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Introduction: To address the spatiotemporal discontinuities in Moderate
Resolution Imaging Spectroradiometer (MODIS) surface reflectance time
series caused by cloud contamination, snow cover, and sensor limitations, this
study proposes an an optimized RTLSR inversion strategy with dynamiclly
adjusted of multi-surface parameters.

Methods: The method specifically aims to improve surface reflectance
reconstruction accuracy in seasonally snow-covered regions and regions with
significant vegetation phenological changes. To enhance the quality control of
input data, the conventional NDVI threshold-based snow masking approach was
replaced with the more rigorous “Internal Snow Mask” from the MOD09GA
product. Additionally, vegetation indices exhibiting higher saturation
resistance—namely the Enhanced Vegetation Index (EVI) and Leaf Area Index
(LAI)—were adopted in place of NDVI to better characterize surface reflectance
variations during significant phenological transitions.

Results: Experiments conducted in East and South Asia show that in seasonally
snow-covered regions (e.g., eastern Tibetan Plateau and parts of northern Asia),
RMSE reductions of 5.8%–7.1% are achieved in visible bands (Band1, Band3,
Band4). Across the entire study area, the average RMSE across all MODIS
bands (Band1–7) is reduced by 4.5%, with notable improvements in
vegetation-sensitive near-infrared bands: Band2 and Band5 exhibit RMSE
decreases of 14.3% and 6.3%, respectively. Compared with the MCD43A1
product, the proposed method demonstrates superior spatiotemporal
continuity in mid- to low-latitude monsoon regions during summer and
autumn, achieving a 9.77% increase in annual data availability.
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Discussion: These results indicate that the improved approach effectively fills gaps
in surface reflectance time series in persistently cloudy regions and offers a reliable
complementary solution to existing MODIS products.
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1 Introduction

In the face of increasingly severe global climate change and
ecological challenges, there is an urgent need for more frequent and
accurate quantitative monitoring of the Earth’s surface to assess the
impacts of climate change and dynamic changes in ecosystems
(Running et al., 1999; Huete et al., 2011). In this context, remote
sensing technology provides an efficient and extensively scalable
tool, enabling long-term and continuous observation of the Earth’s
surface on a global scale (Wu and Zhang, 2017). Surface reflectance
data represent key parameters in remote sensing for characterizing
land surface features and directly influence the quantification of
various land surface variables (Xiao et al., 2015). Over the past
2 decades, NASA’s MODIS has generated one of the most
comprehensive global remote sensing datasets for land
monitoring, providing near-daily global coverage at spatial
resolutions of 250 m, 500 m, and 1 km (Justice et al., 2002).
Among these, MODIS surface reflectance data have been widely
applied in regional and global land surface change monitoring due to
their high temporal resolution, long time series, and extensive
coverage (Liang et al., 2024). However, limitations associated
with sensor performance, as well as interference from clouds,
aerosols, and snow, result in extensive data gaps in optical
remote sensing products. These gaps not only prevent complete
spatial and temporal coverage in specific regions or periods but also
lead to discontinuities when utilizing these data (Cihlar et al., 1997;
Li et al., 2009; Lin et al., 2014; Shen et al., 2015). Consequently,
developing effective techniques for reconstructing missing
information in remote sensing data can enhance data continuity
and provide more accurate and complete inputs for subsequent
analyses, thereby meeting multidisciplinary research needs.

In recent years, image processing-based methods have been
extensively employed to reconstruct missing information in remote
sensing imagery from sensors such as Landsat and MODIS. These
approaches typically restore missing data by exploiting spatial
similarity or temporal autocorrelation within the images and
have achieved significant success (Yu et al., 2011; Zhu et al.,
2012; Lin et al., 2014; Cao et al., 2020; Wang et al., 2024).
However, most of these methods primarily rely on statistical
patterns and struggle to incorporate the underlying physical
processes governing surface reflectance. Consequently, they often
have limitations in terms of physical consistency and
interpretability.

In contrast, semi-empirical kernel-drivenmodels based on surface
bidirectional reflectance offer clearer physical interpretations. In
practical applications, the MODIS team developed an algorithm to
derive the Bidirectional Reflectance Distribution Function (BRDF).
This algorithm effectively fills data gaps by utilizing sun-view
geometry information from cloud-free observations. Centered on
the semi-empirical RossThick-LiSparse Reciprocal (RTLSR) kernel-

driven model, this method estimates pixel-level BRDF parameters
(Schaaf et al., 2002). Over the past 2 decades, this approach has
facilitated the generation of global BRDF parameter products
characterized by strong representativeness and continuity (Bright
and Astrup, 2019; Tang et al., 2020). However, in persistently
cloudy regions—such as the monsoon-affected areas of South and
Southeast Asia—the limited number of available cloud-free
observations often prevents the RTLSR-based method from
performing optimally. These limitations are also evident in the
MODIS BRDF products (Schaaf, 2021).

Building upon the semi-empirical kernel-driven model’s
characterization of BRDF physical mechanisms, (Vermote et al.,
2009) proposed an algorithm that utilizes NDVI to represent
variations in BRDF shape. Although early studies on the
Anisotropy Flatness Index (AFX) indicated that NDVI does not
reliably reflect the anisotropic characteristics of surface reflectance
under all conditions (Jiao et al., 2014; Zhang et al., 2016; Zhang et al.,
2018), Franch et al. (2014) demonstrated that NDVI could still
function effectively as a normalized intermediate parameter within
kernel-driven models, enabling the successful derivation of albedo
across different temporal and spatial resolutions.

