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Climate change and increasing weather and seasonal dynamics challenge
agricultural landscapes. To cope with this challenge information on crop
performance is key. This study presents a novel framework for bridging
landscape-scale vegetation dynamics with field-level crop phenology using
Sentinel-1 radar time series. Unlike previous approaches that focus on local
algorithm optimisation or SAR feature selection, this work integrates two scales:
(1) landscape patterns derived from annual distributions of time series metrics
(TSMs) and (2) field-level phenology, both linked to growing degree days (GDD).
TSMs were generated through breakpoint analyses over different smoothing
intensities for Sentinel-1 polarisation (PolSAR) and interferometric coherence
(InSAR) features, capturing crop, orbit and sensor-specific responses. The
framework quantifies uncertainties inherent in both remote sensing and
ground observations, and evaluates trackable progress (phenological stage
detectability) and tracking range (GDD variance around stages) to assess
accuracy under variable acquisition geometries, weather and smoothing
parameters. Applied to the DEMMIN site (Germany), the analysis revealed
consistent TSM-GDD relationships for wheat, rape, and sugar beet, with
descriptors such as soil fertility and water availability explaining spatial patterns
(R2 ≈ 0.8). Key novelties include the identification of low tracking ranges in
drought years, the demonstration of the impact of orbit-specific incidence
angles on monitoring fidelity, and the highlighting of Sentinel-1’s ability to
resolve phenological variance across fragmented landscapes. By harmonising
multi-scale SAR time series with agro-meteorological data, this approach
advances transferable methods for operational crop monitoring, supporting
precision agriculture and regional yield assessment beyond localised models.

KEYWORDS

Sentinel-1, phenology, InSAR coherence, growing degree days, DEMMIN

1 Introduction

Crop phenology is an essential variable, when assessing plant health and productivity in
the context of climate change and adaptation (Sakamoto et al., 2013; Whitcraft et al., 2019).
Earth observation (EO), in particular optical data has demonstrated its potential to provide
extensive information on the phenological progress of crop (Htitiou et al., 2024) s. In the last
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decade Synthetic Aperture Radar (SAR) emerged as an additional
and reliable data source, due to its cloud penetrating capabilities
(Canisius et al., 2018; Mascolo et al., 2024; Steele-Dunne et al., 2017).
This development has been accelerated by the launch of ESA’s
Sentinel-1 (S1). Its twin constellation generated SAR data of high
temporal resolution, which can be used to assess crop development
every 6 days over Europe (ESA, 2013). The potential of such data has
been explored in several studies (e.g., Harfenmeister et al., 2021a;
Khabbazan et al., 2019; Schlund and Erasmi, 2020).

However, in situ data of varying quality in terms of
spatiotemporal coverage and accuracy challenge these studies.
Some conducted their own field campaigns (Canisius et al.,
2018; Harfenmeister et al., 2021b), which are time-consuming
and labour-intensive. Other studies employed data obtained
from national phenological monitoring frameworks
(d’Andrimont et al., 2020; Lobert et al., 2023). Most of them
are point data that depending on the sampling design do not
necessarily reflect the heterogeneity within a field. For instance,
phenological data provided by the German Weather Service
(DWD) which has been frequently used in previous studies
(Htitiou et al., 2024; Lobert et al., 2023; Schlund and Erasmi,
2020), do not follow a strict observation scheme, but employ
volunteers that follow guidelines. In case of the DWD
observation it is recommended to visit the fields two to three
times per week and a phenological stage is only considered
reportable if 50% of the field arrived at that stage. Moreover,
the reported observations are not linked to a specific field, but refer
to a two-to-five-kilometre radius around the assigned coordinates
(Kaspar et al., 2015). These are all factors that are not clearly
represented by calibration or validation approaches that are solely
based on the difference between estimated phenology and observed
phenology (Khabbazan et al., 2019; Löw et al., 2021; Schlund and
Erasmi, 2020). It also has to be noted that the spatial density of
DWD in situ observations conducted by volunteers has been
decreasing over time.

In addition, SAR time series contain multiple uncertainties,
which are introduced by environmental, system-inherent or user-
defined factors. Varying environmental conditions are e.g.,
expressed by precipitation pattern or terrain parameters (Small,
2011). System-inherent aspects include acquisition geometry and
speckle (Arias et al., 2022; Woodhouse, 2006), while user-defined
settings refer to e.g., the length of observation period or smoothing
intensity (Löw et al., 2024). All the above-mentioned factors warrant
the consideration of alternative time series interpretations.
Moreover, these issues exacerbate the comparability of field-based
studies, the transferability and generalisation of the approaches and
thus impede the knowledge transfer to praxis-oriented applications
(Povey and Grainger, 2015).

Therefore, this study proposes a concept to generate information
on phenological development at the field level with intentionally
reduced dependency on in situ observations, while considering the
previously mentioned uncertainties. Such a comprehensive
approach to S1-based time series analysis is not represented in
the current literature (Mandal et al., 2020; Mascolo et al., 2024;
Schlund, 2025; Wang et al., 2024). For generating insights into crop
development of varying degree of detail, the core of the concept is an
overlay analysis of time windows at landscape and field level.
Methodologically, the study extends Löw et al. (2024), which

investigated the occurrences of time series metrics (TSM) of
S1 time series in relation to acquisition geometry and crop
specific phenological developments across multiple years.
Thereby, relevant time windows of phenological change at
landscape level were identified. Also, the resulting favourable
S1 feature and orbit combinations for tracking crop phenology
are utilized in the study at hand. The question of inherent
uncertainties is addressed by establishing indicators that describe
the agreement between TSM occurrences at field and landscape level
as well as the trackable progress and tacking range covered by TSM
for specific stages of DWD in situ observations. Furthermore,
multiple orbits and S1 features (backscatter, coherence,
decomposition) were integrated to produce insights into
dominant tendencies within the overlay of landscape and field
patterns, thus enabling the assessment whether a field is generally
ahead or behind the landscape level development. Hereby, the
concept adapts the baseline of growing degree days (GDD) in
Löw et al. (2024) and further develops the ideas of describing
phenological progress in relative terms, such as crop maturity
(McNairn et al., 2018) and characterizing field specific
developments in reference to a wider spatial context (Nasrallah
et al., 2019). In a plausibility analysis that can also serve as a
demonstrator of the concept’s applicability, the spatial
distribution of the indicators is investigated in relation to
environmental factors via correlation and variable importance
analysis. These factors include terrain, weather and vegetation
dynamics as well as soil properties. This concept can help
improve on-farm management tools and landscape wide
assessments of agricultural seasons by describing and monitoring
phenological progress without the need for extensive in situ data
collection.

2 Materials and methods

2.1 Study area and in situ data

The region of interest is situated in north-eastern Germany
within the federal state of Mecklenburg West Pomerania (Figure 1).
Characterized by an average annual precipitation of 550 mm and a
mean air temperature of 8.3 °C, its climate is classified as temperate
Middle-European. By 2001 the German Aerospace Center (DLR)
established the Durable Environmental Multidisciplinary
Monitoring Net Information Network (DEMMIN), which serves
as a calibration and validation site for Earth observation missions
(Spengler et al., 2018). DEMMIN is also part of the Joint Experiment
for Crop Assessment and Monitoring (JECAM) network (Hosseini
et al., 2021).

For the growing seasons from 2017 to 2021, information on
parcel delineation and crop types in the DEMMIN area was
extracted from the German integrated administration and control
system (InVeKoS) of Mecklenburg West Pomerania. Winter wheat,
canola and sugar beet are major crop types in DEMMIN. They
belong to the seven area dominating crop types in Germany and
were hence selected for this study. Only fields of significant size
(>3 ha) were chosen to minimize pixel contamination from
neighbouring land use or cover as previously described (Lobert
et al., 2023; Löw et al., 2024).
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Phenological in situ observations were obtained from the
voluntary-based observer framework of the DWD (Kaspar et al.,
2015). Any phenological developments recorded by DWD were
translated to the BBCH (Biologische Bundesanstalt für Land-und
Forstwirtschaft, Bundessortenamt und CHemische Industrie) scale,
i.e., a classification scheme for measuring phenological development
(Meier, 2001) to facilitate comparison with other studies. These
observations encompass emergence, leaf development and canopy
closure of sugar beet, stem elongation (BBCH 30), heading (BBCH
50), yellow ripening (BBCH 87) and harvest (BBCH 99) for winter
wheat as well as inflorescence (BBCH 50), start (BBCH 60) and end
of flowering (BBCH 69) and harvest (BBCH 99) of canola. This
dataset was used to analyse approximately 500 field of winter wheat,
300 fields of canola and 150 fields of sugar beet per year. Due to the
area’s poor coverage by this monitoring setup in terms of proximity
and crop variety, the average occurrence date by federal state served
as source of validation.

