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The upcoming NISAR Earth-observation satellite will utilize dual frequencies
simultaneously, providing synthetic aperture radar (SAR) remote sensing data
in both the L-band and S-band. With its ability to operate single-polarization,
dual-polarization, and quad-polarization modes, NISAR will offer significant
capabilities for land surface observation applications, particularly for estimating
surface soil moisture (SSM) and surface roughness (Hrms). This study aims to
demonstrate NISAR’s future potential in SSM and Hrms estimation by evaluating
the single (SP), double (DP) and quad (QP) polarization configurations. Noisy
synthetic NISAR-like data was generated using the Dubois-B model for both S-
and L-bands. The use of a priori information on the soil moisture was also
examined for SSM and Hrms estimations. Various neural networks (NNs) were
trained using the noisy synthetic dataset. Validation was performed on noisy
synthetic data, as real NISAR data is not yet available. Out of the NISAR
configurations tested, the QP configuration was shown to be the most
performant, with RMSE on SSM estimation of 4.2 vol.%, for QP configuration
compared to 5.1 and 8.2 vol.% for SP and DP configurations when not using a
priori knowledge of soil moisture conditions. RMSE on Hrms was 0.3 cm for QP
configuration, compared to 0.7 and 0.6 cm for SP and DP configurations. The QP
was also shown to bemore capable ofmitigating the effect of the incidence angle
on the estimation of SSM and Hrms compared to the two other configurations.
Moreover, simultaneous use of S- and L-bands enhances SSM and Hrms
estimation compared to using either of these frequency bands alone in
single-, dual-, or quad-polarization configurations. Furthermore, using a priori
knowledge of soil moisture conditionswas successful in improving the estimation
precision for SSM for all NISAR configurations. Notably, for QP configuration,
RMSE on SSM estimation was 3.9 vol.% and 3.2 vol.% when a priori information on
SSM was considered respectively in dry to slightly wet and very wet conditions.
These findings demonstrate the high potential of the future NISAR sensor for
estimating SSM and Hrms.
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1 Introduction

Soil is the boundary layer between land and atmosphere, and
represents the interface of interaction between the two (Camillo
et al., 1983). Surface soil moisture (SSM) and soil roughness
(represented by root mean square height, Hrms) are two soil
parameters that are widely used in hydrology, agronomy and
environment science (Engman, 1991; Jackson et al., 1996; Acutis
and Donatelli, 2003; Vereecken et al., 2022). Traditionally, soil
moisture is measured with ground measurement instruments,
such as dielectric, capacitance, and neutron probes, with high
accuracy; while surface roughness can be measured using profile
meters, laser, and photogrammetry tools (Jester and Klik, 2005;
Evett et al., 2008; Feidenhans’l et al., 2015). However, these
traditional measurement tools have limitations as they can only
measure the soil parameters at the point of measurement, potentially
misrepresenting the wider area (spatial representation), and are time
demanding and resource intensive, making operation challenging
when used over larger areas.

In more recent works, radar remote sensing data have been used
for estimating soil moisture and roughness through various
approaches. There are currently numerous satellite missions used
for soil parameter retrieval, some rely on passive radar technology
(Kerr et al., 2016; Colliander et al., 2022), which generally have a low
resolution, while others rely on active radar technology
(Mirsoleimani et al., 2019; Gorrab et al., 2016; El Hajj et al.,
2016; Ettalbi et al., 2023) and have higher resolution. Passive
satellites, such as the Soil Moisture and Ocean Salinity (SMOS)
mission, and the Soil Moisture Active Passive (SMAP) - after the
malfunction of its active radar ~2.5 months after it started operating
- employ modeling techniques, relying on radar radiometers that
retrieve radar signals coming from Earth’s surface, to estimate soil
moisture at a high temporal resolution of 3 days for SMOS, and 2 to
3 days, for SMAP. Many studies used these SSM estimates with good
results (Jackson et al., 2012; Kim et al., 2017; Yang et al., 2017),
however, these satellites have a low spatial resolution of 35–40 km
for SMOS (with SMOS INRA-CESBIO product at 25 km), and
36 km for SMAP (with a downscaled version at 9 km resolution (Das
et al., 2018), and a disaggregated SMAP product at 1 km (Fang et al.,
2022)), resulting in land-cover heterogeneity within a single pixel
(agricultural, forest, and urban zone mixed together).