Building upon this foundation, researchers integrated soil
moisture (SM) and NDVI into the RTLSR framework, proposing
a multi-parameter dynamically adjusted RTLSR model (hereafter
RTLSR_MP) to mitigate limitations of the original approach (Gao
et al., 2020). Within the RTLSR architecture, RTLSR_MP
dynamically incorporates NDVI and SM to derive time-varying
BRDF parameters. This enhances the model’s capacity to capture
anisotropic reflectance variations induced by surface
changes—particularly under persistent cloud cover—while
improving the spatiotemporal continuity of surface reflectance
data through high-quality driving datasets. Studies demonstrate
that the RTLSR_MP-based retrieval method achieves relatively
high accuracy across East and South Asia, with a root mean
square error percentage (RMSE%) of 9.8%.

Although the RTLSR_MP-based surface reflectance retrieval
method has yielded promising results, its performance requires
further improvement in seasonally snow-covered regions (Yoon
et al., 2022) and areas experiencing significant vegetation
phenological changes. In snow-affected areas, the model lacks
rigorous snow masking protocols, failing to adequately control
snow contamination in input data. Instead, it relies on simplistic
NDVI thresholds (NDVI <0) to exclude snow-contaminated pixels
(Hall et al., 1995)—an operationally convenient but accuracy-
limited approach requiring further validation. In regions with
significant vegetation phenological changes, particularly within
near-infrared bands, the model exhibits limited capacity to
dynamically track surface reflectance variations. This constraint
likely stems from NDVI saturation effects under dense vegetation
conditions (Tang and Min, 1998; Huete et al., 2002; Wang et al.,
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2003; Li et al., 2007; Li et al., 2010; Gao et al., 2023), potentially
introducing parameter biases that compromise retrieval accuracy.

To address the aforementioned limitations, this study conducts
MODIS time series reconstruction experiments across East and South
Asia and proposes targeted optimization strategies. First, to enhance
retrieval accuracy in seasonally snow-covered regions, we implement
rigorous snowmasking using the “Internal SnowMask” bitmask from
MOD09GA—replacing the original NDVI threshold approach—to
achieve precise control of snow contamination. The efficacy of this
enhanced masking is systematically evaluated against the baseline
method. Second, to address inaccuracies arising from NDVI
saturation in regions with significant vegetation phenological
changes, we adopt the Enhanced Vegetation Index (EVI)—which
demonstrates higher saturation resistance (Wang et al., 2003)—and
the Leaf Area Index (LAI)—which directly quantifies biophysical
properties including canopy structure and leaf area (Fu et al.,
2017)—as replacements for NDVIwithin the RTLSR_MP framework.

To systematically elaborate on the theoretical basis and practical
effectiveness of the proposed optimization strategies, the structure of
this paper is arranged as follows: Section 2 introduces the RTLSR
model and the RTLSR_MPmodel adopted in this study, along with the
experimental workflow for filling daily surface reflectance gaps based
on the model. Section 3 describes the study areas and the datasets used.
Section 4 presents the experimental results of the improved RTLSR_
MP model over East and South Asia, with a particular focus on
evaluating the performance of optimization strategies in seasonally
snow-covered regions and areas with significant vegetation
phenological variation. The optimal reconstruction results are also
compared with the MCD43A1 product for validation. Section 5
discusses the practical contributions of the proposed optimization
methods.Finally, Section 6 summarizes the main findings, outlines the
current limitations, and provides perspectives for future research.

2 Theory and experiments

2.1 RTLSR model

The RTLSR model is the core algorithm used for generating the
MODIS BRDF/Albedo products. The principle for retrieving BRDF
parameters is as follows: for each pixel, multi-angle valid
observations acquired within a 16-day moving window are used
to fit a linear combination of three kernel functions—an isotropic
kernel, the Ross_Thick volumetric scattering kernel, and the Li_
Sparse-Reciprocal geometric-optical kernel—using the least squares
method. This fitting process enables the estimation of directional
reflectance parameters for the pixel (Li and Strahler, 1986; Roujean
et al., 1992; Schaaf and Strahler, 1993). The mathematical
formulation of this process is expressed as:

RTLSR θs, θv,φr( ) � fisoKiso + fvolKRoss Thick θs, θv,φr( )
+ fgeoKLSR θs, θv,φr( ) (1)

In Equation 1, Kiso represents the isotropic kernel, typically set
as a constant 1; KRoss−Thick is the Ross_Thick kernel; KLSR is the Li_
Sparse-Reciprocal kernel; θs denotes the solar zenith angle; θ] is the
sensor zenith angle; and φr is the relative azimuth angle between the
sun and sensor.

The Ross_Thick kernel is a semi-empirical kernel used in BRDF
models to describe the volumetric scattering component of surface
reflectance (Roujean et al., 1992). It characterizes the volumetric
scattering effect caused by multiple scattering within dense
vegetation canopies. Its mathematical expression is as follows:

KRoss Thick � π/2 − ξ( ) cos ξ + sin ξ
cos θs + cos ϑv

− π

4
(2)

cos ξ � cos θs cos θv + sin θs sin θv cosφr (3)

In Equations 2, 3, ξ is the phase angle, which represents the
single-scattering solution of the classical radiative transfer equation
for a horizontally homogeneous vegetation canopy with a uniform
leaf angle distribution and equal leaf reflectance and transmittance.

