. alterniflora and 503 pixels were “non-S.
alterniflora”; these included tidal flats, mangroves, and water. This
detailed sampling approach ensures robust classification and
validation of land-cover types. As shown in Figure 2, the features
were divided into six groups: spectral bands alone; SIs alone; GLCM
alone; bands + SIs (Group 1); bands + GLCM (Group 2); and bands
+ SIs + GLCM (Group 3). The training sets included the S.
alterniflora training set (sa-Train) and non-S. alterniflora training
set (nsa-Train), and the validation sets included the S. alterniflora
verification set (sa-Valid) and non-S. alterniflora verification set
(nsa-Valid).

2.3 Separability calculation and
classification methods

The Jeffries–Matusita (JM) distance is an important metric for
assessing the spectral separability between two land-cover classes
within a region of interest (Bruzzone et al., 1995). The JM distance,
calculated based on the differences between the mean vectors and
covariance matrices of the two classes, ranges from zero to two,
where values closer to two indicate better separability in the feature
space, with classes easier to distinguish using a classifier, and values
closer to zero indicating that classes are increasingly difficult to
differentiate (Jeffreys, 1997). Generally, JM > 1.9 indicates very good
separability, whereas JM < 1 may warrant caution when merging the
two samples into a single class. For classes that follow a normal
distribution, the JM distance can be calculated based on Formulas
1, 2:

JMij �
����������
2* 1 − e-Bij( )

√
(1)

B � 1
8

mi −mj( )T Ci + Cj

2
{ }−1

mi −mj( ) + 1
2
ln

Ci+Cj( )
2

∣∣∣∣∣∣ ∣∣∣∣∣∣
Ci*Cj( )1/2∣∣∣∣∣∣ ∣∣∣∣∣∣

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭
(2)

where i and j represent the different land-cover types; mi and mj

denote the mean values; and Ci and Cj denote the covariance
matrices of the classes.

After meeting the separation requirements, the features of
different groups were input into the RF, SVM, MLC, MaDC, and
MDC models, and the accuracy of the classification results was
evaluated using the verification set. In addition, sa and nsa area data
classified using various methods were counted. A flowchart of the
classification process is shown in Figure 2.

2.4 Accuracy validation

A confusion matrix was used to evaluate the performance of
the classification models; this matrix displays the relationships
between the actual classes and the classes predicted by the model.
Various metrics were then calculated from the confusion matrix,

including the overall accuracy (OA), producer accuracy, and user
accuracy. The kappa coefficient is a statistical measure used to
assess the level of agreement between groups and classifications; a
kappa value closer to one indicates high consistency and
accuracy, whereas a value closer to zero indicates low accuracy
and poor agreement. The kappa coefficient was calculated based
on Formula 3:

Kappa � N∑n
i�1mi,i −∑n

i�1 GiCi( )
N2 − ∑n

i�1 GiCi( ) (3)

where n represents the total number of land-cover classes;N denotes
the total number of pixels in the dataset;mi,i refers to the number of
pixels in the i-th row and i-th column of the confusion matrix,
indicating the number of correctly classified pixels for class i; Gi is
the total number of predicted samples in the classification results for
class i; and Ci is the total number of actual samples in the ground
truth for class i.

3 Results

3.1 Spectral characteristics of the data

The original spectral profiles of different land-cover classes,
including S. alterniflora, mangrove intertidal zones, water bodies,
and mud, are shown in Figure 3. S. alterniflora showed minimal
distinction from water bodies in the visible bands, whereas
significant differences (>500 nm) were evident in the red-edge,
near-infrared, B9, B11, and B2 bands. The reflectance values of S.
alterniflora and intertidal zones were comparable in the visible
bands, showing no significant differences in the B5 and
B12 bands, whereas the differences in all other bands
were >800 nm. Spectral differences between S. alterniflora and
mangroves were similar to those between S. alterniflora and
wetlands, primarily occurring in the B6–B9 and B11 bands. In
summary, the bands that differentiate S. alterniflora from the
other land-cover types primarily fell within the non-visible
bands. Figure 4 shows that the trend of the sa dataset aligned
with the spectral curves, whereas the nsa dataset showed minimal
variation with increasing wavelength. The spectral bands
exhibiting differences between sa and nsa datasets were
B6–B9 and B11, which is similar to the spectral differences
between S. alterniflora and mangroves. Regarding the SIs, the
mean value for the nsa dataset ranged from 0.01 to 0.10, whereas
that for the sa dataset ranged from 0.21 to 0.50 (Figure 5).
Significant SI differences were observed between the two
datasets, which is beneficial for classification.