On the other hand, active radar satellites employ Synthetic
Aperture Radar (SAR) technology, offering much higher
resolution compared to passive satellites, in the order of meters
to tens of meters. SAR remote sensing data are widely used for soil
moisture and roughness estimation through various techniques.
Using active radar satellite data, previous studies have employed
the Change Detection (CD) technique for soil moisture estimation
(Palmisano et al., 2022; Zhu et al., 2022; Du et al., 2024), Notably,
Palmisano et al. (2022), used the CD technique in tandem with
Sentinel-1 data and found a Pearson correlation ~0.8 and root mean
square error (RMSE) ~5.0 vol.% when estimating SSM. That being
said, the method most commonly used for the estimation of surface
soil parameters is based on modeling radar backscattering
coefficients (σ0). In the modeling approach, soil parameter
estimation is generally accomplished by means of Neural
Networks (NNs). These NNs are trained with simulated data
produced either with physical backscattering models (Baghdadi

et al., 2012; Sadeghi et al., 2015; Fung, 1994) or semi-empirical
backscattering models (Baghdadi et al., 2015; El Hajj et al., 2016;
Mirsoleimani et al., 2019; Hoskera et al., 2020). Among these, the
Water Cloud Model (WCM) (Attema and Ulaby, 1978) is the most
commonly used for radar signal simulation over vegetated areas. In
the WCM, the total radar signal is modeled as the sum of direct
vegetation contribution and soil contribution multiplied by the
attenuation factor. The direct vegetation contribution and the
attenuation are derived using one or more vegetation descriptors
(e.g., Normalized Differential Vegetation Index). The soil
contribution can be modelled using the Dubois model (Dubois
et al., 1995), the Integral Equation Model (IEM) (Fung, 1994), or
the Oh model (Oh, Sarabandi, and Ulaby, 1992), which are the
models most commonly used for the simulation of SAR data
(Hoskera et al., 2020; Merzouki, McNairn, and Pacheco, 2010;
Choker et al., 2017; Fung, 1994; Dubois et al., 1995). These
models generate σ0 according to soil surface and radar
parameters. Later studies proposed modified versions of these
backscattering model, developed to improve their performance
and their correspondence to real data (Baghdadi et al., 2015;
2016; Ma, Han, and Liu, 2021). For example, Baghdadi et al.
(2015) proposed a semi-empirical calibration of the model values
from IEM producing IEM-B. Furthermore, Baghdadi et al. (2016)
proposed a modified version of the Dubois model, named Dubois-B,
by recalibrating VV and HH on an extensive dataset encompassing a
wide range of incidence angles (18°–57°) and radar wavelengths
(encompassing L-, C-, and X-band), as well as in situmeasurements
of roughness and moisture, in addition to incorporating HV to
existing HH and VV polarizations.

Before the launch of the Sentinel-1 (S1) SAR constellation, many
studies used SAR satellite data, such as data from ALOS and
TerraSAR-X, etc., in SSM and Hrms estimation (Baghdadi et al.,
2012; Aubert et al., 2013; Izumi et al., 2019; Menéndez Duarte et al.,
2008; Zribi et al., 2019). However, the main limitation was the long
revisit time of these products, making operational use impossible.
The launch of S1 constellation alleviates this limitation, since it
provides free and open source C-band SAR data with 10 m pixel
spacing of and an orbital revisit time of 6 days (12 days after the S1-B
malfunctioned on 23 December 2021 (Potin et al., 2022), and 6 days
again after S1-C (Klenk et al., 2025) became operation in February
2025). This data allowed for operational monitoring of soil
parameters, mainly focused on SSM at high resolution as
demonstrated by many studies. Notably, El Hajj et al. (2017)
based their approach on the inversion of the Water Cloud Model
(WCM) combined with the modified Integral Equation Model
(IEM). They developed and validated neural networks using a
simulated SAR C-band dataset (produced with the use of IEM).
Their results showed that they were capable of estimating SSM in
agricultural areas with an accuracy of approximately 5 vol.% with
better performance in moderately rough soil (1–3 cm root mean
surface height). Moreover, Paloscia et al. (2013) developed an NN-
based approach. They tested and validated the algorithm in several
test areas across Italy, Australia, and Spain, with RMSE around
4.0 vol.% in Italy an Australia and around 5 0.0 vol.% in Spain.

Apart from the advancement from S1 alone, recent studies have
explored the potential of combining different SAR frequency bands
with the aim of improving the accuracy of soil moisture estimation.
For example, Hamze et al. (2021) used surface roughness derived
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from ALOS-2 L-band SAR to improve C-band based soil moisture
estimation, resulting in a decrease of 0.9 vol.% in RMSE values
without a priori information on soil moisture condition, and a
1.4 vol.% decrease with a priori information on soil moisture
conditions. Furthermore, Zhu et al. (2020) showed that coupling
X, C, and L band resulted in a decrease of 0.4–1.4 vol.% in RMSE on
SSM estimation. In addition, studies have also examined the effect of
using SAR data in multiple polarizations in soil parameter retrieval
(Lee et al., 2001; Saradjian and Hosseini, 2011; Zhu et al., 2020; Ma
and Liu, 2025). Notably (Kweon and Oh, 2014), found that quad-
polarization configurations outperformed single- and dual-
polarization configurations, yielding RMSE on SSM and Hrms
estimation of 3.3 vol.% and 0.6 cm, respectively, as well as a
correlation coefficients of 0.91% and 0.94% respectively for SSM
and Hrms. Furthermore (Hoskera et al., 2020), showed that the R2

value improved from 0.60 to 0.50 when using VV and VH,
respectively, alone, to 0.70 when both were combined, while the
residual standard error (RSE) decreased from 3.0 vol.% to 2.0 vol.%.
However, on the other hand, Baghdadi and Holah (2006) found that
using Advanced Synthetic Aperture Radar (ASAR) data, the
accuracy of the soil moisture estimate does not improve when
two polarizations (HH and HV) are used instead of only one
(improvement of less than 1 vol.%).