The Li_Sparse Reciprocal kernel is another key component in
semi-empirical kernel-driven BRDFmodels, used to characterize the
geometric-optical scattering effects of sparse vegetation or surface
structures (Li et al., 1992; Wanner et al., 1995). It is derived from the
proportion of illuminated to shaded areas in a scene consisting of
randomly placed ellipsoidal tree crowns, where the tree crown shape
is defined by the crown height h and the ratio of the vertical to
horizontal crown b/r. Its mathematical expression is as follows:

KLSR � O θs, θv, ϕr( ) − sec θs′ − sec θv′ + 1
2

1 + cos ξ′( )sec θs′ sec θv′
O � 1

π
t − sin t cos t( ) sec θs′ + sec θv′( )

cos t � h

b

����������������������
D2 + tan θs′ tan θv′ sin ϕr( )2√

D �
���������������������������������
tan 2 θs′ + tan 2 θv′ − 2 tan θs′ tan θv′ cos ϕr

√
cos ξ′ � cos θs′θv′ + sin θs′ sin θv′ cos ϕr

θs′ � tan−1 b

r
tan θs′( )θv′ � tan−1 b

r
tan θv′( )

(4)
In Equation 4, the MODIS BRDF Albedo algorithm, the tree

crown center height is assumed to be 2b, and the horizontal crown
radius is b. The angles θs′ and θ]′ are transformation parameters
used to describe the tree crown as a spherical shape, set as θs′ = θs,
θ]′ = θ], respectively.

2.2 RTLSR_MP model

Ideally, BRDFmodeling of the surface should be based onmulti-
angle satellite observations of the same target pixel at the same
moment in time. However, in practical applications, the RTLSR
model approximates this ideal observation condition by utilizing
multi-temporal observations of the same pixel within a given time
window from the MODIS sensor. This approach has two main
limitations: first, it assumes that the structural and optical properties
of the land surface target remain unchanged within the inversion
time period; second, to obtain sufficient bidirectional observations
for inverting BRDF kernel coefficients, multiple high-quality
observations must be accumulated within a relatively short
period (Vermote et al., 2009). Vermote’s study found that the
normalized BRDF kernel coefficients can be linearly related to
NDVI (Vermote et al., 2009), and later, Franch et al. validated
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the empirical relationship between spectral reflectance and NDVI
(Franch et al., 2019). Based on this, Gao et al. further integrated soil
moisture (SM) and NDVI into the RTLSR model, proposing the
RTLSR_MP model.The formula is expressed as follows:

RTLSR MP θs, θv,φr,NDVI, SM( )
� fisoKiso + fvolKRoss Thick θs, θv,φr( ) + fgeoKLSR θs, θv,φr( ) (5)

fvol � a0SM + a1NDVI
fgeo � a2SM + a3NDVI

(6)

In Equation 5, the formula, fvol and fgeo represent the volume
scattering kernel coefficient and geometric-optical kernel coefficient
respectively, both accounting for NDVI and soil moisture (SM). The
parameters a0, a1, a2 and a3 are model coefficients to be estimated.

Compared with the approach of Franch et al. (2014), who used
NDVI and the normalized forms of fvol and fgeo to linearly model
and characterize BRDF shape, Gao’s method treats NDVI and SM as
variables and employs an empirical model to estimate the dynamic
changes of fvol and fgeo. This approach not only captures the
variation of BRDF shape with changes in surface structure and
physical properties but also reflects the amplitude characteristics of
surface bidirectional reflectance over the entire inversion period. Here,
fiso, treated as a constant over the inversion period, only characterizes
the surface reflectance under the nadir solar-viewing geometry at a
specific time during the cycle. Its value is expected to approximate the
median integral value of the surface nadir reflectance variation over
the entire annual inversion period.However, due to this adjustment,
the fiso loses its original physical meaning—namely, the surface
bidirectional reflectance under stable conditions at nadir view and
illumination. In practice, the fiso derived from the RTLSR_MPmodel
is treated as a constant, which serves as a compensation and
adjustment for the magnitude of reflectance variation trends
represented by the two kernel functions.

2.3 Experimental procedure

For the improved method, the RTLSR_MP model is used to fill
daily surface reflectance gaps. The specific workflow (see Figure 1) is
as follows.

1. Data Quality Control: Using quality control bands from
MODIS observation data (e.g., the “Internal Snow Mask”
bitmask in MOD09GA data), preprocess the surface
reflectance bands into daily cloud-free, snow-free surface
reflectance data and input these into the RTLSR_MP model.

2. Kernel Calculation: Based on the solar observation geometry
information provided by MODIS, calculate the volume
scattering kernel and geometric-optical kernel values for each
pixel according to Equations 2–4, and input them into the
model. (Note: no angular filtering was performed on the data.)

3. Kernel Coefficient Modeling: According to Equation 6, express
the volume scattering kernel coefficient and geometric-optical
kernel coefficient as linear functions of soil moisture (SM) data
and vegetation parameters (NDVI, EVI, or LAI), then input
these into the model.

4. Parameter Estimation: For the pixels to be filled, when the
number of coincident input data within the inversion period
(1 year is uniformly adopted as the inversion period in this
study to cover complete phenological variation) is greater than
or equal to 10, run the model inversion to solve for the model
parameters a0, a1, a2 and a3.

5. Surface Reflectance Filling: Finally, based on Equation 5, the
daily gap-filled surface reflectance is reconstructed using the
derived model parameters together with SM data and
vegetation parameters.

For comparative analysis, the snow pixel removal method based
on the NDVI threshold (NDVI <0) and the improved method
incorporating the “Internal Snow Mask” snow mask are denoted
as RTLSR_MP(NDVI) and RTLSR_MP*(NDVI), respectively.
Correspondingly, the two improved models driven by EVI and
LAI are denoted as RTLSR_MP*(EVI) and RTLSR_MP*(LAI).

3 Study area and data

3.1 Study area

The study area covers parts of East Asia and South Asia,
spanning longitudes 73.05°E to 136.00°E and latitudes 15.05°N to

FIGURE 1
Technical workflow diagram.
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50.00°N, as shown in Figure 2. This region experiences significant
seasonal climate variations, characterized by cold and dry winters
and hot, humid summers, strongly influenced by the East Asian
monsoon. The land cover types are diverse and complex, mainly
including deciduous broadleaf forests, evergreen broadleaf forests,
mixed forests, grasslands, sparse savannas, croplands, and areas of
seasonal snow cover, with pronounced phenological changes and
distinct snow seasons. Due to the frequent changes in land surface
conditions and the significant influence of clouds, snow, and
phenology on remote sensing observations, this region provides
favorable experimental conditions for evaluating the adaptability of
BRDF inversion models and optimization strategies.