3.2 Dataset separability

The differences in spectral bands among datasets yielded JM
distance values of 1.931 and 1.900 for training and validation
subsets, respectively, indicating good separability (Table 2). The
separability values were lowest for the SI datasets, at 1.897 and
1.893 for training and validation sets, respectively, whereas the
GLCM datasets exhibited exceptionally high separability, with
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both subsets exhibiting JM distances of 2.000, making them well-
suited for classification tasks. As for the different feature
combinations, combining spectral bands with the other two
feature categories significantly enhanced separability, with
Group 1 training and validation sets showing separation
values of 1.997 and 1.998, respectively, and Group 2 achieving
values of 2.000 for both subsets. Thus, a combination of different
features is beneficial for enhancing the classification distance and
facilitating the classification process. It should be noted that the
combination of features in Group 3 could not be calculated using
the JM distance because of substantial differences in the
numerical range.

3.3 Classification accuracy

The classification results of the different algorithm–feature
combinations are shown in Supplementary Figures S1–S30. The
mean kappa coefficients for the five classification methods (RF,
SVM, MLC, MDC, and MaDC) were 0.87, 0.83, 0.88, 0.60, and 0.82,
respectively (Figure 6). The standard deviation of the RF
classification method was 0.021. As the number of features
increased, the kappa coefficient and OA of RF increased by
0.05% and 2.52%, respectively indicating relatively stable
performance across different features, with an OA greater than
90% (Figure 7b). The MLC method achieved the best performance

FIGURE 3
Spectral reflectance curves of different land-cover types in the study area.

FIGURE 4
Differences in spectral bands between training and validation datasets.
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with spectral features, achieving a kappa coefficient of 0.9061 and
OA of 95.32%, but showed the worst performance when combined
with SIs, with a kappa coefficient of 0.82 and OA of 91.01%
(Figure 7a). Other features also performed well in MLC
classification. For the feature combinations, classification
performance improved slightly when more features were
included. In SVM classification, the groups that included GLCM
features exhibited better classification performance, with an OA of
93.53% (Figure 7c). The MDC classification method showed the
poorest overall performance, with kappa coefficients and OA values
less than 0.80% and 90% for all feature classifications, respectively
(Figure 7d). MDC classification using GLCM features showed the
worst combined performance, with a kappa coefficient of only 0.13,
whereas the best performing feature was SIs, with a kappa coefficient
of 0.77. Similar to SVM, the MaDC method achieved high
classification accuracy for groups that included GLCM features,
with OA values for GLCM and Group 3 features of 93.53% and
93.88%, respectively (Figure 7e).

3.4 Differences in the extracted area of S.
alterniflora

The average area of S. alterniflora extracted by the RF, SVM,
MLC, and MaDC methods were 75.66, 76.68, 77.65, and 82.73 ha,
respectively (Table 3). After removing the outliers from GLCM

features, the average area extracted by the MDC method was
81.64 ha. The area of S. alterniflora on Donghai Island extracted
through visual interpretation was 68.69 ha. RF exhibited relatively
small fluctuations in the extracted area with different feature
combinations, showing a maximum difference of 2.43 ha.
Although the area extracted by MLC combined with band and
Group 3 features was closest to that obtained from visual
interpretation, MLC exhibited relatively large fluctuations with
different feature combinations, showing a maximum difference
of 12.63 ha.

4 Discussion

4.1 Spectral and texture differentiation of S.
alterniflora

As well as occupying coastal zones, S. alterniflora commonly
coexists with salt marsh plants or mangroves. Therefore, image
extraction using only spectral or phenological features alone often
yields suboptimal results. Here, we combined spectral and phenological
features to enhance identification accuracy and obtain more reliable
target samples. The key spectral bands differentiating S. alterniflora
from the other three land-cover types were found in the non-visible
bands. Green vegetation exhibits rapid changes in the red-edge band,
with healthy plants displaying the red-edge phenomenon (Horler et al.,
1983). July is a rapid growth period characterized by high chlorophyll
contents that may even exceed those of mangroves. This resulted in a
red-shift phenomenon in S. alterniflora, facilitating its differentiation
frommangroves in terms of NDVI and red-edge NDVI values. During
low tide, some moisture remains in intertidal zones, which results in a
similar overall spectral curve to water bodies, with spectral differences
predominantly limited to the short-wave infrared range. S. alterniflora
vegetation exhibits strong reflectance in the infrared band, whereas tidal
flats and water bodies demonstrate higher absorption rates, which helps
distinguish between tidal flats and water bodies.