2.2 Growing degree data

Growing degrees are characterized as heat units and serve as a
widely utilized tool for elucidating the progression of biological
processes (McMaster and Wilhelm, 1997). Growing degree days
(GDD) represent the cumulative sum of these units employed to
model crop growth. They were also used in remote-sensing based
studies to translate crop phenology into crop maturity for
integration into crop yield models (McNairn et al., 2018).
However, classical GDD approaches rely on a minimum base
temperature only and neglect an upper temperature limit for
plant growth. Especially conditions of extreme temperatures and
variability can lead to errors when using those GDD approaches for
phenological assessments (Ritchie and Nesmith, 2015; Stinner et al.,
1974; Zhou and Wang, 2018).

Given our observation period, which includes years marked by
extreme drought in Germany (Harfenmeister et al., 2021b; Schlund
and Erasmi, 2020) the method proposed by Zhou and Wang (2018)
was selected for meteorological assessments of GDD. This method
addresses the shortcoming by the calculation of hourly temperature
time (HTT) series with four key parameters: Th (hourly
measurement of air temperature), Tu (upper temperature limit),
Topt (optimal temperature for maximum growth), and Tb (base
temperature) (Zhou and Wang, 2018). By implementing an optimal
threshold and an upper temperature limit to HTT calculation it can
reflect heat and other temperature related stress, because less or no
additional HTT are accumulated (see Equation 1).

HTT �

0, Th <Tb

Th − Tb

Topt − Tb
[ ] Tu − Th

Tu − Topt
[ ] Tu−Topt

Topt−Tb | Tb ≤Th ≤Tu

0, Tu <Th

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

Data on air temperature is provided by DWD for the entire
observation period (2017–2021) as an interpolated raster derived
from the sensor network of DEMMIN (Haßelbusch and Lucas-
Mofat, 2021). The native spatial resolution of the dataset is 250 m ×
250 m per pixel, its temporal resolution is one hour and it was
interpolated by employing ordinary kriging. Further details can be

found in this DWD-report (Haßelbusch and Lucas-Mofat, 2021).
Thus, the GDD are then calculated as cumulative sum of daily mean
HTT based on this dataset. These calculations were conducted on an
open data cube platform (ODC) (Killough, 2018) using the
programming language Python. Table 1 specifies the thresholds
of air temperature by crop type according to named references.

We used values derived from literature, because no data on
strains and phenotypes for the investigated crop was available for
that time period and area.

2.3 Sentinel-1 (S1) time series

The time series of S1 data encompasses relative orbits 146, 95,
and 168, spanning the period from 2017 to 2021, amounting to
approximately 1.050 data sets. S1 data sets were obtained in
Interferometric Wide Swath mode and at VV/VH polarization.
Table 2 lists the pass direction as well as the range of incidence
angles for each relative orbit.

The calculation of interferometric and polarimetric features
necessitated the use of Single Look Complex (SLC) data (ESA,
2013). The data pre-processing involved a combined approach
utilizing pyroSAR (Truckenbrodt et al., 2019), a Python-based
API, and SNAP (Version 9) (ESA, 2025). This processing
framework was seamlessly integrated into an ODC environment,
which served as the data management platform. This platform runs
on a cluster located at the Leibniz-DataCentre (LRZ) and is
equipped with sufficient computation power to process at tile of
SLC data in a few minutes (Friedrich et al., 2024). The polarimetric
feature processing sequence comprised terrain flattening (Small,
2011), multi-looking with one look in azimuth and four looks in
range, speckle filtering through a 5 pixel x 5 pixel boxcar filter, and
Range-Doppler Terrain correction (Richards, 2009), yielding a
spatial resolution of 20 m × 20 m and gamma nought (GN)
backscatter. Given the dB scaling of backscatter, the cross-pol
ratio (CR) was computed as VV-VH. Alpha and Entropy were
derived from a C-2 Matrix (Cloude and Pottier, 1996). This set of
S1 features consisting of VV/VH backscatter, CR, Alpha and
Entropy as well as VV/VH coherence, has been proven to reflect
the changes in plant physiognomy along the crop life cycle by
various studies. No further decomposition metrics were included,
because they possess less explanatory power in the dual-pol data of
S1 when compared to quad-pol data from e.g., Radarsat.
(Harfenmeister et al., 2021b; Khabbazan et al., 2019; Löw et al.,
2021; Meroni et al., 2021; Schlund and Erasmi, 2020).

For interferometric (InSAR) coherence, the parameters for
multi-looking and terrain correction remained consistent.
Coherence calculation involved removing the flat earth and
topographical phase using a moving window of three pixels in
azimuth and eleven pixels in range, along with a six-day
temporal baseline and consecutive reference images (Zhang et al.,
2018). SRTM data (1 Arc-second) served as the digital elevation
model in all steps requiring it. This set of S1 features, comprising
VV/VH backscatter, CR, Alpha, and Entropy, as well as VV/VH
coherence, demonstrated its ability (Harfenmeister et al., 2021a;
Khabbazan et al., 2019; Löw et al., 2024; Schlund and Erasmi, 2020)
to effectively capture changes in plant physiognomy related to
phenological developments in various studies.
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2.4 Auxiliary data

Since this study also investigated potential explanations of the
spatiotemporal distribution of average agreement (AVA), dominance
of tendencies (DoT) and outlier occurrences, auxiliary data was
acquired and processed. The collected data represents various
environmental factors that may explain the occurrence of these
metrics. In regard to soil properties SoilGrid (Poggio et al., 2021)
data on soil organic content (SOC), organic carbon stock (OCS) and
the dominant soil type was downloaded for the area. SOC and OCS
are used as proxy for soil fertility in this study. It is assumed that plants
display a different physiognomy depending on the fertility of the soil.
Because SAR based phenology is sensitive to changes in plant
physiognomy SOC and OCS have an indirect impact on the
interaction of signal and plant physiognomy. Furthermore, SOC
and OCS are related to soil texture and therefore surface
roughness, which is also an influencing factor in early phenological
stages, when there is still soil signal present (Santos et al., 2023). In
addition, daily sums of precipitation and mean air temperature were
calculated from the same interpolated dataset that was used to
calculate GDD (Haßelbusch and Lucas-Mofat, 2021) to support
the discussion of the results in terms of local water availability.
Moreover, terrain features such as aspect, slope as well as the
topographical wetness index (TWI) (Sørensen et al., 2006) were
derived from an SRTM30 digital elevation model. These features
plus the elevation were used to explain distributions by the terrain
itself. Lastly, pixel-based, mean standard deviation of yearly time
series of enhanced vegetation Index (EVI) and normalized difference
vegetation index (NDVI) were used as explanatory variables
representing vegetation dynamics and field heterogeneity (Gessner
et al., 2023). Both Indices were calculated using Sentinel-2 L2A data
that were cloud-masked by the scene classification layer (SCL).

2.5 Conceptual workflow of the study

The idea behind the following approach is a comparison of
various time windows. For example: In 2020, at landscape level, the
TSM distribution of VH intensity of canola level displayed many

relevant TSM occurrences around day of year (DOY) 115. By
analysing single fields it can now be ascertained which canola
fields show a similar behaviour to that pattern observed at the
landscape scale. Due to the GDD baseline and distances between
associated GDD values the similarity or the lack of it can be
quantified. Similarly, these findings were linked to the in situ
observations made by DWD. This process is applied to each
S1 feature, orbit and for every year that is covered by the
catalogue of Löw et al. (2024).

2.5.1 Landscape pattern of vegetation
development and derivation of time windows

The approach by Löw et al. (2024) established time windows of
likely phenological changes by analysing the occurrence of time
series metrics (TSM), namely break points (Verbesselt et al., 2012;
2010) and extrema, across the investigative dimensions of three
relative orbits, 5 years, and seven S1 features. The approach focused
mainly on winter wheat, canola, sugar beet, which are also
investigated by the study at hand. In response to the varying
availability of in situ data a baseline of GDD was established for
validation. As a result, crop specific sets of S1 features and relative
orbits were identified, which provided the most accurate
information on a range of phenological stadia at landscape level.
Because break points outperformed extrema (Löw et al. (2024), the
catalogue of this study encompasses only TSM occurrences of break
points. The crop specific feature sets are listed in Table 3.

At first, a thresholding approach was used to identify relevant
time windows within the phenological time series. These
distributions are represented by TSM occurrence plots,
characterised by bin sizes of 6 days and 50 GDD. Hence, a
threshold of 6 days, akin to the S1 re-visitation rate, was applied
to segment individual time windows associated to relevant TSM
occurrences and their respective GDD distribution (see Figure 2: L1
&L2). To define these time windows in which phenological changes
occur within a landscape, a k-means clustering algorithm from SciPy
(Virtanen et al., 2020) was employed. Thereby, the temporal
distribution of TSM occurrences was clustered using the selected
S1 feature set (Table 3). The number of clusters (k_or_guess)
corresponds to the number of time windows identified by the
threshold approach, other parameters were left at their default
value: iterations = 20, distortion threshold = 1e-05. Each time
window is thus characterised by two parameters, its focal point
(cluster mean) and its range (cluster radius) delineating the temporal
extent of the observed phenological pattern (see Figure 2: L3 & L4).
While both, thresholding and k-means yield comparable results,
only k-means provides information on the distribution and the
centre within a time window. Therefore, its integration was deemed
necessary to enhance the characterisation of phenological patterns.