To enhance the comparative analysis of the experimental results,
in addition to evaluating the overall model inversion performance

across the entire study area, this paper also selects representative
sample plots of major vegetation types and two typical seasonal
snow-covered regions within the area as key objects of analysis. The
basic information of the seven representative vegetation sample
plots is shown in Table 1.

3.2 Data

To enable spatiotemporally continuous MODIS surface
reflectance inversion across RTLSR_MP variants, input driving
data with robust spatiotemporal continuity are essential. For
efficient construction of continuous vegetation parameters (NDVI/
EVI/LAI), this study employs the HANTS-GEE scalable software

FIGURE 2
Study area.

TABLE 1 Basic information about the seven typical vegetation regions (including region ID, dominant vegetation types and their proportions, as well as the
mean and standard deviation of NDVI in 2020).

Region ID Dominant land cover type (with area proportion) Mean NDVI ±SD

S1 Savannas (73%) 0.67 ± 0.08

S2 Woody Savannas (72%) 0.68 ± 0.09

S3 Mixed Forests (69%) 0.77 ± 0.08

S4 Deciduous Broadleaf Forests (67%) 0.64 ± 0.21

S5 Grasslands (72%) 0.23 ± 0.07

S6 Croplands (87%) 0.50 ± 0.14

S7 Evergreen Broadleaf Forests (86%) 0.81 ± 0.04
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package (Zhou et al., 2023) on Google Earth Engine. Using
MOD13Q1, MYD13Q1, and MOD15A3H products, harmonic
analysis was applied to generate daily 2020 NDVI/EVI/LAI
datasets. Their reconstruction efficacy has been validated in prior
studies (Zhou et al., 2021; Zhou et al., 2023). Soil moisture data were
sourced from the GRNN-based product developed by Cui et al.
(2019), which integrates multi-source remote sensing data
(MOD11C1, MOD13C1, 30-m SRTMDEM, and ECV soil moisture).

To standardize data scales and minimize errors from
heterogeneous coordinate systems, all input datasets underwent
uniform preprocessing. Specifically, data were projected to the
WGS84 geographic coordinate system and resampled to a
consistent 0.01-degree spatial resolution. Details of the input data
specifications are summarized in Table 2.

4 Result

4.1 Evaluation of reconstruction efficiency

In this study, the Root Mean Square Error (RMSE) serves as the
primary metric for evaluating model accuracy. The formula is
as follows:

RMSE �
������������
1
n
∑n
i�1

Pi − Oi( )2
√

(7)

In Equation 7, n represents the number of samples, i.e., the
number of pixels within the selected area. Pi denotes the surface
reflectance value retrieved by the model, while Oi represents the
actual valid observed surface reflectance value from MOD09GA.
RMSE provides a measure of the overall error between the inversion
results and the actual valid observations. A smaller RMSE value
indicates that the inversion results are closer to the true observations
and that the accuracy is higher. To ensure the stability of RMSE and
avoid bias caused by insufficient valid observations, the RMSE for a
given day is excluded if the proportion of valid MOD09GA
observation pixels meeting the conditions of “cloud-free, shadow-
free, snow-free, and good quality” is less than 2% of the total pixels.

Considering that different gap-filling methods may not be
applicable to all pixels in practical applications, this study
introduces the metric of “filling rate” to evaluate the
reconstruction efficiency of each method. The filling rate is

defined as the ratio of the number of valid pixels successfully
simulated by the model to the total number of pixels in the
study area. The calculation formula is as follows:

Filling rate � Nvalid 0−1( )
Ntotal

× 100% (8)

In Equation 8, Nvalid(0−1) represents the number of valid pixels
successfully filled by the method (i.e., pixels with reflectance values
within the range of 0–1), and Ntotal denotes the total number of
pixels in the simulated study area.

4.2 Improved RTLSR_MP in seasonally
snow-covered regions

To evaluate the impact of the enhanced snow masking strategy
on surface reflectance retrieval accuracy, this study implemented
both the baseline RTLSR_MP(NDVI) method and the improved
RTLSR_MP*(NDVI) method incorporating MODIS Internal
Snow Mask for reconstructing MODIS band 1-7 surface
reflectance throughout 2020. Figure 3 displays the spatial
distribution of RMSE results for visible bands (Band1, Band3,
and Band4).

By comparing the results shown in Figure 3, we found that both
the RTLSR_MP (NDVI) and RTLSR_MP* (NDVI) methods
exhibited an overall “low-high-low” trend in RMSE values across
the study area as latitude increased. The regions with relatively
higher RMSE were mainly concentrated on the Qinghai-Tibet
Plateau and mid-to-high latitude seasonally snow-covered
regions. Compared to the RTLSR_MP (NDVI) method, the
RTLSR_MP* (NDVI) method achieved lower RMSE values in the
mid-to-high latitude seasonally snow-covered regions, while both
methods showed similar accuracy in low latitude regions. This
indicates that stricter data quality control can effectively improve
the accuracy of surface reflectance retrieval in seasonally snow-
covered regions.

After presenting the spatial distribution characteristics of RMSE
for the two methods, this study further quantitatively compared the
fitting accuracy of surface reflectance forMODIS bands 1–7 between
the RTLSR_MP (NDVI) and RTLSR_MP* (NDVI) methods over
the entire study area and within seasonally snow-covered regions
(see Table 3). The results show that RTLSR_MP* (NDVI)
outperformed RTLSR_MP (NDVI) at both scales.