These studies underscore the capabilities of SAR technology for
soil moisture estimation, however, challenges remain. Firstly, SAR
data at shorter wavelengths remain limited when attempting soil
moisture retrieval over dense vegetation cover, as demonstrated by
many studies that found that C- and X-bands SAR gave less accurate
estimating compared to longer wavelengths especially during the
critical middle- and late-stage periods of full development (Hamze
et al., 2021; El Hajj et al., 2019; Roo et al., 2001). For this reason,
longer SAR wavelengths, like L-band at ~24 cm, have shown better
potential for operational use since they are more capable of
penetrating well-developed vegetation cover, overcoming the
penetration problems of X- and C-band (El Hajj et al., 2019; Roo
et al., 2001; Bazzi et al., 2022). However, there are currently no
L-band SAR data that are free-of-charge and have a short revisit
time. Secondly, there no open access SAR satellite systems capable of
operating at multiple wavelengths simultaneously. This is
unfortunate because, as discussed earlier, using multiple
wavelengths can improve the estimation of soil parameter.
Indeed, estimating soil moisture and surface roughness together
remains challenging when using only a single wavelength, marking
the need for multi-frequency data (two or more wavelengths).

For all these reasons, the NISAR (NASA ISRO SAR) mission, set
to be launched mid 2025 is greatly promising, especially since it will
operate at dual frequencies, namely, S- and L-bands (around 9 and
24 cm, respectively), and provide SAR data dual (DP) and quad (QP)
polarizations in addition to the single (SP) polarization. The NISAR
mission is a collaboration between NASA’s Jet Propulsion
Laboratory (JPL) (Kellogg et al., 2020; NISAR, 2025) and the
Indian Space Research Organisation (ISRO). The NISAR SAR
apparatus operates through a 12-m antenna, shared for both
frequencies, therefore the incidence angle will be the same for
both operating frequencies ranging between 33° and 47°. Both
frequency bands operate at a swath width of 242 km and provide
a resolution ranging from three to 10 m, depending on the
observation mode. The NISAR will perform global acquisitions

on a 12-day repeat cycle (Rosen et al., 2017; Villano et al., 2018;
Kellogg et al., 2020; NISAR, 2025). Data produced by NISAR will be
freely and openly available to support scientific research and
operational applications. NISAR, with its multiple frequencies
and polarizations configurations, potentially aids in the
development of SSM and Hrms estimation models that rely on
the independent sensitivities of frequencies and polarizations to
different soil characteristics in order to mitigate potential errors in
estimation. Therefore, NISAR could play a crucial role in increasing
the availability of soil moisture maps by complementing Sentinel-1.
Indeed, while Sentinel-1 already produces an important number of
maps, NISAR’s capabilities will further increase mapping frequency.
Therefore, by combining data from both missions, the number of
soil moisture maps will be significantly higher, resulting in much
denser image coverage, especially when all SAR orbits are utilized.

In preparation for the launch of NISAR Soil Moisture Science
Team (2023) provided a detailed description of inversion models
that could be employed for the estimation of soil moisture using the
upcoming NISAR mission (i.e., physical model inversion algorithm,
and multiscale fusion algorithm). They particularly described the
NISAR L3 Soil Moisture Data Product, aiming for a spatial
resolution of 200 m × 200 m and an accuracy on SSM
estimation of 6.0 vol.%. Concerning the physical model inversion
algorithm, data cubes for multiple L-band polarizations (HH, HV,
and VV) and land cover types (nine in total) were built using the
Numerical Maxwell Model in 3 Dimensions (NMM3D), namely,
root mean square surface height, soil’s dielectric constant and
vegetation water content. The algorithm is based on a
minimization by least squares of the difference between
simulated and observed time-series backscattering coefficients.
Using L-band, the SSM estimation accuracy was between
4.4 vol.% (bare soil) and 8.0 vol.% (canola). They also tested a
multiscale fusion model, whose results were presented in detail by
Lal et al. (2023). The proposed multiscale algorithm blends the
coarse resolution (~9 km) reanalysis soil moisture of the European
Centre for Medium-Range Weather Forecast (ECMWF) with very-
high-resolution NISAR L-band SAR backscatter (~10 m) datasets to
produce a high resolution 200 m soil moisture product. They
obtained an ubRMSE ranging from 2.7 to 5.0 vol.% over crop
fields. Furthermore, Dinesh et al. (2024) investigated the capacity
of full polarimetric SAR data in L-Band for estimating soil moisture
using decomposition techniques and machine learning algorithms.
They used simulated NISAR product provided by NASA. The
vegetation effect was considered through the Water Cloud Model
(WCM). Random forest showed the most precise soil moisture
estimations, with an RMSE between 3.0 and 5.0 vol.% without
considering vegetation effects and an RMSE between 2.8 and
4.2 vol.% while considering vegetation effects. In addition (Kim
et al., 2025), estimated soil moisture over forests using L-band
airborne SAR that replicate NISAR observations and obtained an
accuracy of 6.7 vol.%.