TABLE 1 Specifications of thresholds of air temperature for calculating GDD.

Crop type Tb Topt TU References

wheat 0 °C 21 °C 31 °C Jacott and Boden (2020), McMaster and Smika (1988)

canola 4 °C 25 °C 34 °C Derakhshan et al. (2018)

sugar beet 7 °C 24 °C 32 °C Radke and Bauer (1969), Terry (1968)

Note: Tb = base temperature, Topt = optimal temperature for maximum growth, TU = upper temperature limit.

TABLE 2 Summary containing flight directions and range of incidence
angles of each relative orbit.

Orbit ID Pass direction Min. angle [°] Max. angle [°]

146 ascending 30 41

168 descending 30 41

95 descending 41 45
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2.5.2 Assessing field development within the
landscape pattern

At the field level, the analysis starts with a catalogue of tracked
phenological developments (Table 3), their corresponding GDD
values and the GDD-based distances to phenological in situ
observations. The threshold-based approach described earlier is
applied (see Figure 2: F1 & F2).

To evaluate the similarity between time windows at field and
landscape level, a multi-step process was implemented. Firstly, a
Boolean query determines whether an overlay exits (C1),
i.e., whether time windows at field level (F2) intersect with those
at the landscape level (L2&L4). This comparison generates an
inventory of common (=overlaying) and unique time windows
(C2, C3). The ‘unique’ category includes two scenarios: (i) no
TSM occurrence was detected at the field level and (ii) the TSM
occurrence deviates temporarily by occurring earlier or later than at
landscape level For the common time windows (see Figure 2: C4.1),

the focal point at field level calculated via the mean value of all values
occurring within the corresponding time window at landscape level
(F3). In the case of unique time windows at field level, only the
distance between its border and the closest landscape time window
was computed (C4.2).

2.6 Indicators of landscape-field relation

All indicators can be calculated for each year, relative orbit,
S1 feature and crop type. Moreover, field specific uncertainties can
be computed for each BBCH stage. Depending on the required level
of detail, these indicators can be aggregated accordingly. For this
study, the highest level of detail is year, crop and S1 feature specific,
as the impact of relative orbits was already extensively analysed by
Löw et al. (2024). Because the study at hand and Löw et al. (2024)
share the same database a repetition of analyses identifying suitable

TABLE 3 Favourable orbits and S1 features per crop type for tracking targeted stages by break points according to the findings of Löw et al. (2024).

Crop type S1 feature Relative orbits Tracked BBCH stadia

Winter wheat Coherence VV & VH
Intensity VV & VH
Intensity CR

146, 95 30, 50, 87, 99

Canola Alpha & Entropy
Intensity VV & VH
Intensity CR

168, 95 50, 60,69, 99

Sugar beet Coherence VV & VH
Intensity VV
Intensity CR
Alpha & Entropy

146, 168 0, 10, 39

FIGURE 1
Map of InVekoS data 2020 for DEMMIN and selected crops: wheat, canola and sugar beet.
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combinations of relative orbits and S1 features was deemed
unnecessary.

2.6.1 Average agreement
Average agreement (AVA) quantifies the representativeness of

the landscape wide pattern and estimates the extent to which an
individual field is aligns with that pattern. Utilizing the comparison
of the TSM occurrences at field and landscape level, the average
agreement (AVA) was calculated for the most relevant S1 features
(Table 3). Hereby, the number of relevant, overlapping time
windows at field and landscape level is computed at each field
(nfield), which is, then divided by the total count of relevant time
windows (Nlandscape) and converted to percent (see Formula 2).

AVA � nfield
Nlandscape

x 100 (2)

A threshold of >70% was established to determine whether a
field displays good agreement. This threshold was deduced from
findings of Lobert et al. (2023), who showed, that the temporal
onset of phenological stages in winter wheat often follows a
Gaussian distribution. Hence, the threshold of 70% is derived
from a rounded version of the 68% percent of data points that
fall within one standard deviation. This indicator can be
calculated at various levels of detail. In this study, the most
detailed calculation was performed for each year and each
S1 feature across all favourable orbits enabling S1 feature

FIGURE 2
Top: Framework of disaggregating records at landscape level to field level and identifing common and unique time windows within the distributions
of time series metrics (TSM) and Growing Degree Days (GDD), in this case break points and extrema, showcasing eachs part of the analysis and their
allocation within process of disaggregating from landscape to field. Bottom: Exemplary, schematic depiction of derived time windows and their potential
focal points at field level without the comparison to landscape level windows.
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specific insights into the representativeness of the landscape
level pattern.

2.6.2 Field & BBCH specific uncertainties
Field specific uncertainties were described by the trackable

phenological progress and tracking range at field level. These
serves as indicators about the variance of the TSM occurrences at
field level and contributes to the quantifying uncertainties within
remote sensing-based monitoring frameworks (Atzberger, 2013;Wu
et al., 2023). The foundation of these uncertainty indicators is the
GDD progression (GDD progx) described in Formula 3.

GDDprogx � GDDx

avg.GDDobs
x 100 (3)

GDD progx towards an observation target (x) is defined as the
ratio between the corresponding GDD value of the observation
target (GDDx) and the mean GDD value at landscape level (avg.
GDDobs.) across the observation period. In the context of this study,
the target represents either focal points of time windows, the
respective GDD value of an in situ BBCH observation or a
difference between two GDD values (e.g., distance between focal
points at landscape and field level).

By applying this “normalisation” similar to the crop maturity
proposed by McNairn et al. (2018), a measure of vegetation
development towards a targeted BBCH stage can be provided or
the distance between two focal points at landscape and field level can
be quantified in relative terms. As indicated by the definition of x as
target, the GDD progression serves not only as foundation for field
specific uncertainties, but also plays a crucial role in identifying
outliers (see chapter 2.6.4).

Trackable progress and tracking range were analysed across the
investigative dimensions of year, S1 features, crop type and BBCH
stage. Field-specific time windows were examined within the range
of 80%–120% GDD progression towards the targeted BBCH stage
(e.g., BBCH 30 for winter wheat). These thresholds were established
to define proximity to the target BBCH stage. This approach allowed
for identifying, the closest minimum of the trackable progression for
each field, indicating the earliest point at which phenological
development could be observed for each field. Additionally, by
calculating the maximum trackable progression, the full range of
trackable progress was determined. Indicators of uncertainty were
then derived for each BBCH stage covered by the in situ data as well
as for each crop and S1 features across multiple orbits. These
uncertainty indicators can be transformed into quality masks,
when supplying information on phenological developments to
stake holders. The BBCH stage serves as a bridge between a
purely data driven approach and a praxis- oriented perspective.
To ascertain the general plausibility of these developments field-
based timelines of daily precipitation sums, average air temperature,
mean EVI and the corresponding TSM occurrence plots were
visually examined for coinciding trends and pattern.

2.6.3 Dominance of tendency
Dominance of tendency (DoT) quantifies the overlap of time

windows between the field and landscape. The GDD distance
between focal points at these two levels (see Figure 2: C5) was
used to assess, whether a field was phenologically ahead or behind

the broader landscape development. Additionally, it provided an
indication of the magnitude of this tendency. By subtracting the field
value from the landscape value negative offsets indicated a greater
accumulation of GDD at the field level, implying that the field was
ahead of the landscape-wide development–and vice versa. To
analyse these tendencies, the number of positive and negative
offsets was counted and the dominant count (ndom) for each field
across years (y) and/or S1 features (s1) was determined. This value
was then normalised by the total number of landscape vs. field
comparisons (Ncomp), enabling a spatial assessment of general
tendencies across the landscape. Analysts can hereby choose
whether orbit or S1 feature specific information or only general
behaviour is of interest. To demonstrate this flexibility, both the
average yearly DoT across all features and a yearly, S1 specific
indicator were computed. To further investigate the consistency of
these tendencies the indicator was calculated as a percentage of the
dominating (simple majority) tendency (see Formula 4). The results
were then categorised by a query of simple majority of the dominant
distances, defining three categories: ahead (dominant positive
distances), behind (dominant negative distances) and equal
(no dominance).

DoTy,s1 � ndomy,s1

Ncompy,s1

x 100 (4)

The yearly, S1-feature specific distributions of DoT were
analysed to assess how well the time windows at landscape level
represent the field specific TSM occurrences. Hereby, a potential
skewness of distribution within the landscape pattern could be
identified in relation to S1 feature and year. Depending on the
overall distribution of the predefined categories, the indicator can
also be used to identify fields that exhibit a predominant
phenological development ahead or behind the landscape
wide trend.