TABLE 2 Experimental data.

Data Dataset name Spatiotemporal coverage Resolution

Surface reflectance MOD09GA V061 73.05°–136.00°E, 15.05°–50.00°N, in 2020 0.01° and daily

NDVI MO(Y)D13Q1 V061 interpolated by GEE-HANTS [Zhou]

EVI

LAI MCD15A3H V061 interpolated by GEE-HANTS [Zhou]

Soil moisture Soil moisture interpolated by GRNN [Cui]

BRDF parameters MCD43A1 V061

Land cover MCD12Q1 V061 0.01° and annually
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Across the entire study area, the RTLSR_MP* (NDVI) method
achieved slightly lower RMSE values in all bands compared to
RTLSR_MP (NDVI), with the average RMSE for bands
Band1–Band7 decreasing from 0.0283 to 0.0278, representing a
1.77% reduction. This indicates that, even in the absence of
explicit snow mask information, the quality control strategy
based on NDVI thresholding for snow pixel removal still has
some applicability under an overall acceptable error margin.

In the seasonally snow-covered regions, the advantage of the
improved model was more pronounced. The average RMSE of
RTLSR_MP* (NDVI) decreased from 0.0377 to 0.0363, a
reduction of 3.71%. Notably, in the visible bands (Band1, Band3,
and Band4), the accuracy improvements were even more significant:
RMSE reductions of 3.5%, 4.6%, and 4.4% respectively across the full
study area, and 5.8%, 7.1%, and 6.4% within the snow-covered
regions. This demonstrates that the RTLSR_MP* (NDVI) model,

FIGURE 3
Spatial distribution and latitude profiles of RMSE in visible bands (Band1, Band3, Band4) for RTLSR_MP(NDVI) and RTLSR_MP*(NDVI) methods.

TABLE 3 RMSE andmean RMSE statistics for MODIS Bands 1–7 using RTLSR_MP(NDVI) and RTLSR_MP(NDVI) methods in the entire study area and seasonal
snow-covered regions.

Region Method RMSE

Band1 Band2 Band3 Band4 Band5 Band6 Band7 Bands1-7 mean

Entire study area RTLSR_MP(NDVI) 0.0258 0.0439 0.0219 0.0228 0.0308 0.0269 0.0262 0.0283

RTLSR_MP*(NDVI) 0.0249 0.0434 0.0209 0.0218 0.0307 0.0267 0.0261 0.0278

Seasonal snow-covered regions RTLSR_MP(NDVI) 0.0415 0.0485 0.0394 0.0390 0.0318 0.0328 0.0314 0.0377

RTLSR_MP*(NDVI) 0.0391 0.0469 0.0366 0.0365 0.0316 0.0324 0.0310 0.0363
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constructed by integrating MOD09GA snow mask information,
effectively enhances model stability and accuracy in areas
strongly affected by snow dynamics.

However, these results also reflect limitations of the RTLSR_
MP (NDVI) method when dealing with complex snow conditions.
For example, when snow cover is thin or vegetation protrudes
through the snow layer, vegetation’s near-infrared reflectance
significantly raises the pixel’s NIR value, causing NDVI to
increase and possibly approach zero or even become positive
(Klein et al., 1998). Additionally, the coarse spatial resolution of
MODIS imagery means that a single pixel may be a mixture of
snow, vegetation, and bare soil, further causing shifts and
uncertainty in NDVI values (Salomonson and Appel, 2004).
Under such circumstances, relying solely on NDVI-based snow
pixel removal for quality control is limited and may fail to
accurately identify and exclude snow interference, thereby
impacting model inversion accuracy.

4.3 Improved RTLSR_MP in regions with
significant vegetation phenological changes

To address the limited inversion accuracy of previous methods
in regions with significant vegetation phenological changes, this
study attempts to replace NDVI with EVI and LAI—vegetation
parameters that better reflect phenological variations and are less
affected by saturation effects—as the driving factors in the model.
Table 4 presents the RMSE and average RMSE of the model for
bands Band 1 through Band 7 under the three different vegetation
parameter drivers.

The results show that among the three parameters, the RTLSR_
MP* (EVI) method driven by EVI achieves the lowest average
RMSE, which is approximately 3.43% lower than the average
RMSE of the NDVI-driven model (0.0291). Conversely, the LAI-
drivenmodel exhibits a higher average RMSE than the NDVI-driven
one, with an increase of about 3.1%. Examining performance across

TABLE 4 RMSE and mean RMSE statistics for MODIS Bands 1–7 using RTLSR_MP*(NDVI) 、RTLSR_MP*(LAI) and RTLSR_MP*(EVI) methods.

Method RMSE

Band1 Band2 Band3 Band4 Band5 Band6 Band7 Bands1-7 mean

RTLSR_MP*(NDVI) 0.0259 0.0438 0.0217 0.0225 0.0320 0.0288 0.0291 0.0291

RTLSR_MP*(LAI) 0.0291 0.0393 0.0237 0.0247 0.0307 0.0301 0.0316 0.0299

RTLSR_MP*(EVI) 0.0267 0.0369 0.0221 0.0230 0.0298 0.0292 0.0295 0.0281

FIGURE 4
Spatial distribution of RMSE in MODIS Band2 and accuracy statistics across seven typical vegetation types for RTLSR_MP*(NDVI), RTLSR_MP*(LAI),
and RTLSR_MP*(EVI) methods.
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individual bands, the EVI-driven model shows slightly higher RMSE
in the non-near-infrared bands compared to the NDVI-driven
model, but in the near-infrared bands (Band2 and Band5), which
are more sensitive to vegetation changes, the RMSE decreases by
15.8% and 6.9%, respectively, demonstrating a clear advantage. The
LAI-driven model also shows RMSE reductions of 10.3% and 4.1%
in bands Band 2 and Band 5, respectively. Although its overall RMSE
is slightly higher than the NDVI-driven model, it similarly displays
better adaptability in the near-infrared bands. These results indicate
that in spectral bands with high vegetation sensitivity, EVI and LAI
can provide more accurate driving information as vegetation
parameters, while in bands with lower vegetation sensitivity, the
NDVI-driven model still holds certain advantages.