This study anticipates NISAR’s launch by analyzing the
potentially achievable accuracy in estimating soil parameters
(SSM and Hrms) over bare agricultural areas, based on the
different NISAR operating configurations (SP, DP, and QP). This
study will be conducted using simulated radar backscattering
coefficient data based on the Dubois-B model. Neural Network
technique (NN) will be constructed for SSM and Hrms estimation.
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All NISAR configurations will be tested, without and with a priori
information on soil moisture conditions (obtained thanks to
weather data or human expertise). Findings aim to leverage new
generation SAR remote sensing data (multi-frequency) in the
estimation of soil parameters for agricultural, hydrological, and
environmental applications.

2 Methodology

This study compares the performance of different NISAR
configurations for the estimation of surface SSM and Hrms over
bare soils, using neural NNs to invert radar signals. The NNs are
trained on a noisy synthetic SAR dataset in L- and S-band
(wavelengths of NISAR), generated using the Dubois-B radar
backscattering model at different polarizations (HH, VV, and
HV). NISAR data in single, dual, and quad polarizations
configurations were evaluated for estimating soil parameters.
Wide ranges of Dubois-B model input parameters were used in
the simulated dataset production phase, then noise was added to
better approximate real data.

The Dubois-B model was chosen for simulating backscattering
coefficients due to its demonstrated accuracy in the L-band and
likely reliability in the S-band, since the latter lies between the C and
L frequencies used for its calibration. Furthermore, Dubois-B’s
validity domain corresponds well with the typical ranges of soil
moisture and surface roughness on agricultural land and matches
NISAR sensor parameters such as incidence angles and
polarizations. In contrast, the Integral Equation Model (IEM)
(Fung et al., 1992) and its variants, AIEM (Chen et al., 2003) and
IEM-B (Baghdadi and Zribi, 2016), were not used for two main
reasons. First, IEM has shown notable discrepancies between
simulated and observed SAR data, resulting in imprecise radar
signal inversion (Baghdadi and Zribi, 2016). Additionally, IEM
and AIEM require the estimation of multiple input parameters
other than SSM and Hrms, such as the correlation function, and
correlation length, increasing the complexity of the inversion
process. Second, IEM-B was calibrated using an experimental
dataset consisting of SAR images and ground measurements of
soil moisture content and roughness, which transformed the original
IEM model into a semi-empirical model since this calibration
replaced the measured correlation length with a forcing
parameter while fixing the correlation function to a Gaussian
function. However, this forcing parameter is proposed for X, C,
and L frequency bands, leaving that parameter missing for S-band.

The inversion method of NISAR signal for estimating soil
parameters is developed through four key steps:

• Generating synthetic (simulated) SAR σ0 data for HH, VV,
and HV polarizations in L and S frequency bands.

• Adding noise to synthetic data to better approximate real SAR
data that will be delivered by NISAR.

• Splitting the generated noise dataset into two equal parts: One
will be used for training the NNs (noisy training dataset) and
the other will be used for neural network validation (noisy
validation dataset).

• Training the NNs using the noisy training dataset and
validating them using the noisy validation dataset.

Performance analysis of NNs is performed only on the noisy
validation dataset, as NISAR has not yet been launched. The aim is
to anticipate this launch by analyzing the likely accuracy of soil
parameter estimation when using NISAR.

2.1 Synthetic SAR data

Dubois-B is the model selected for generating SAR synthetic
data. The Dubois model, introduced by Dubois and Van Zyl (1994)
was developed using scatterometer data and later tested on airborne
datasets. Being a semi-empirical approach, it combines theoretical
modeling with coefficients derived through experimental data fitting
(Dubois et al., 1995). The Dubois model is a widely used approach to
characterize the backscattering coefficient, by establishing its
relationship with radar parameters, such as incidence angle,
wavelength, and frequency, as well as surface properties like
roughness and dielectric constant. Using the VV and the HH
polarizations, the model solves for two unknown variables:
dielectric constant and surface roughness, enabling the retrieval
of soil moisture and surface roughness. The Dubois model algorithm
has shown significant success in bare soil areas, as noted by several
studies as that of Sikdar and Cumming (2004) and Neusch and
Sties (1999).

However, some studies have highlighted the limitations of the
Dubois model (Baghdadi et al., 2016; Merzouki et al., 2010; Choker
et al., 2017). Notably, Choker et al. (2017) evaluated Dubois model
using a wide dataset of SAR data (at L-, C- and X-bands) and soil
measurements acquired over numerous agricultural sites (in
France, Italy, Germany, Belgium, Luxembourg, Canada and
Tunisia), reporting overestimations of the measured σ0 mainly
in HH polarization, when soil moisture is below 20 vol.%, or k
Hrms above 2.5 (k is the wavenumber), or θ higher than 30°

(Choker et al., 2017). Furthermore, Dubois is limited to the two co-
polarization (VV and HH) which is restrictive when using cross
polarization SAR data. In order to overcome this limitation,
Baghdadi et al. (2016) developed the Dubois-B, a recalibrated
version of the Dubois model. The Dubois-B incorporates HV as
well as HH and VV polarizations and was validated on an extensive
dataset, encompassing a wide range of incidence angles (18°–57°),
in various climatic zones (humid, semi-arid, and arid sites) and for
radar wavelengths (L, C, and X). Dubois-B was not calibrated for
the S-band because remotely sensed SAR S-band data is not yet
available. In this study, Dubois-B is assumed to be valid for the
Sband since its wavelength (~9 cm), lies in between the
wavelengths of C and L frequency bands.