2.6.4 Outliers at field level
To identify outliers that deviated from both, the overall

landscape development and the BBCH stages recorded by in situ
data, a two-step process was implemented. Initially, the outliers at
field level were detected based on the distance between borders of
time windows at landscape level and unique time windows at field
level (see Figure 2: C5). This distance was then evaluated using a
GDD based threshold to determine whether a unique time window
truly qualified as an outlier. A time window was classified as an
outlier, if the distance between borders is greater than 15 GDD.
15 GDDwas identified as value that represents one to 2 days of GDD
accumulation in average growing conditions for each of the
investigated crop type. In a second step, these outliers were
cross-referenced with the in situ observation of BBCH stages
using GDD progression. After thresholding, additional filtering
was applied based on the GDD-based progress towards BBCH
stages. Only outliers with a progression between 25% and 70%
and exceeding 130% were considered. By counting the occurrences
of these outliers across the entire observation period as well as across
all crop types and S1 features, fields that are likely to diverge from
the landscape-wide phenological patterns were identified.
Aggregating this information across multiple years, crops, orbits
and S1 features allows for the detection of deviation hot spots. The
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identification of such hot spots can provide insight into either
uncommon management practices (Stobbelaar et al., 2004) or
increased susceptibility to stressors (Ajadi et al., 2020; Singh
et al., 2007) associated with adverse geographic conditions.

2.7 Checking the plausibility of an indicator’s
spatial distribution

Subsequently, a conceptual approach was developed that
assesses the spatial distribution of the above listed indicators.
This assessment addresses the explainability of said indicators via
the geographical settings of the study area. In an exemplary analysis,
the plausibility of outliers at field level were investigated via
Spearman’s rank correlation coefficient and the variable
importance of a random forest (Breiman, 2001; Conrad et al.,
2017). It was hypothesized that deviations at the field level from
the landscape pattern depend on the field-specific environmental
conditions. Hereby, a variety of environmental descriptors were
included. An exemplary set of indicators is illustrated in Figure 3.
The full list and the corresponding abbreviations are listed in the
Supplementary Appendix (see Supplementary Table SA1).
Matching pairs for the correlation analysis and training the
random forest were extracted as mean values per field, except for
soil type, where the dominant class was derived by modus.

The internal model accuracy of the various random forests was
evaluated using root mean square error (RMSE, mean absolute error
(MAE) and R squared. These metrics were derived by the internal
accuracy assessment provided by the R package caret (Kuhn, 2008).

3 Results

3.1 Average agreement (AVA)

Figure 4 presents an example of field specific information on
winter wheat across the years 2017, 2018, 2020 and 2021, illustrating
the mean agreement across all relevant S1 features. The substantial
proportion of fields exhibiting an AVA below 40% in 2017 and
2021 reflects the findings of the yearly, S1 feature specific analysis
(see below). However, the majority of fields across all years were
allocated within the 50%–80% agreement range. Also, fields of
higher rates of agreement were detected in the south eastern,
south western and north eastern region across all depicted years.
Notably, fields exceeding 90% of AVA concentrated in 2020,
suggesting a greater homogeneity in crop development.
According to yearly, S1 feature specific statistics, winter wheat
exhibited comparatively low rates of agreement, particularly for
VV and VH intensity in the years of 2017 (40%) and 2021 (60%).
While canola displayed a similar gradient when comparing VV and
VH intensities with other S1 features, the yearly performance is
lowest in 2018 and 2019 Nevertheless, canola’s overall the agreement
rate is greater than winter wheat, but lower than sugar beet. In
contrast, sugar beet consistently achieved the highest agreement
rates, exceeding 85%, whereas canola and winter wheat mainly
ranged around 70%.

As shown in Equation 3, the information on AVA was initially
derived for each year and S1 feature. This provided spatially explicit
information on the extent to which each field aligns with the TSM
and GDD occurrences at landscape level.

FIGURE 3
Exemplary list of spatial indicators containing terrain (TWI, elevation above ellipsoid), vegetation (NDVI), soil (OCS, SOC, common soil type) and
weather (temperature, precipitation) features.
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FIGURE 4
Example of field specifc rate of average agreement in % covering fields of winter wheat in 2017, 2018, 2020 and 2021. Values close to 100% indicate a
strong agreement with the overall development at landscape level, whereas low values suggest either the absence of common time windows or an
increased number of deviations. Such information provides a spatial measure for the representativity of the landscape wide pattern.

FIGURE 5
Left: Minimum of trackable progress in GDD progression close (80%–120%) to BBCH 30 (stem elongation) for winter wheat by VV coherence in
2017. Lower values suggest an earlier detection. Right: Corresponding range of tracked GDD-based progress. Low values inidcate a comparatively
precise tracking result, whereas high numbers suggest that the tracked BBCH stage displayed a greater temporal variance. providing a quality mask for
tracking results.
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FIGURE 6
Exemplary range of trackable progress close (80%–120%) to BBCH 30 (stem elongation) for winter wheat by VV coherence for the years 2017, 2018,
2019 and 2021. Low values inidcate a comparatively precise tracking result, whereas high numbers suggest that the tracked BBCH stage displayed a
greater temporal variance.

FIGURE 7
Exemplary time lines of a field of winter wheat for each year (2017–2021), showcasing the occurrences of break points in VV coherence derived from
orbit 95 as well as the temporal signatures of EVI, their daily sum of precipitation and their daily mean air temperature.
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3.2 Field & BBCH specific uncertainties and
their plausibility

The trackable progress was calculated for each BBCH stage,
relevant S1 feature and year within the observation period. This
resulted in large quantities of vector data, exceeding the scope of this
paper for comprehensive presentation. Therefore, Figure 5 only
displays an exemplary data set derived fromVV coherence for wheat
fields in 2017.

The left panel of Figure 5 illustrates the minimum tracking
progress of GDD coinciding with the first relevant TSM occurrence
in the S1 signal. The large number of fields fall within the range of
85%–90%, which is congruent with the DoT findings, where most
winter wheat fields exhibit advanced development relative to the
time window at landscape level. However, a subset of fields falls
within the range of 110%–115%, indicating later development. The
right panel of Figure 5 displays the range of GDD-based progression
covered by TSM occurrences. In this example, the fewest fields were
observed within the range of 30%–34.5%.

By plotting the field and BBCH specific tracking range for the
same S1 feature across multiple years (see Figure 6), it became
evident that there is a notable variance in the distribution of values.
The years 2017 and 2021 depict a higher number of fields within
larger ranges (20%–35%) whereas 2018 and especially 2019 were
dominated by fields with lower ranges (0%–10%). Furthermore,
distinct spatial cluster of consistently high or low ranges could
be identified.

By inspecting an exemplary field specific timeline (see Figure 7),
a semi-regular pattern emerged. Relevant occurrences of break
points were tracked for the selected field around Julian Days 50,

100 to 125 and 175 to 225. Additionally, the distribution of TSM
occurrences appeared more compact in years with higher rainfall
intensities, which aligns with a larger number of fields exhibiting
wider tracking ranges in 2017 and 2021 (see Figure 6). Furthermore,
rainfall events did not regularly overlay with the occurrences of
break points. Besides, when comparing the EVI time series with the
occurrences of break points, the observed patterns are mostly
congruent with the overall trends depicted by the EVI time
series, despite some inconsistencies in the data availability.

3.3 Dominance of tendency (DoT)

At field level, detailed information about DoT and its spatial
distribution is displayed (see Figure 8). The distribution of time
windows appears skewed, which is in line with the findings observed
at the landscape scale, which are described in a subsequent
paragraph. Furthermore, information on the strength of the DoT
was illustrated. In 2017 (see Figure 8), for example, sugar beet
predominantly depicts fields of strong positive consistencies,
whereas in 2020 and 2021 a higher proportion of fields displayed
negative DoT, consistent with the yearly, S1-specific observations.
Similarly, the occurrences of 2018 are consistent with the dominance
of negative rates in three S1 features. In this map no clear spatial
clustering of DoT across multiple years was found. This contrasts the
findings in the example of AVA (see Figure 4), where clusters of
similar agreement rates could be found across multiple years.

The yearly, S1 feature specific analysis of DoT revealed, that
most fields of winter wheat and canola (see Figure A6) display a
dominant positive DoT across all S1 features and years. In contrast,

FIGURE 8
Example of field specifc rate of DoT in % covering fields of sugar beet in 2017, 2018, 2020 and 2021. High positive values indicate that a field is
strongly ahead of the development at landscape level, whereas negative values suggesst that a field is lagging behind revealing fields that maybe subject
to stressors or uncommon management practices.
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sugar beet depicted a more variable pattern. For example,
coherences in 2017 were mostly dominated by the equal
category. In 2018, the behind category was dominant for Alpha,
Entropy and CR, whereas similar distributions of categories were
observed only for VH coherence and VV intensity in 2019.

3.4 Outliers at field level and their plausibility

The analysis of deviations and outliers revealed that the
individual field deviated from the landscape pattern up to

200 times (see Figure 9). However, these numbers reflect the
total count across all observed years, crop types, S1 features, and
relative orbits. By examining Figure 9, it becomes evident, that the
majority of fields displays between 20 and 80 outliers. Higher outlier
counts (above 120) are mostly concentrated within a few spatial
clusters, particularly in the North-Northeast and the Southwestern
part of the study area.