It is noteworthy that although both EVI and LAI can mitigate the
saturation effect of NDVI to some extent, the EVI-driven model
performs better overall. This is mainly attributed to EVI’s higher
sensitivity and signal-to-noise ratio in areas of dense vegetation. The
calculation of EVI relies on blue, red, and near-infrared reflectance
from MODIS’s high-quality atmospheric correction products, which
ensures good consistency and stability (Didan, 2021). In contrast,
although LAI has a clear biophysical meaning, its retrieval depends on
complex processes involvingmulti-band radiative transfermodels and
lookup tables (LUTs), including multivariate inputs, structure type
identification, and fitting discrimination (Myneni et al., 2021) This
makes LAI more susceptible to surface heterogeneity and observation
conditions, resulting in higher uncertainty.Moreover, the original LAI
time series usually exhibit strong fluctuations before HANTS

interpolation, with limited usable data points. Consequently, the
interpolation may fail to accurately restore phenological trends
(Zhou et al., 2023), thereby affecting its stability as a driving factor
and the model’s accuracy.

The above statistical results reflect the overall accuracy
differences among the models driven by different vegetation
parameters. To further explore how these differences distribute
across vegetation types, this study presents the spatial
distribution of RMSE for the RTLSR_MP model driven by the
three parameters in the near-infrared band (Band2), and
summarizes the overall accuracy differences across seven typical
vegetation types in the study area, as shown in Figure 4.

From the overall spatial distribution, the RTLSR_MP* (EVI)
method shows relatively lower inversion accuracy mainly
concentrated in regions with dense vegetation cover, such as the
Indian Peninsula, Southeast Asia, and southern and northeastern
China. Both RTLSR_MP* (EVI) and RTLSR_MP* (LAI) methods
exhibit superior inversion performance in these areas.

According to the accuracy statistics for different typical vegetation
types, the RTLSR_MP* (EVI) and RTLSR_MP* (LAI) methods show
notable advantages in vegetation types with significant phenological
changes. Specifically, these two methods exhibit significantly lower
RMSE values than RTLSR_MP* (NDVI) in mixed forests, deciduous
broadleaf forests, and woody savannas. In evergreen broadleaf forests,
savannas, and croplands, their RMSEs are slightly lower than that of
the NDVI-drivenmethod. For grasslands, the RMSE values of all three
methods are relatively close.

FIGURE 5
Time series of RMSE in MODIS Band1 and Band2 for RTLSR_MP(NDVI), RTLSR_MP(LAI), and RTLSR_MP*(EVI) methods across seven typical
vegetation regions.
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To further validate the above statistical results, this study
conducted a time series and spatial distribution analysis of
surface reflectance reconstruction accuracy for the three models
across seven typical vegetation sample regions (S1–S7).

As shown in Figure 5, in spectral bands with low vegetation
sensitivity (e.g., Band1), the RMSE time series of the three methods
exhibit relatively stable performance across all sample areas, with no
significant differences. However, in spectral bands with high
vegetation sensitivity (e.g., Band2), the NDVI-driven model
shows significantly greater fluctuations in RMSE time series
compared to the EVI- and LAI-driven models in sample areas
such as S1 (savanna), S2 (woody savanna), S3 (mixed forest), and
S4 (deciduous broadleaf forest). In contrast, in S5 (grassland), S6
(cropland), and S7 (evergreen broadleaf forest), the time series
accuracy of the three methods is relatively consistent. Overall,
these results are consistent with the preceding statistical analysis.

It should be noted that although regions S6 (cropland) and S7
(evergreen broadleaf forest) may also be affected by NDVI
saturation, the three models still exhibit comparable
reconstruction accuracy in these areas. This may be attributed to
the following reasons: in cropland region, NDVI saturation typically
occurs during the peak growing season, which is relatively short in
duration and often coincides with periods of high cloud cover. As a
result, the saturated observations contribute less weight to the
inversion process. In the case of evergreen broadleaf forests,
although the vegetation coverage is high, intra-annual variation is
minimal (as shown in Table 1, the annual NDVI standard deviation
is only 0.04, less than one-fifth of that in deciduous broadleaf

forests), making the impact of NDVI saturation relatively weak
in this vegetation type.

Figure 6 further illustrates that in typical vegetation sample
regions such as S1–S4, the EVI- and LAI-driven models significantly
outperform the NDVI-driven model in Band2, while in regions
S5–S6, the differences among the three models are not significant
(Note: The gaps observed in the RTLSR_MP*(LAI) results are
caused by the failure of interpolation due to an insufficient
number of valid data points in the LAI time series available for
the HANTS algorithm). This further verifies, from a spatial
perspective, the limitation of the NDVI-driven RTLSR_MP
model in regions with significant vegetation phenological
changes, where it is prone to saturation effects.

4.4 MODIS surface reflectance
reconstruction performance

Through the work presented in Sections 4.2, 4.3, the
improvements in seasonally snow-covered regions and regions
with significant vegetation phenological changes have been
preliminarily established. Building on this, we will further
evaluate the differences between the RTLSR_MP*(EVI) method,
the original RTLSR_MP(NDVI) method, and the MODIS surface
reflectance derived from MCD43A1 BRDF parameters.