Dubois-B demonstrated a superior performance across different
radar wavelengths, incidence angles, for both HH and VV
polarizations with decreased Biases and RMSE when compared
to Dubois (Baghdadi et al., 2016). The expression for HV, VV
and HH in the Dubois-B model are the following (Equations 1–3,
respectively)

σ0HV � 10−2,325 × cos θ( )−0.01 × 100,011×cot θ( )×SSM × k.Hrms( )0.44×sin θ( )

(1)
σ0VV � 10−1,138 × cos θ( )1,528 × 100,008×cot θ( )×SSM × k.Hrms( )0.71×sin θ( )

(2)
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σ0HH � 10−1,287 × cos θ( )1,227 × 100,009×cot θ( )×SSM × k.Hrms( )0.86×sin θ( )

(3)

Where SSM is the volumetric soil moisture measured in volumetric
percent (vol.%), k is the wavenumber equal to 2π/λ (λ is the
wavelength), Hrms is the root mean surface height (surface λ
roughness) in cm, and θ is the incidence angle in radian. The
Dubois-B model was used to generate a synthetic dataset of
backscattering coefficient (σ0) for L- and S-bands (wavelength
equal to 23.84 and 9.37 cm, respectively) in the VV, HH, and
HV polarizations. The inputs required by the Dubois-B model for σ0
generation are: SSM, Hrms, and θ. The maximum SSM value used in
the simulations (40 vol.%) was set as such because e radar signal
increases with soil moisture up to a threshold of about 35–40 vol.%
(Holah et al., 2005). Beyond this threshold, the radar signal begins to
decrease, making the estimation of moisture less reliable, since the
same backscattering coefficient value could correspond to two
different moisture values (after saturation). The range of θ
chosen, from 30° to 50° corresponds to approximately the range
of θ for NISAR (NISAR, 2025).

Table 1, shows the ranges of input parameters used for the
Dubois-B simulations, as well as the total number of elements
generated for each frequency band (defined by one wavelength)
and polarization.

The output of the Dubois-B model (simulated SAR data, σ0) is
calculated from input parameters without any added noise.
However, in real world use cases, SAR σ0 includes a certain
amount of noise, depending on the radiometric accuracy of the
instrument (Shimada et al., 2009; Motohka et al., 2018; Schmidt
et al., 2020; Schwerdt et al., 2017). This radiometric error must be
accounted for when employing simulated SAR data. For Sentinel-1,
This error is approximately 0.70 dB (σ0) for co-polarizations (VV
and HH) and 1.0 dB for cross polarization (HV) (Schwerdt et al.,
2017). For ALOS281 2, this error is less than 0.8 dB, as shown by
Motohka et al. (2018). The operational radiometric accuracy of
NISAR is not yet known as the satellite data is not produced yet. For
this reason, we will assume that NISAR will have a radiometric
accuracy similar to other currently available SAR satellite mission
(Sentinel-1 and ALOS-2). Therefore, a zero-mean Gaussian random
noise with standard deviations of 0.7 dB (for VV and HH) and
1.0 dB (for HV) was introduced to synthetic σ0 for each element in
our dataset (corresponding to a given θ, SSM, and Hrms). A
hundred noise samples were randomly drawn for each element.
These noise values (dB) were then added to the Dubois-B-simulated
288 σ0, generating 100 variations for each original element in our
synthetic dataset. As a result, the noisy synthetic datasets were
created for L- and S-bands, and in VV, HH, and HV
polarizations, each containing 5,756,400 elements. This noisy

synthetic data are supposed to approximate real NISAR data,
assuming that real NISAR data will have similar radiometric
accuracy to that of the noisy simulated datasets. Each point of
the noisy synthetic dataset operationally represents the mean of
backscattering coefficient over a spatially homogeneous unit (a plot
or a mesh-cell) measuring a few hundred meters square. This will
strongly reduce the effect of speckle excepted on real NISAR data
because we are using the mean of pixels inside of a given spatial unit
the influence of speckle noise will be reduced. For example, for a plot
that is around 200 m × 200 m, the effect of speckle will be reduced by
a factor of 20.