As addressed in chapter 2.7, an analysis of potential
environmental explanations was conducted. The correlation
analysis yielded weak, but significant (p = 0.05) correlation
coefficients for the following variables elevation (elev_mean;

FIGURE 9
Field specific count of deviations from the landscape level patterns (outliers). High values indicate larger numbers of deviations from landscape level
pattern flagging fields for closer inspections in regard to stress or management anomalies.

FIGURE 10
Correlation plot (Spearman’s r) of environmental variables for describing number of deviations from landscape patterns. Lables in Supplementary
Table SA1.

Frontiers in Remote Sensing frontiersin.org12

Löw et al. 10.3389/frsen.2025.1610005

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1610005


0.26), dominant soil type (soil_type 0.26), soil organic content at
0–5 cm (soc_mean; −0.23) and organic carbon stock at 0–30 cm
(ocs_mean; −0.23). These results are visualised in Figure 10. The
strongest correlation was found between organic carbon stock (ocs_
mean) and elevation (elev_mean) (−0.45).

In accordance with the correlation analysis, the variable
importance of the random forest revealed elevation as the most
important predictor of the total outlier count. The second and third
most important variables were organic carbon stock at 0–30 cm
(ocs_mean) and soil organic carbon content at 0–5 cm (soc_
mean) (Figure 11).

The accuracy assessment yielded the following results: RMSE =
33.5, MAE = 26.2 and R2 = 0.25. Additionally, the crop specific
analysis of outlier occurrences and deviations from the landscape
pattern provided the following insights, summarised in Table 4.

The model accuracy for all three crop types was consistent with
values around 0.85. Soil organic carbon content (SOC) exhibited a
weak correlation with the outlier occurrences of all crop types.
Furthermore, terrain features such as elevation and TWI were
ranked as the variables of highest importance.

4 Discussion

The approach presented here effectively links SAR-based
landscape wide vegetation pattern to field specific phenological
developments. The linkage addresses two key questions: (i) the
agreement between the signal developments at both levels, and
(ii) the detection of temporal offsets and outliers at the field
level. Such cross-scale comparisons are rare in time series-based
approaches, which mostly compare estimates with in situ
observation using temporal distance (Harfenmeister et al., 2021a;
Lobert et al., 2023; Schlund and Erasmi, 2020). Furthermore,
uncertainties within in situ data are seldom quantified. For
instance, the phenological observations within the DWD
monitoring framework are reported, when 50% of a field has
reached a specific stage. Hereby, the recommended re-visitation
rate is two to three times per week. These issues alone introduce two
sources of uncertainties when ascertaining phenological stages of a
field. By providing relational and relative indicators, i.e., trackable
progress and average agreement, these uncertainties were captured
and quantified. This was achieved by adapting the concept of crop

FIGURE 11
Variable importance of rf explaining the spatial distribution of overall outliers. Numbers of soil_majority refer to the soil class according to soil grids
data base: 11 = Fluvisol, 18 = Luvisol, 20 = Phaeozems. Higher values indicate an increased importance.

TABLE 4 Results of crop specific correlation analysis (Spearman’s r) and variable importance to explain deviations from landscape pattern/outlier
occurrences.

Crop type Significantly correlated variables Most important variables (rf) Model accuracy (rf)

Winter wheat SOC, TWI, OCS:
|0.1| - |0.2|r

TWI: 0.15,
OCS: 0.17
Elevation: 0.17

R squared: 0.85
RMSE: 1.5
MAE: 1.1

Canola SOC, aspect, TWI, soil type:
around −0.2 r

TWI: 0.18,
OCS: 0.15

R squared: 0.87
RMSE: 1.8
MAE: 1.2

Sugar beet SOC, OCS: 0.1–0.2 r Elevation: 0.18,
Aspect: 0.19

R squared: 0.84
RMSE: 1.04
MAE: 0.65
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maturity (McNairn et al., 2018) to generate a GDD based
progression towards stages of interest. Moreover, the relational
nature and the integration of a baseline decrease the need for
extensive in situ data collection and make the study’s methods
transferable to other geographical contexts, where the development
or performance of individual landscape elements in relation to
broader patterns is essential. Potential transfer applications are
listed in the conclusion. The subsequent chapters address
implications, the potential and limitations of this study.

4.1 Discussing average agreement and DoT

The exemplary analysis of the AVA showed that fields tend to
agree with the overall pattern at landscape level between 60% and
70%. Hence it is assumed that the predefined threshold of 70% is
valid for designating fields or in a wider context also years and
S1 features of high agreement. Moreover, the indicator
demonstrated its potential to serve as measurement of how well a
S1 feature is able to reflect heterogeneous developments within a
landscape. Because S1 features that produce high rates of averages
agreement are most likely less sensitive towards field specific
developments.

The calculation and field specific visualization of DoT revealed
that the majority of depicted fields tended to be ahead of the
landscape. Because this study relied on phenological statistics at
the state level such bias was expected. Nevertheless, DoT showcases
the potential of the landscape-field comparison, as it produces
information on growth progress by incorporating multiple
S1 features and orbits without the explicit need of in situ data.
Because AVA and DoT derive their explanatory power mainly from
deviations between field and landscape level time windows instead of
in situ observation the impact of biases introduced by point to pixel
mismatches inherent to DWD data was mitigated.

When combining DoT with the rate of agreement, flags or labels
can be created for fields that exhibit strong negative tendencies and
low AVA. Such flags might prove useful for investigating landscapes
in terms of their climate vulnerability, resilience or differences in
management practice, especially when agents, such as policymakers
or consultants who may lack local knowledge are involved.
Furthermore, these flags can serve as an initial indicator for
pinpointing areas to start ground surveys on crop damage
induced by extreme weather events, outbreaks of diseases or pest
infestation (Ajadi et al., 2020; Singh et al., 2007; Stobbelaar
et al., 2004).

4.2 Outliers, deviations and trackability

During the explanatory analysis of outliers and deviations across
multiple years and crop types, no single, dominant descriptor was
identified. The crop specific analysis yielded a slightly stronger
emphasis on TWI and OCS/SOC instead of raw elevation.
However, as previously mentioned, no dominant descriptor
emerged, further supporting the indication of a complex system
behind the spatial and temporal occurrence of time windows.
Despite this complexity, the model accuracy as indicated by
MAE and RMSE (around one to two outlier occurrences)

suggests a high prediction potential when combining all
environmental descriptors. From a data perspective, it seems
logical that these descriptors ranked highly in most explanatory
analyses, given that terrain (Yang et al., 2011), soil organic carbon
(Santos et al., 2023) and wetness or moisture (Esch, 2018; Pichierri
et al., 2018) have well documented impacts on SAR signals.
However, their impact on phenological development is highly
dependent on the phenological stage and crop type (Canisius
et al., 2018).

The GDD-based range of trackability (see chapter 2.6.4) and
the initial uptake of signal change provided a different perspective
on the accuracy of time series-based monitoring, especially when
describing uncertainties. Considering the complexity of S1 time
series (with varying viewing geometries, different smoothing
algorithms and length of time series) (Harfenmeister et al.,
2021b; Löw et al., 2024; Meroni et al., 2021; Qadir et al., 2023),
such a measure can be converted to a quality mask at the field level.
As mentioned earlier in of the discussion, in situ observations of
phenological development are rarely a binary issue. Therefore, a
range of uncertainties seems more appropriate for describing the
semi-continuous (Meier, 2001) process of crop development,
rather than simple temporal differences. However, constant and
extensive monitoring of landscapes and their phenological
development may improve overall tracking capabilities
(d’Andrimont et al., 2022; Tran et al., 2022). Interestingly, the
exemplary time line of tracking ranges (see Figure 6) indicate, that
drier years produce smaller tracking ranges and thus more accurate
predictions. This contrasts with the findings of Schlund and
Erasmi (2020), who concluded that tracking quality of InSAR
coherence decreases during years of drought. It is however
important to note that Schlund and Erasmi (2020) conducted a
single orbit study while the present study combined orbits 95 and
146 for winter wheat. Therefore, it is assumed that the effect of
different viewing geometries on InSAR coherence result in a larger
tracking range within a multi-orbit framework.

Compared to AVA and DoT, the tracking range and trackability
are more dependent on the availability of phenological in situ
observations. But this study demonstrated that statistics at the
level of federal state already provide sufficient information to
calibrate the ranges, thanks to the attached GDD baseline and its
translation into phenological progress. Hence the point to pixel
mismatch within the DWD data is also considered of minor
importance.

5 Conclusion and outlook

This study introduced a novel approach to tracking phenological
developments employing S1 time series and capturing the
underlying uncertainties. To that end, a relational framework
between the landscape-level and field-specific development was
established. The concept of time windows related to phenological
changes was applied to generate the following insights:

• Indicator of AVA. It provides a general estimate of how well
the phenological development at field level is represented by
the patterns at landscape level. Additionally, it quantifies the
representativeness of the landscape pattern.
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• DoT: This indicator reveals whether a field is ahead or behind
the general phenological development at the landscape level
and assesses how dominant that tendency is.

• Field specific outliers. This measures how often a field
disagrees with or deviates from the landscape pattern,
which compliments the information provided by AVA.