In the sample dataset, the spectral bands of sa and nsa datasets
differed primarily in the near-infrared and shortwave-infrared
bands, which is consistent with the spectral differences between
terrestrial objects. The vegetation index features all utilize
calculations based on the near-infrared band, and differences in
the spectral indices are already present; conversely, differences in the
texture features derived from the GLCM increased as the
dimensionality increased. The differences among the three types
of features indicated that a greater difference in the mean vector
values during JM distance calculation led to higher sample
separability, ensuring that the samples met the classification
requirements. Thus, increasing the number of classification
features used in supervised classification can improve
classification accuracy to a certain extent, except for unsuitable
classification methods.

4.2 Optimal classification methods for S.
alterniflora extraction

Among the five supervised classification methods, RF
demonstrated good adaptability to high-dimensional data.

FIGURE 5
Differences in spectral indices between training and
validation datasets.

TABLE 2 Jeffries–Matusita distances for different feature combinations.

Data set GLCM Group 2 Group 1 Bands SIs

Training set 2.000 2.000 1.997 1.931 1.897

Validation set 2.000 2.000 1.998 1.900 1.893
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FIGURE 6
Kappa coefficients of different classification algorithm–feature combinations.

FIGURE 7
Overall accuracy, producer accuracy, and user accuracy for different features and classification methods: (a)maximum likelihood classification, (b)
random forest, (c) support vector machine, (d) minimum distance classification, and (e) Mahalanobis distance classification.
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Typically, as the feature dimensions increase, RF exhibits higher
accuracy than other methods (Ye et al., 2013). For example, Yan
et al. (2021) used an object-based RF algorithm to quantify the
expansion and decline of S. alterniflora in the Dafeng River Elk
Protection Area from 1993 to 2020, and achieved an OA of greater
than 90%. Moreover, Tian et al. (2020) employed RF to calculate the
area and expansion rate of S. alterniflora in the Zhangjiang Estuary
from 2016 to 2018, and achieved a kappa coefficient greater than
0.89. In our study, RF classification also achieved kappa coefficients
greater than 0.84 and OAs greater than 92%, showing stable results
across all six groups of features.

The MLC method requires land-cover features to exhibit
differences and conform to a certain probability distribution. Zhou
et al. (2017) combined Spot six multispectral imagery and UAV data
using MLC and NDVI to estimate the coverage of S. alterniflora in
Sansha Bay, and achieved an RMSE of 0.117, indicating good
accuracy. Hladik et al. (2013) used multisensor data, DEM, MLC,
and decision tree methods to extract different ecological types of S.
alterniflora in and around the Duplin River, achieving an OA of 90%
and a kappa coefficient of 0.88. Similarly, in this study, the kappa
coefficients for MLC classification ranged from 0.82 to 0.91, with OAs
exceeding 91%, indicating good classification performance. The band
values of the samples varied with the land-cover type, resembling a
probability distribution, whereas the SIs and GLCM showed no clear
probability distribution, leading to lower classification accuracy.

Compared with machine learning and statistical models,
machine learning achieves the best accuracy by iteratively
calculating classified data; while the classification of statistical
models is based on distribution assumptions, and the rationality
of the assumptions affects the accuracy of classification. In
reasonable samples, RF and SVM achieve relatively high accuracy
through self-iterative learning; among the three statistical models,
since the methods and assumptions have different requirements,
MLC and MaDC show better classification effects through
covariance, while MDC only calculates the distance between
category centers, and the possibility of misclassification increases
as the sample points become relatively close. The five methods
employed in this study showed variable adaptability to the six
groups of features, resulting in significant differences in
accuracy. At the methodological level, when the data
dimensionality was low, RF and MLC demonstrated higher
classification accuracy. As the data dimensionality increased, RF

exhibited the best adaptability to high-dimensional data and
achieved better classification results.