First, an example of reconstruction performance across different
seasons is shown in Figure 7. It can be observed that in southern China
and the South Asia region (including the South Asian subcontinent

FIGURE 6
Spatial distribution of RMSE in MODIS Band2 for RTLSR_MP*(NDVI), RTLSR_MP*(LAI), and RTLSR_MP*(EVI) methods and land cover types of the
seven typical vegetation regions.
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and Southeast Asia), cloud cover dominates the imagery throughout
the year. The surface reflectance derived from the MCD43A1 Full
inversions parameter (Schaaf, 2021), which is based on the RTLSR
model, demonstrates certain gap-filling capability in high-latitude
regions but exhibits a large number of invalid pixels in mid-to low-
latitude areas. The alternative MCD43A1 Magnitude inversions
parameter (Strugnell and Lucht, 2001) partially complements these
gaps in mid-to low-latitude regions, yet substantial data voids remain
in southern China and South Asia. In contrast, both the improved

RTLSR_MP*(EVI) and the original RTLSR_MP(NDVI) methods
show considerable data gaps in high-latitude regions during spring
and winter but outperform the MCD43A1 products in gap-filling
ability at mid-to low-latitudes. Notably, in summer and autumn, the
reconstruction quality of RTLSR_MP*(EVI) and RTLSR_MP(NDVI)
further improves, demonstrating superior surface reflectance retrieval
in these seasons.

As shown in Figure 8, we further quantified the time series of the
fill rates in 2020 for MODIS surface reflectance reconstructed by the

FIGURE 7
True-color composites (R: Band1, G: Band4, B: Band3) for different seasons in 2020 synthesized using four reconstruction methods.

FIGURE 8
Time series of filling rate over seven bands under four reconstruction methods.
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RTLSR_MP*(EVI) method, the original RTLSR_MP(NDVI)
method, and the MCD43A1 products. The results indicate that
throughout 2020, the daily filling rates of RTLSR_MP*(EVI) and
RTLSR_MP(NDVI) were generally higher than those of the
MCD43A1 Full inversions and MCD43A1 Magnitude inversions
parameters. At the beginning and end of the year, due to the
influence of snow, all four models showed relatively low filling
rates (Cui et al., 2019; Schaaf, 2021). During the middle of the year,
between day 125 and day 315, the filling rates of RTLSR_MP and
RTLSR_MP* ranged between 70% and 80%, whereas the filling rate
of the MCD43A1 Full inversions parameter significantly declined,
reaching its minimum of around 40% near day 200. The filling rate
of the MCD43A1 Magnitude inversions parameter fluctuated
between 20% and 40% for nearly the entire year.

The MCD43A1 Full inversions parameter is derived from the
RTLSR model applied over a 16-day period. Consequently, in high-
latitude regions with relatively low cloud cover, sufficient valid
observations (≥7) are usually available within the 16-day window
to successfully drive the inversion model. However, in mid-to low-
latitude regions with heavier cloud cover or during summer and
autumn, the number of valid observations within 16 days often falls
below this threshold (<7), resulting in missing data for the
MCD43A1 Full inversions product. In such cases, valid
observations fewer than 7 days can be utilized to construct the
MCD43A1 Magnitude inversions parameter, which dynamically
adjusts based on a prior database to partially compensate for
data gaps. Nevertheless, when no valid observations are available
within the 16-day period, the model cannot perform any form of
inversion, leading to complete data loss for the corresponding pixels
during that time interval.

Compared with the MCD43A1-based gap-filling methods, the
RTLSR_MP(NDVI) and RTLSR_MP*(EVI) approaches incorporate
multi-source surface parameters with stronger spatiotemporal
continuity, which to some extent reduces the RTLSR model’s
dependence on the number of valid observations. This relaxation
of the inversion requirements allows the model to function
effectively even in persistently cloudy regions or periods with
fewer observations, provided the inversion window is relatively
long, thereby improving the spatial coverage (Gao et al., 2020).

However, the effectiveness of this approach strongly depends on
the spatiotemporal completeness and quality of the external driving
parameters. When the input parameters contain substantial gaps or
poor-quality data, model inversion may still fail. For example, due to
widespread missing soil moisture (SM) data in high-latitude regions
during winter, both RTLSR_MP*(EVI) and RTLSR_MP(NDVI)
failed to perform inversions in northern parts of the study area.
Similarly, in arid and desert regions of northwestern China,

vegetation parameters (such as EVI or NDVI) still exhibit long
periods of missing data even after interpolation using the HANTS
algorithm, making inversion in these regions difficult.

Finally, to evaluate reconstruction accuracy, we used the
MCD43A1 Full inversions parameter as the reference for
comparing the performance of RTLSR_MP*(EVI) and RTLSR_
MP(NDVI) due to its relatively high quality, consistent input
data, and model similarity. The results are presented in Table 5.

The results indicate that the improved RTLSR_MP*(EVI)method
achieves higher accuracy, with RMSE values across all spectral bands
more closely aligned with those of the MCD43A1 Full inversions
parameter. Specifically, the RTLSR_MP*(EVI) method yields an
average RMSE that is 0.012 lower than that of the original
RTLSR_MP(NDVI) method, representing an improvement of
approximately 4.5%. The enhancements are particularly notable in
vegetation-sensitive bands Band2 and Band5, where the RMSE is
reduced by 0.055 (approximately 14.3%) and 0.017 (approximately
6.3%), respectively.