Furthermore, spatially explicit information was generated on
how early phenological development can be tracked alongside the
range of trackable progress. This information can now be converted
into a quality mask by applying crop and stage specific thresholds to
the range. Additionally, this framework identified environmental
descriptors, which by tendency were found to explain the temporal
and spatial distribution of the above listed data. A relational and
contextual framework was thus developed, capable of capturing and
describing varieties and uncertainties within the landscape, without
relying on large amounts of field specific and time accurate in situ
observations.

This framework heavily depends on the availability of
information on field boundaries and crop inventories.
Additional information on crop management strategies would
further enhance the explanatory power of this analysis. To
address these challenges the Earth observation community has
already been developing solutions to provide such data products
(Blickensdörfer et al., 2022; Orynbaikyzy et al., 2022; Tetteh
et al., 2020).

This study as along with others demonstrated that temporal
SAR signatures, either on their own or combined with GDD, are
capable of reflecting crop development. Hence, subsequent
research can now investigate the scalability of this framework to
the state or nation level. In that process, different crop rotations
should not necessarily affect the scalability, because the approach
is built around time windows of relevant signal change which
should occur in any cropping system and can subsequently be
related to crop phenology via GDD. The fragmentation of a
landscape considered more challenging due to the influence of
mixed pixel issues introduced by small field sizes and
intercropping. Therefore, different sensors of higher spatial
resolution such as TerraSAR/TanDEM-X could be an option.
Alternatively, the transferability of such an approach to other
regions, different types of vegetation (e.g., forest) or other
phenological cycles, such as snow and ice phenology could also
be of interest. Given the computation and processing steps of this
framework, it is not feasible to transfer it as is to a near real time
framework. However, this study, like others before has
demonstrated that the shapes of S1 time series are able to
reflect phenological progress. Due to the enhanced processing
capabilities of cloud computing the analysis and comparison of
similarities between the shapes of time series seems to be possible
in a near real time framework Hence, future research could assess,
how a measure of similarity between past and recent time series
can be used to move from tracking developments of past seasons to
assessing crop performance in a near real time framework. By
linking field boundaries to unique identifiers, any data or records
on yield, stress or resource requirements of a field and season that
were deemed most similar, could now be utilized in a data driven
management strategy by farmers or other actors in the
agricultural domain.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: The data on field boundaries and crop types
of the land parcel identification system was used under a third party
agreement, that prohibits sharing with third parties not directly
linked to the research project. Requests to access these datasets
should be directed to johannes.loew@geo.uni-halle.de.

Author contributions

JL: Conceptualization, Validation, Methodology, Data curation,
Writing – review and editing, Resources, Writing – original draft,
Formal Analysis, Software, Visualization, Investigation. SH: Data
curation, Writing – review and editing, Software. IO: Supervision,
Writing – review and editing, Project administration. CF:
Writing – review and editing, Data curation, Software. MT:
Funding acquisition, Writing – review and editing, Resources,
Project administration. TU: Supervision, Writing – review and
editing, Conceptualization. CC: Resources, Project administration,
Writing – review and editing, Funding acquisition, Supervision.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research was funded
by German Aerospace Center (PhenoSAR: Demmin: FKZ:
0067286236), Martin-Luther-University of Halle-Wittenberg, as
well as the German Ministry of Agriculture via the project of
AgriSens Demmin 4.0 (FKZ: 28DE114E18). It was also funded by
The German Ministry of Education and Research via the project
DIP-ZAZIkI (FKZ: 031B1460B).

Acknowledgments

We would like to thank ESA for providing open access to
Sentinel-1 data as well as our project partners for supplying the
data on field boundaries and crop types.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that Generative AI was used in the
creation of this manuscript. During the preparation of this work
the author(s) used perplexity AI in order to increase conciseness and
improve readability of the abstract and introduction. After using this
tool/service, the author(s) reviewed and edited the content as needed
and take(s) full responsibility for the content of the published article.

Frontiers in Remote Sensing frontiersin.org15

Löw et al. 10.3389/frsen.2025.1610005

mailto:johannes.loew@geo.uni-halle.de
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1610005


Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/frsen.2025.1610005/
full#supplementary-material

References

Ajadi, O. A., Liao, H., Jaacks, J., Delos Santos, A., Kumpatla, S. P., Patel, R., et al.
(2020). Landscape-scale crop lodging assessment across Iowa and Illinois using
synthetic aperture radar (SAR) images. Remote Sens. (Basel) 12, 3885. doi:10.3390/
rs12233885

Arias, M., Campo-Bescós, M. Á., and Álvarez-Mozos, J. (2022). On the influence of
acquisition geometry in backscatter time series over wheat. Int. J. Appl. Earth
Observation Geoinformation 106, 102671. doi:10.1016/j.jag.2021.102671

Atzberger, C. (2013). Advances in remote sensing of agriculture: context description,
existing operational monitoring systems and major information needs. Remote Sens.
(Basel) 5, 949–981. doi:10.3390/rs5020949

Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., and
Hostert, P. (2022). Mapping of crop types and crop sequences with combined time
series of Sentinel-1, Sentinel-2 and landsat 8 data for Germany. Remote Sens. Environ.
269, 112831. doi:10.1016/j.rse.2021.112831

Breiman, L. (2001). Random forests. Mach. Learn 45, 5–32. doi:10.1023/A:
1010933404324

Canisius, F., Shang, J., Liu, J., Huang, X., Ma, B., Jiao, X., et al. (2018). Tracking crop
phenological development using multi-temporal polarimetric Radarsat-2 data. Remote
Sens. Environ. 210, 508–518. doi:10.1016/j.rse.2017.07.031

Cloude, S. R., and Pottier, E. (1996). A review of target decomposition theorems in
radar polarimetry. IEEE Trans. Geoscience Remote Sens. 34, 498–518. doi:10.1109/36.
485127

Conrad, C., Löw, F., and Lamers, J. P. A. (2017). Mapping and assessing crop diversity
in the irrigated Fergana valley, Uzbekistan. Appl. Geogr. 86, 102–117. doi:10.1016/j.
apgeog.2017.06.016

Derakhshan, A., Bakhshandeh, A., Siadat, S.A., Moradi-Telavat, M. R., and
Andarzian, S. B. (2018). Quantifying the germination response of spring canola
(Brassica napus L.) to temperature. Ind. Crops Prod. 122, 195–201. doi:10.1016/j.
indcrop.2018.05.075

d’Andrimont, R., Taymans, M., Lemoine, G., Ceglar, A., Yordanov, M., and van der
Velde, M. (2020). Detecting flowering phenology in oil seed rape parcels with
Sentinel-1 and -2 time series. Remote Sens. Environ. 239, 111660. doi:10.1016/j.
rse.2020.111660

d’Andrimont, R., Yordanov, M., Martinez-Sanchez, L., and van der Velde, M. (2022).
Monitoring crop phenology with street-level imagery using computer vision. Comput.
Electron Agric. 196, 106866. doi:10.1016/j.compag.2022.106866

ESA (2013). Sentinel-1 user handbook.

ESA (2025). STEP – science toolbox exploitation platform. Available online at: https://
step.esa.int/main/(Accessed July 1, 2025).

Esch, S. (2018). Determination of soil moisture and vegetation parameters from
spaceborne C-Band SAR on agricultural areas.

Friedrich, C., Löw, J., Otte, I., Hill, S., Förtsch, S., Schwalb-Willmann, J., et al. (2024).
“A multi-talented datacube: integrating, processing and presenting big geodata for the
agricultural end user,” in Informatik in Der Land-, Forst Und Ernährungswirtschaft.
Fokus: Biodiversität Fördern Durch Digitale Landwirtschaft. Editors C. Hoffmann,
A. Stein, E. Gallmann, J. Dörr, C. Krupitzer, and H. Floto (Hohenheim-Stuttgart),
251–256.

Gessner, U., Reinermann, S., Asam, S., and Kuenzer, C. (2023). Vegetation stress
monitor—assessment of drought and temperature-related effects on vegetation in
Germany analyzing MODIS time series over 23 years. Remote Sens. (Basel) 15,
5428. doi:10.3390/rs15225428

Harfenmeister, K., Itzerott, S., Weltzien, C., and Spengler, D. (2021a). Agricultural
monitoring using polarimetric decomposition parameters of sentinel-1 data. Remote
Sens. (Basel) 13, 575–28. doi:10.3390/rs13040575

Harfenmeister, K., Itzerott, S., Weltzien, C., and Spengler, D. (2021b). Detecting
phenological development of winter wheat and winter barley using time series of
Sentinel-1 and Sentinel-2. Remote Sens. (Basel) 13, 5036. doi:10.3390/rs13245036

Haßelbusch, K., and Lucas-Mofat, A. (2021). Rasterdaten für die Agrarmeteorologie:
vergleich verschiedener Interpolationsverfahren am Beispiel AgriSens Demmin 4.0.
Braunschweig.