2.2 Neural network configurations

In this study, a NN approach was employed to estimate soil
parameters from SAR data. The NNs were trained using the
Levenberg–Marquardt algorithm (Marquardt, 1963) and
structured with two hidden layers, each containing 20 neurons
(Baghdadi et al., 2012) with Mean squared error (MSE) used as
the loss function. This method was used because previous studies
have shown that a network with two hidden layers and 20 neurons
per layer provided accurate SSM estimates while maintaining
reasonable computational efficiency (El Hajj et al., 2017). Both
hidden layers employed a ReLU activation function (Schmidt-
Hieber, 2020; Lin and Shen, 2018). Three SAR configurations
were considered based on the polarimetric modes available for
NISAR (Brancato and Fattahi, 2021), all three configurations
utilized the L and S frequencies simultaneously:

• SP configuration: corresponds to the configuration where we
use acquisitions from L- and S-bands in Single Polarization
configuration. Noisy radar signal at HH polarization, and
noisy radar signal at VV polarization were tested.

• DP configuration: corresponds to the configuration where we
use acquisitions from L- and S-bands in Dual Polarization
configuration: noisy radar signals at both HH and HV
polarizations, as well as noisy radar signals at VV and VH
polarizations were tested.

• QP configuration: corresponds to the configuration where we
use acquisitions from L- and S-bands in Quad Polarization
configuration noisy radar signal at HH, HV, and VV
polarizations were used in input to inversion model.

NNs were trained using only θ and the noisy synthetic
training backscattering coefficients generated from Dubois-B.
Consequently, neither reference-SSM nor reference-Hrms were
used as inputs for the estimation of soil parameters (SSM and

TABLE 1 Dubois-B input parameters used in this study.

Parameter Start value End value Step Number of discrete values

θ (°) 30 50 0.5 41

SSM (vol. %) 2 40 1 39

Hrms (cm) 0.5 4.0 0.1 36

Total number of elements 57,564
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Hrms) as these two are not known at the time of estimation.
Furthermore, since NISAR operates the L- and S-bands in
tandem, θ is the same for the two wavelengths employed
(Rosen et al., 2017; Villano et al., 2018; Kellogg et al., 2020;
NISAR, 2025). SSM and Hrms were estimated simultaneously
using all three configurations.

Additionally, a priori information on natural soil moisture
conditions was incorporated during NN training. Previous
studies demonstrated that prior knowledge of soil moisture
conditions significantly enhances estimation accuracy of SSM
(Baghdadi et al., 2012; Hamze et al., 2021; El Hajj et al., 2017).
Weather data, including precipitation and temperature from
ERA5 reanalysis, in situ sensors, and remote sensing products
like the Tropical Rainfall Measuring Mission (TRMM), can help
indicate whether the soil is dry to slightly wet (after a prolonged dry
period before SAR acquisition) or very wet (following heavy
rainfall). By integrating this a priori information on SSM, the
range of possible soil moisture estimates is constrained,
improving both accuracy and mapping reliability in neural
network models. For this reason, in addition to the NN built
using the whole range of SSM (without a priori information on
SSM), separate NNs are created for each of the two soil moisture
state, one encompassing dry to slightly wet soil moisture conditions
and one for very wet soil moisture conditions (with a priori
information on SSM).

The impact of a priori information was assessed accordingly,
NNs were trained with and without prior information on soil
moisture. When splitting the noisy synthetic data to create a
dataset for dry to slightly wet soils and another for the very wet
soils, an overlap of 10 vol.% has been kept between the two training
sub-datasets of the NNs. Here are the three developed cases (using
both S- and L-bands):

• Case 1: No a priori information is used for the soil moisture
state. In this case, the NN is trained using SSM between
2 and 40 vol.%.

• Case 2: With a priori information on soil moisture state. The
soil is presupposed to be dry to slightly wet according to
meteorological data (precipitation, temperature). The NN is
trained using SSM between 2 and 30 vol.%.

• Case 3: With a priori information on soil moisture. The soil is
presupposed to be very wet according to meteorological data
(precipitation, temperature). The NN is trained using SSM
between 20 and 40 vol.%.

When it comes to validation datasets, in the case without a priori
information (case 1), the three NN configurations (SP, DP, and QP)
were validated using the entire noisy validation dataset, with SSM
values ranging from 2 to 40 vol.%. For the two cases with a priori
information on SSM (cases 2 and 3), the NNs were validated using a
dataset having SSM values ranging between 2 and 25 vol.% when the
soil is assumed to be dry to slightly wet (case 2), and using a dataset
having SSM values between 26 and 40 vol.%. in the case of very wet
soil (case 3). Nine neural networks were developed for surface soil
moisture and roughness estimation. Table 2 summarizes each
developed neural network.

The performance analysis of each neural networkwas conducted on
the noisy validation dataset that corresponds to each case (see Table 2).
The estimated SSM and Hrms values from the neural networks are
compared to the reference values (those used to simulate the SAR
synthetic validation dataset), and the errors are quantified using Root
Mean Square Error (RMSE) and bias (Estimated–Reference).
Additionally, the RMSE and bias of SSM estimates are analyzed as a
function of Hrms and θ values; while bias and RMSE of Hrms estimates
were analyzed based on SSM and θ values.

TABLE 2 Description of the NNs used in this study.