4.3 Implications for S. alterniflora
management

According to previous studies, S. alterniflora was introduced to the
eastern coastal areas of Zhanjiang in 2006 (Xin et al., 2018) but is
currently distributed in multiple areas, including Gaoqiao Town in
Lianjiang City, Caotan Town in Suixi County, Nansan Island in Potou
District, the coastal areas of Leizhou City, Jinhe Island in Xuwen
County, and Donghai Island. The area of S. alterniflora along the
eastern coastline was 79.04 ha in 2016, which rapidly increased to
154.42 ha in 2018, with the area onDonghai Island reaching 65.34 ha in
2018 (Huang et al., 2021). According to our results, compared to
the extent of S. alterniflora obtained by visual interpretation
(68.69 ha), the area of S. alterniflora on Donghai Island
increased by 3.35 ha over a 5-year period, indicating a growth
rate of 5.13%. The S. alterniflora distribution in Zhanjiang Bay is
primarily divided into an intertidal zone south of Donghai Island
and a northern intertidal zone of Nansan Island. Influenced by
factors such as tides, shorebirds, and typhoons, seeds or rhizomes
can spread to suitable intertidal zones (Li et al., 2023; Zhang et al.,
2023). Because of its broad tolerance to flooding and salinity (Liu
et al., 2023), S. alterniflora initially occupies a favorable habitat in
light sandy areas, then continuously reproduces and expands its
population to compete for the ecological niches of other species,
thus completing the invasion pattern of introduction–population
establishment–reproductive stagnation–expansion. Therefore, we
speculate that the relatively sparse mangroves and large area of
exposed intertidal zone in Beishan Port, combined with the
aforementioned conditions, enabled the expansion of S.
alterniflora to the maximum extent in the entire western
Guangdong region.

Mangroves typically comprise trees or shrubs that grow
relatively slowly during their expansion into light sandy areas,
with the gaps often occupied by S. alterniflora (Liu et al., 2023).
This makes it difficult for mangrove plants to establish population
dominance, leading to a reduction in growth space. Zhanjiang had
the largest mangrove protection area and is greatly affected by S.
alterniflora invasion. To protect the ecological integrity of the

TABLE 3 Total area of S. alterniflora and non-S. alterniflora extracted by the different algorithm–feature combinations.

Feature Non-S. alterniflora area (ha) S. alterniflora area (ha)

RF SVM MLC MDC MaDC RF SVM MLC MDC MaDC

Bands 239.28 239.64 242.34 233.07 230.15 75.57 75.21 72.51 81.78 84.70

SIs 237.66 231.74 236.92 233.76 229.33 77.19 83.11 77.93 81.09 85.52

GLCM 239.18 240.21 229.71 51.55 237.93 75.67 74.64 85.14 263.30 76.92

Group 1 239.42 237.57 239.76 233.07 230.35 75.43 77.28 75.09 81.78 84.50

Group 2 240.09 240.21 233.39 233.07 232.22 74.76 74.64 81.46 81.78 82.63

Group 3 239.54 239.63 241.08 233.07 232.73 75.31 75.22 73.77 81.78 82.12

Average 239.20 238.17 237.20 202.93 232.12 75.66 76.68 77.65 111.92 82.73
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mangrove ecosystem, the government has implemented measures
such as cutting, filling, and plastic sheeting to curb the growth of S.
alterniflora, with some success (Leizhou Municipal Government,
2021; Zhanjiang Daily Network Dissemination Cente, 2023; Forest
Administration of Guangdong Province, 2024). However, localized
control efforts only achieve short-term effects against the widespread
distribution of S. alterniflora. Over time, S. alterniflora may become
reestablished in these regions or even migrate from other regions. In
terms of management, simultaneous clearing of the entire region is
required to eliminate as many patches as possible, along with
enhanced monitoring across the city to prevent overlooked patches
from forming populations. Additionally, the introduction of native
plants into cleared intertidal zones should be employed to restrict
potential S. alterniflora habitats.

4.4 Limitation of the classification methods

The uncertainty of the data, the lack of actual survey data that
matches the date of remote sensing images, and the certain deviations
in classification due to this. In terms of the model, the classification
precision of some models is too low to meet the classification
requirements, and the models lack broader validation. In terms of
parameters, the automatic calculation parameters of ENVI are used,
and the correlation between parameter adjustment and classification
accuracy has not been studied in detail.

5 Conclusion

In this study, we explored the accuracy of S. alterniflora
classification by integrating five common supervised classification
methods with six groups of features. This approach encompassed
both common machine learning and traditional classification
methods, as well as the main classification features, providing an
important reference for S. alterniflora monitoring in mangrove
areas. The main findings were as follows. 1) RF showed better
classification performance across different features, particularly for
high-dimensional data, demonstrating high classification stability
and applicability to various classification scenarios. 2) For spectral
band data, the MLC classification method yielded the best results. 3)
During classification, acquiring spectral indices and textural features
based on spectral band information can enhance the classification
accuracy. 4) S. alterniflora on Donghai Island requires systematic
management, and the possibility of re-invasion after cleaning should
be reduced by cleaning, monitoring, and introducing native plants.
These findings have important implications for the monitoring and
management of invasive species. Some limitations regarding the input
data, modeling and parameters can be further investigated.
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