Hosseini, M., McNairn, H., Mitchell, S., Robertson, L. D., Davidson, A., Ahmadian,
N., et al. (2021). A comparison between support vector machine and water cloud model
for estimating crop leaf area index. Remote Sens. (Basel) 13, 1348. doi:10.3390/
rs13071348

Htitiou, A., Möller, M., Riedel, T., Beyer, F., and Gerighausen, H. (2024). Towards
optimising the derivation of phenological phases of different crop types over Germany
using satellite image time series. Remote Sens. (Basel) 16, 3183. doi:10.3390/rs16173183

Jacott, C. N., and Boden, S. A. (2020). Feeling the heat: developmental and molecular
responses of wheat and barley to high ambient temperatures. J. Exp. Bot. 71, 5740–5751.
doi:10.1093/jxb/eraa326

Kaspar, F., Zimmermann, K., and Polte-Rudolf, C. (2015). An overview of the
phenological observation network and the phenological database of Germany’s
national meteorological service (deutscher wetterdienst). Adv. Sci. Res. 11, 93–99.
doi:10.5194/asr-11-93-2014

Khabbazan, S., Vermunt, P., Steele-Dunne, S., Arntz, L. R., Marinetti, C., van der Valk,
D., et al. (2019). Crop monitoring using Sentinel-1 data: a case study from the
Netherlands. Remote Sens. (Basel) 11, 1887–24. doi:10.3390/rs11161887

Killough, B. (2018). “Overview of the open data cube initiative,” in International
geoscience and remote sensing symposium (IGARSS) (Institute of Electrical and
Electronics Engineers Inc.), 8629–8632. doi:10.1109/IGARSS.2018.8517694

Kuhn, M. (2008). Building predictive models in R using the caret package. J. Stat.
Softw. 28, 1–26. doi:10.18637/jss.v028.i05

Lobert, F., Löw, J., Schwieder, M., Gocht, A., Schlund, M., Hostert, P., et al. (2023). A
deep learning approach for deriving winter wheat phenology from optical and SAR time
series at field level. Remote Sens. Environ. 298, 113800. doi:10.1016/j.rse.2023.113800

Löw, J., Ullmann, T., and Conrad, C. (2021). The impact of phenological
developments on interferometric and polarimetric crop signatures derived from
sentinel-1: examples from the DEMMIN study site (germany). Remote Sens. (Basel)
13, 2951. doi:10.3390/rs13152951

Löw, J., Hill, S., Otte, I., Thiel, M., Ullmann, T., and Conrad, C. (2024). How
phenology shapes crop-specific Sentinel-1 PolSAR features and InSAR coherence
across multiple years and orbits. Remote Sens. (Basel) 16, 2791. doi:10.3390/
rs16152791

Mandal, D., Kumar, V., Ratha, D., Dey, S., Bhattacharya, A., Lopez-Sanchez, J. M.,
et al. (2020). Dual polarimetric radar vegetation index for crop growth monitoring using
sentinel-1 SAR data. Remote Sens. Environ. 247, 111954. doi:10.1016/j.rse.2020.111954

Mascolo, L., Martinez-Marin, T., and Lopez-Sanchez, J. M. (2024). A novel dynamical
framework for crop phenology estimation with remote sensing. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 18, 2208–2225. doi:10.1109/JSTARS.2024.3516212

McMaster, G. S., and Smika, D. E. (1988). Estimation and evaluation of winter wheat
phenology in the central great plains. Agric For Meteorol 43, 1–18. doi:10.1016/0168-
1923(88)90002-0

McMaster, G. S., and Wilhelm, W. W. (1997). Growing degree-days: one equation,
two interpretations. Agric For Meteorol 87, 291–300. doi:10.1016/S0168-1923(97)
00027-0

McNairn, H., Jiao, X., Pacheco, A., Sinha, A., Tan, W., and Li, Y. (2018). Estimating
canola phenology using synthetic aperture radar. Remote Sens. Environ. 219, 196–205.
doi:10.1016/j.rse.2018.10.012

Frontiers in Remote Sensing frontiersin.org16

Löw et al. 10.3389/frsen.2025.1610005

https://www.frontiersin.org/articles/10.3389/frsen.2025.1610005/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frsen.2025.1610005/full#supplementary-material
https://doi.org/10.3390/rs12233885
https://doi.org/10.3390/rs12233885
https://doi.org/10.1016/j.jag.2021.102671
https://doi.org/10.3390/rs5020949
https://doi.org/10.1016/j.rse.2021.112831
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.rse.2017.07.031
https://doi.org/10.1109/36.485127
https://doi.org/10.1109/36.485127
https://doi.org/10.1016/j.apgeog.2017.06.016
https://doi.org/10.1016/j.apgeog.2017.06.016
https://doi.org/10.1016/j.indcrop.2018.05.075
https://doi.org/10.1016/j.indcrop.2018.05.075
https://doi.org/10.1016/j.rse.2020.111660
https://doi.org/10.1016/j.rse.2020.111660
https://doi.org/10.1016/j.compag.2022.106866
https://step.esa.int/main/
https://step.esa.int/main/
https://doi.org/10.3390/rs15225428
https://doi.org/10.3390/rs13040575
https://doi.org/10.3390/rs13245036
https://doi.org/10.3390/rs13071348
https://doi.org/10.3390/rs13071348
https://doi.org/10.3390/rs16173183
https://doi.org/10.1093/jxb/eraa326
https://doi.org/10.5194/asr-11-93-2014
https://doi.org/10.3390/rs11161887
https://doi.org/10.1109/IGARSS.2018.8517694
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1016/j.rse.2023.113800
https://doi.org/10.3390/rs13152951
https://doi.org/10.3390/rs16152791
https://doi.org/10.3390/rs16152791
https://doi.org/10.1016/j.rse.2020.111954
https://doi.org/10.1109/JSTARS.2024.3516212
https://doi.org/10.1016/0168-1923(88)90002-0
https://doi.org/10.1016/0168-1923(88)90002-0
https://doi.org/10.1016/S0168-1923(97)00027-0
https://doi.org/10.1016/S0168-1923(97)00027-0
https://doi.org/10.1016/j.rse.2018.10.012
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1610005


Meier, U. (2001). “Growth stages of mono-and dicotyledonous plants,” in BBCH
monograph, 2nd ed, federal biological research centre for agriculture and forestry. Federal
biological research centre for agriculture and forestry. Berlin, Braunschweig.

Meroni, M., d’Andrimont, R., Vrieling, A., Fasbender, D., Lemoine, G., Rembold, F.,
et al. (2021). Comparing land surface phenology of major European crops as derived
from SAR and multispectral data of Sentinel-1 and -2. Remote Sens. Environ. 253,
112232. doi:10.1016/j.rse.2020.112232

Nasrallah, A., Baghdadi, N., El Hajj, M., Darwish, T., Belhouchette, H., Faour, G., et al.
(2019). Sentinel-1 data for winter wheat phenology monitoring and mapping. Remote
Sens. (Basel) 11, 2228. doi:10.3390/rs11192228

Orynbaikyzy, A., Gessner, U., and Conrad, C. (2022). Spatial transferability of
random forest models for crop type classification using Sentinel-1 and Sentinel-2.
Remote Sens. 14, 1493. doi:10.3390/RS14061493

Pichierri, M., Hajnsek, I., Zwieback, S., and Rabus, B. (2018). On the potential of
polarimetric SAR interferometry to characterize the biomass, moisture and structure of
agricultural crops at L-C- and X-Bands. Remote Sens. Environ. 204, 596–616. doi:10.
1016/j.rse.2017.09.039

Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E.,
et al. (2021). SoilGrids 2.0: producing soil information for the globe with quantified
spatial uncertainty. SOIL 7, 217–240. doi:10.5194/soil-7-217-2021

Povey, A. C., and Grainger, R. G. (2015). Known and unknown unknowns:
uncertainty estimation in satellite remote sensing. Atmos. Meas. Tech. 8, 4699–4718.
doi:10.5194/amt-8-4699-2015

Qadir, A., Skakun, S., Eun, J., Prashnani, M., and Shumilo, L. (2023). Sentinel-1 time
series data for sunflower (Helianthus annuus) phenology monitoring. Remote Sens.
Environ. 295, 113689. doi:10.1016/j.rse.2023.113689

Radke, J. K., and Bauer, R. E. (1969). Growth of sugar beets as affected by root
temperatures part I: greenhouse studies 1. Agron. J. 61, 860–863. doi:10.2134/
agronj1969.00021962006100060009x

Richards, J. A. (2009). Remote sensing with imaging radar.