Neural
network

Case configuration SSM range for training
datasets (vol.%)

SSM range for validation
datasets (vol.%)

Output

NN1

Case 1: No a priori

SP

2 ≤ SSM ≤ 40 2 ≤ SSM ≤ 40

SSM,
Hrms

NN2 DP SSM,
Hrms

NN3 QP SSM,
Hrms

NN4

Case 2: A priori dry to
slightly wet

SP

2 ≤ SSM ≤ 30 2 ≤ SSM ≤ 25

SSM,
Hrms

NN5 DP SSM,
Hrms

NN6 QP SSM,
Hrms

NN7

Case 3: A priori very wet

SP

20 ≤ SSM ≤ 40 26 ≤ SSM ≤ 40

SSM,
Hrms

NN8 DP SSM,
Hrms

NN9 QP SSM,
Hrms
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3 Results

3.1 Estimated compared to reference SSM

The results of SSM estimation were analyzed first, by comparing
estimated SSM to reference (input) SSM for each of the
NNs (Figure 1).

Analysis of the results will be presented for each of the three
cases: case 1: no a priori information, case 2: a priori dry to slightly
wet, and case 3: a priori very wet. For single polarization NNs, the

presented results correspond to HH polarization, as HH and VV
exhibited similar performance. Results for VV are provided in the
appendix (Supplementary Figures A7a, d, g). Likewise, results for DP
configuration NNs using VV and VH instead of HH and HV can be
found in the appendix (Supplementary Figures A7b, e, h). The
similar soil moisture retrieval accuracy for HH and VV polarizations
(difference of 0.2 vol.% without a priori soil moisture infomration)
may be due to the fact that the sensitivity of the radar signal to soil
moisture is not very dependent on polarization (e.g. (Sokol et al.,
2004; Baghdadi et al., 2008)). A second possible explanation is that

FIGURE 1
Estimated SSM as a function of reference SSM (a)NN1: single polarization (HH), no a priori information. (b)NN2: dual polarizations (HH and HV), no a
priori information. (c) NN3: quad polarizations (HH, VV, and HV), no a priori information. (d) NN4: single polarization (HH), a priori dry to slightly wet. (e)
NN5: dual polarizations (HH and HV), a priori dry to slightly wet. (f) NN6: quad polarizations (HH, VV, and HV), a priori dry to slightly wet. (g) NN7: single
polarization (HH) a priori verywet. (h)NN8: dual polarizations (HH andHV), a priori very wet. (i)NN9: quad polarizations (HH, VV, andHV), a priori very
wet. RMSE and bias are in vol.%.
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although some authors have shown a stronger sensitivity of the radar
signal in HH (e.g. (Beaudoin et al., 1990)), this difference is not
clearly visible in the simulated data.

Considering case 1, where we do not use a priori information,
the NN developed using the single-polarization (SP) configuration
(NN1) resulted in an RMSE of 8.2 vol.% (Figure 1a) compared to
5.1 vol.% for NN2 (Figure 1b), which uses dual-polarization (DP)
configuration. Meanwhile, NN3 which utilizes quad-polarization
(QP) configuration performed the best with an RMSE of 4.2 vol.%
(Figure 1c). Furthermore, NN1 showed large over estimation of SSM

for very low SSM values, and significant underestimation for high
SSM values. Bias values were around 0 vol.% for all three NNs.

In case 2, where soil moisture conditions were assumed to be dry
to slightly wet, the NN constructed using the SP configuration
(NN4) showed an RMSE of 6.1 vol.% (Figure 1d), compared to
4.5 vol.% (Figure 1e) for NN5 (DP configuration); while NN6 (QP
configuration) resulted in an RMSE of 3.9 vol.% (Figure 1f) which
was the best out of the three. Similarly to case 1, the SP configuration
(NN4) showed an important overestimation for low reference SSM
and underestimation for high reference SSM. Bias was positive and

FIGURE 2
Estimated Hrms as a function of referenceHrms (a)NN1: single polarization (HH), no a priori information. (b)NN2: dual polarizations (HH andHV), no
a priori information. (c)NN3: quad polarizations (HH, VV, and HV), no a priori information. (d)NN4: single polarization (HH), a priori dry to slightly wet. (e)
NN5: dual polarizations (HH and HV), a priori dry to slightly wet. (f) NN6: quad polarizations (HH, VV, and HV), a priori dry to slightly wet. (g) NN7: single
polarization (HH) a priori verywet. (h)NN8: dual polarizations (HH andHV), a priori very wet. (i)NN9: quad polarizations (HH, VV, andHV), a priori very
wet. RMSE and bias are in cm.
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varied from 1.5 vol.% for the SP configuration to 0.8 vol.% for the QP
configuration.

Case 3 tells a similar story, NN9 (QP configuration) performed
the best, with an RMSE of 3.2 vol.% (Figure 1g), followed by NN8
(DP configuration) with 3.8 vol.% (Figure 1h), and finally NN6 (SP
configuration), with an RMSE of 4.6 vol.% (Figure 1i). There was no
important overestimation at low SSM values, although we still have
underestimation for high reference SSM values. Bias was negative
ranging from −1.8 vol.% for the NN7, which uses SP configuration,
to −0.5 vol.% for the NN using QP configuration.