5 Discussion

This study targets two key regions—seasonally snow-covered
areas and regions with significant vegetation phenological
changes—and proposes specific improvements to the RTLSR_MP
model. The reconstruction performance of the model before and
after optimization is systematically evaluated. In seasonally snow-
covered regions, a more stringent bitmask was introduced to exclude
snow-covered pixels. Compared with the conventional NDVI
threshold-based snow removal approach, the improved RTLSR_
MP* method demonstrates enhanced reconstruction accuracy in the
visible bands (Band1, Band3, and Band4), as evidenced by both
spatial distribution and quantitative assessments. Improvements in
other spectral bands were relatively limited. These results also
validate the feasibility of using NDVI as a proxy indicator for
snow detection in the absence of reliable snow flags. In regions
with significant vegetation phenological changes, EVI and LAI were
introduced as alternative driving factors to NDVI to assess their
performance within the RTLSR_MPmodel. The results indicate that
models driven by EVI and LAI exhibit a stronger response to
phenological changes and better resistance to saturation effects in
the near-infrared bands (Band2 and Band5). Spatiotemporal
analyses of representative vegetation types and sample regions
further reveal the limitations of NDVI in such areas. Although
LAI outperforms NDVI in fitting near-infrared reflectance, it
generally produces slightly higher RMSE values than EVI and
NDVI and suffers from a greater number of missing values. This

TABLE 5 RMSE and mean RMSE statistics for MODIS Bands 1–7 of the RTLSR_MP(NDVI), RTLSR_MP*(EVI) methods, and MCD43A1 Full inversions
parameters.

Method RMSE Filling rate

Band1 Band2 Band3 Band4 Band5 Band6 Band7 Bands1-7 mean

MCD43A1 Full inversions 0.0151 0.0216 0.0124 0.0136 0.0227 0.0222 0.0191 0.0181 52.04%

RTLSR_MP(NDVI) 0.0242 0.0384 0.0194 0.0206 0.0291 0.0283 0.0280 0.0269 66.85%

RTLSR_MP*(EVI) 0.0241 0.0329 0.0184 0.0198 0.0280 0.0286 0.0287 0.0258 61.81%
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suggests that in phenologically dynamic regions, EVI is the preferred
driving factor for near-infrared reflectance reconstruction, offering a
favorable balance between data availability and its ability to capture
seasonal variations in surface reflectance.

Compared to the traditional RTLSR approach that relies on
short-period inversions, RTLSR_MP overcomes the limitations of
requiring dense short-term observations and assuming static surface
properties. By introducing an approximate characterization of
BRDF shape variation mechanisms, the method embeds
empirical representations of surface structural and phenological
dynamics into the modeling framework. The core idea is to
utilize the temporal dynamics of surface parameters and their
linear relationship with the RTLSR model coefficients to
indirectly reflect changes in surface structural properties. This
enables the dynamic description of BRDF parameters under
evolving vegetation conditions. In this framework, the weights of
the volumetric scattering term (Kross-thick) and the geometric-optical
term (KLSP) capture not only the variations in BRDF shape but also
the trends in BRDF magnitude (Jiao et al., 2014; Zhang et al., 2016).
The isotropic term (fiso), as a constant adjustment factor, reflects the
baseline reflectance level and approximates the surface reflectance at
a specific moment within the inversion period under a dual-view
zenith configuration. Although this approach relaxes some of the
physical assumptions required by short-term inversions, the linear
kernel combination architecture of the RTLSR model and the
capability of remote sensing parameters—such as vegetation
indices and soil moisture—to characterize the kernel coefficients
allow it to produce reliable results, as demonstrated in ESAisa
experiments. Furthermore, with improved snow detection and
enhanced vegetation parameter inputs, this study shows that the
RTLSR_MP method maintains stable and reliable reconstruction
accuracy across various long-period inversion scenarios, confirming
the method’s practical applicability.

Finally, this study evaluated the practical application performance
of the improved model in MODIS surface reflectance reconstruction
at the regional scale. Compared to the Full Inversion and Magnitude
Inversion parameters from the MCD43A1 product, the improved
method demonstrated higher fill rates in mid-to low-latitude regions,
showing particularly notable advantages in areas with frequent
seasonal cloud cover such as South Asia and Southeast Asia.
Although the method still encounters data gaps in high-latitude
regions during winter and spring due to its dependence on input
parameters, it significantly expands the spatial availability of MODIS
surface reflectance in mid-to low-latitude areas. The results suggest
that, while maintaining reconstruction accuracy within an acceptable
range, the model can serve as an effective complementary approach
when MCD43A1 parameters are missing.

6 Conclusion

This study proposed an optimized RTLSR_MP-based approach
targeting two critical regions: seasonally snow-covered areas and
regions with significant vegetation phenological changes. The
method effectively improved the gap-filling accuracy of surface
reflectance, with an average RMSE reduction of approximately
4.5% across bands Band1–Band7 (as shown in Table 5), and
more notable improvements in vegetation-sensitive bands

Band2 and B5, with reductions of about 14.3% and 6.3%,
respectively. The results indicate that the quality control method
based on NDVI thresholding for snow pixel removal remains
practical within an acceptable error margin (Hall et al., 1995;
Gao et al., 2020), although snow mask labeling offers higher
precision. Among the various driving factors tested, EVI showed
the best performance in capturing the seasonal dynamics of near-
infrared reflectance. Regional-scale evaluation further demonstrates
that, compared to the MCD43A1 product, the improved method
significantly enhances the spatiotemporal availability of MODIS
surface reflectance in seasonally cloudy regions such as South and
Southeast Asia.

It should be noted that the current approach still relies on the
spatiotemporal continuity of driving data, such as vegetation indices
and soil moisture. Future workmay focus on developing strategies to
enhance model robustness and gap-filling capacity while reducing
dependency on external inputs. Overall, the improved method
effectively fills parameter gaps in long-term cloud-covered
regions of MODIS data while maintaining reconstruction
accuracy, offering a practical and feasible solution for the robust
reconstruction of surface reflectance time series.
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