Ritchie, J. T., and Nesmith, D. S. (2015). “Temperature and crop development,” in
Modeling plant and soil systems (Wiley Blackwell), 5–29. doi:10.2134/
agronmonogr31.c2

Sakamoto, T., Gitelson, A. A., and Arkebauer, T. J. (2013). MODIS-based corn grain
yield estimation model incorporating crop phenology information. Remote Sens.
Environ. 131, 215–231. doi:10.1016/j.rse.2012.12.017

Santos, E.P. dos, Moreira, M. C., Fernandes-Filho, E. I., Demattê, J. A. M., Dionizio, E.
A., Silva, D.D. da, et al. (2023). Sentinel-1 imagery used for estimation of soil organic
carbon by dual-polarization SAR vegetation indices. Remote Sens. (Basel) 15, 5464.
doi:10.3390/rs15235464

Schlund, M. (2025). Potential of Sentinel-1 time-series data for monitoring the
phenology of European temperate forests. ISPRS J. Photogrammetry Remote Sens.
223, 131–145. doi:10.1016/j.isprsjprs.2025.02.026

Schlund, M., and Erasmi, S. (2020). Sentinel-1 time series data for monitoring the
phenology of winter wheat. Remote Sens. Environ. 246, 111814. doi:10.1016/j.rse.2020.
111814

Singh, D., Sao, R., and Singh, K. P. (2007). A remote sensing assessment of pest
infestation on sorghum. Adv. Space Res. 39, 155–163. doi:10.1016/j.asr.2006.02.025

Small, D. (2011). Flattening gamma: radiometric terrain correction for SAR
imagery. IEEE Trans. Geoscience Remote Sens. 49, 3081–3093. doi:10.1109/TGRS.
2011.2120616

Sørensen, R., Zinko, U., and Seibert, J. (2006). On the calculation of the topographic
wetness index: evaluation of different methods based on field observations. Hydrol.
Earth Syst. Sci. 10, 101–112. doi:10.5194/hess-10-101-2006

Spengler, D., Itzerott, S., Ahmadian, N., Borg, E., Hüttich, C., Maass, H., et al. (2018).
“The German JECAM site DEMMIN: status and future perspectives,” in Annual
JECAM meeting (Taichung City, Taiwan).

Steele-Dunne, S. C., McNairn, H., Monsivais-Huertero, A., Judge, J., Liu, P. W., and
Papathanassiou, K. (2017). Radar remote sensing of agricultural canopies: a review.
IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sen. 10, 2249–2273. doi:10.1109/jstars.2016.
2639043

Stinner, R. E., Gutierrez, A. P., and Butler, G. D. (1974). An algorithm for
temperature-dependent growth rate simulation. Can. Entomol. 106, 519–524. doi:10.
4039/Ent106519-5

Stobbelaar, D. J., Hendriks, K., and Stortelder, A. (2004). Phenology of the landscape:
the role of organic agriculture. Landsc. Res. 29, 153–179. doi:10.1080/
01426390410001690374

Terry, N. (1968). Developmental physiology of sugar beet: I. the influence of light and
temperature on growth. J. Exp. Bot. 19, 795–811. doi:10.1093/jxb/19.4.795

Tetteh, G. O., Gocht, A., and Conrad, C. (2020). Optimal parameters for delineating
agricultural parcels from satellite images based on supervised Bayesian optimization.
Comput. Electron Agric. 178, 105696. doi:10.1016/j.compag.2020.105696

Tran, K. H., Zhang, X., Ketchpaw, A. R., Wang, J., Ye, Y., and Shen, Y. (2022). A
novel algorithm for the generation of gap-free time series by fusing harmonized
landsat 8 and Sentinel-2 observations with PhenoCam time series for detecting
land surface phenology. Remote Sens. Environ. 282, 113275. doi:10.1016/j.rse.2022.
113275

Truckenbrodt, J., Cremer, F., and Eberle, J. (2019). “pyroSAR-A framework for large-
scale SAR satellite data processing,” in ESA living planet symposium, 2019. Milan, Italy.
doi:10.13140/RG.2.2.16424.83206

Verbesselt, J., Hyndman, R., Zeileis, A., and Culvenor, D. (2010). Phenological change
detection while accounting for abrupt and gradual trends in satellite image time series.
Remote Sens. Environ. 114, 2970–2980. doi:10.1016/j.rse.2010.08.003

Verbesselt, J., Zeileis, A., and Herold, M. (2012). Near real-time disturbance detection
using satellite image time series. Remote Sens. Environ. 123, 98–108. doi:10.1016/j.rse.
2012.02.022

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in python.
Nat. Methods 17, 261–272. doi:10.1038/s41592-019-0686-2

Wang, M., Wang, L., Guo, Y., Cui, Y., Liu, J., Chen, L., et al. (2024). A comprehensive
evaluation of dual-polarimetric Sentinel-1 SAR data for monitoring key phenological
stages of winter wheat. Remote Sens. 16, 1659. doi:10.3390/RS16101659

Whitcraft, A. K., Becker-Reshef, I., Justice, C. O., Gifford, L., Kavvada, A., and Jarvis, I.
(2019). No pixel left behind: toward integrating Earth observations for agriculture into
the united nations sustainable development goals framework. Remote Sens. Environ.
235, 111470. doi:10.1016/j.rse.2019.111470

Woodhouse, I. H. (2006). Introduction to microwave remote sensing. Boca Raton: CRC
Press.

Wu, B., Zhang, M., Zeng, H., Tian, F., Potgieter, A. B., Qin, X., et al. (2023). Challenges
and opportunities in remote sensing-based crop monitoring: a review. Natl. Sci. Rev. 10,
nwac290. doi:10.1093/nsr/nwac290

Yang, L., Meng, X., and Zhang, X. (2011). SRTM DEM and its application advances.
Int. J. Remote Sens. 32, 3875–3896. doi:10.1080/01431161003786016

Zhang, Z., Wang, C., Zhang, H., Tang, Y., and Liu, X. (2018). Analysis of permafrost
region coherence variation in the Qinghai–Tibet Plateau with a high-resolution
TerraSAR-X image. Remote Sens. (Basel) 10, 298. doi:10.3390/rs10020298

Zhou, G., and Wang, Q. (2018). A new nonlinear method for calculating growing
degree days. Sci. Rep. 8, 10149–14. doi:10.1038/s41598-018-28392-z

Frontiers in Remote Sensing frontiersin.org17

Löw et al. 10.3389/frsen.2025.1610005

https://doi.org/10.1016/j.rse.2020.112232
https://doi.org/10.3390/rs11192228
https://doi.org/10.3390/RS14061493
https://doi.org/10.1016/j.rse.2017.09.039
https://doi.org/10.1016/j.rse.2017.09.039
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.5194/amt-8-4699-2015
https://doi.org/10.1016/j.rse.2023.113689
https://doi.org/10.2134/agronj1969.00021962006100060009x
https://doi.org/10.2134/agronj1969.00021962006100060009x
https://doi.org/10.2134/agronmonogr31.c2
https://doi.org/10.2134/agronmonogr31.c2
https://doi.org/10.1016/j.rse.2012.12.017
https://doi.org/10.3390/rs15235464
https://doi.org/10.1016/j.isprsjprs.2025.02.026
https://doi.org/10.1016/j.rse.2020.111814
https://doi.org/10.1016/j.rse.2020.111814
https://doi.org/10.1016/j.asr.2006.02.025
https://doi.org/10.1109/TGRS.2011.2120616
https://doi.org/10.1109/TGRS.2011.2120616
https://doi.org/10.5194/hess-10-101-2006
https://doi.org/10.1109/jstars.2016.2639043
https://doi.org/10.1109/jstars.2016.2639043
https://doi.org/10.4039/Ent106519-5
https://doi.org/10.4039/Ent106519-5
https://doi.org/10.1080/01426390410001690374
https://doi.org/10.1080/01426390410001690374
https://doi.org/10.1093/jxb/19.4.795
https://doi.org/10.1016/j.compag.2020.105696
https://doi.org/10.1016/j.rse.2022.113275
https://doi.org/10.1016/j.rse.2022.113275
https://doi.org/10.13140/RG.2.2.16424.83206
https://doi.org/10.1016/j.rse.2010.08.003
https://doi.org/10.1016/j.rse.2012.02.022
https://doi.org/10.1016/j.rse.2012.02.022
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3390/RS16101659
https://doi.org/10.1016/j.rse.2019.111470
https://doi.org/10.1093/nsr/nwac290
https://doi.org/10.1080/01431161003786016
https://doi.org/10.3390/rs10020298
https://doi.org/10.1038/s41598-018-28392-z
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1610005

	Integrating the landscape scale supports SAR-based detection and assessment of the phenological development at the field level
	1 Introduction
	2 Materials and methods
	2.1 Study area and in situ data
	2.2 Growing degree data
	2.3 Sentinel-1 (S1) time series
	2.4 Auxiliary data
	2.5 Conceptual workflow of the study
	2.5.1 Landscape pattern of vegetation development and derivation of time windows
	2.5.2 Assessing field development within the landscape pattern

	2.6 Indicators of landscape-field relation
	2.6.1 Average agreement
	2.6.2 Field & BBCH specific uncertainties
	2.6.3 Dominance of tendency
	2.6.4 Outliers at field level

	2.7 Checking the plausibility of an indicator’s spatial distribution

	3 Results
	3.1 Average agreement (AVA)
	3.2 Field & BBCH specific uncertainties and their plausibility
	3.3 Dominance of tendency (DoT)
	3.4 Outliers at field level and their plausibility

	4 Discussion
	4.1 Discussing average agreement and DoT
	4.2 Outliers, deviations and trackability

	5 Conclusion and outlook
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