Therefore, the quad-polarization configuration achieved the best
SSM estimation, with errors consistently lower than the two other
configurations tested (single-polarization and dual-polarization
configurations). Furthermore, NNs constructed using a priori
knowledge of soil moisture conditions performed better than
NNs constructed without knowledge of soil moisture conditions,
with improvements of RMSE. Estimated compared to
reference Hrms.

Estimated Hrms were compared reference Hrms in Figure 2.
When examining case 1 (without a priori knowledge of soil
conditions), NN1 (Figure 2 using SP configuration) resulted in
an RMSE of 0.7 cm (Figure 2a), while NN2 (using DP
configuration) performs slightly better with an RMSE of 0.6 cm
(Figure 2b), and NN3 (using QP configuration) performs the best
estimations with an RMSE of 0.3 cm (Figure 2c). Bias was similar
across the board at around 0.01 cm. For case 2 (a priori dry to
slightly wet), NN4, which uses SP configuration, showed an RMSE of
0.6 cm (Figure 2d), while NN5 (Figure 2e, DP configuration) had an
RMSE of 0.5 cm, and NN6, which uses the quad polarization,
resulted in an RMSE of 0.3 (Figure 2f). NN4 and NN5 exhibited
positive bias, with values of 0.15 and 0.06 cm, respectively, while
NN6 showed no bias. For case 3 (a very wet) NN7, using the SP
configuration, resulted in an RMSE of 0.5 cm (Figure 2g), RMSE was
similar for NN8 (using DP configurations, Figure 2h), while NN9
(QP configuration) had an RMSE of 0.3 cm (Figure 2i). Bias was
negative for the tested NNs, being highest for NN7 at −0.13 cm,
followed by −0.07 cm for NN8 and −0.04 cm for NN9.

Similar to SSM estimation, quad-polarization configuration
performed the best Hrms estimation, with errors around half of
the two other configurations (SP and DP configurations).
Furthermore, the neural networks in our article output both soil
moisture (SSM) and surface roughness (Hrms), and since the radar
signal is related to both soil moisture and roughness, an improved
estimation of SSM in the case of a priori information on SSM
(thanks to the optimized estimation of soil moisture within a
reduced range of SSM values) can lead to an improvement in
Hrms estimation. This improvement is negligible for the QD
configuration, which performs well in all three cases; however,
we saw improvements between 0.1 and 0.2 cm for the SP and
DP configurations (Figure 2).

3.2 Evaluating error in SSM estimation as a
function of θ and Hrms

In this section, SSM estimation errors were analyzed using
RMSE and bias metrics as a function of Hrms and θ values for
each configuration in our study (SP, SP, and QP) and for each case

(no a priori knowledge, a priori dry to slightly wet, a priori very wet).
As in Section 3.1, for SP configuration, the NN tested utilized the
HH polarization; results for VV are provided in the appendix
(Supplementary Figures A8 and A9). Likewise, results for VV
and VH instead of HH and HV can also be found in the
appendix (Supplementary Figures A8 and A9).

Figure 3 shows the RMSE on SSM estimation as a function of θ
and Hrms for the various NNs. For NNs constructed without a
priori knowledge of soil moisture conditions, NN1 (SP
configuration) had RMSE values ranging from around 6.0 vol.%
for low θ values (30°), to around 9.5 vol.% for high θ values (50°).
RMSE ranged from ~3.5 to ~6.0 vol.% for NN2 (DP configuration),
and from ~3.0 to ~5.0 vol.% for NN3 (QP configuration). Figure 3b
shows the effect of θ on RMSE when using a priori knowledge of dry
to slightly wet soil conditions. RMSE ranged from ~5.0 to ~6.0 vol.%
for NN4 (SP configuration), from ~3.5 to ~5.0 vol.% for NN5 (DP
configuration), and from 2.8 to around 4 vol.% for NN6 (QP
configuration). Figure 3c shows that RMSE ranged from ~4.0 to
~4.5 vol.%, for NN7 (SP configuration), from ~3.0 to ~4.0 vol.% for
NN8 (DP configuration), and from ~2.5 to ~3.5 vol.% for NN9 (QP
configuration). Therefore, RMSE increased as θ increased.
Furthermore, incorporating a priori knowledge of soil moisture
conditions, and using QP polarization reduced RMSE and
narrowed its range as marked by the difference between the
maximum and minimum RMSE (ΔRMSE) that was
approximately 3.5 vol.% for NN1 and around 1.0 vol.% for NN9.

Figures 3d–f, show RMSE as a function of reference Hrms. For
NNs constructed without a priori knowledge of SSM (Figure 3d),
NN1 (SP configuration) had the highest RMSE for very high and
very low Hrms values (~13.0 vol.% at Hrms = 0.5 cm, and ~9.0 vol.%
at Hrms = 4.0 cm). NN2 (DP configuration) and NN3 (QP
configuration) exhibited their highest RMSE values at ~6.5 and
~4.5 vol.%, respectively, for very low Hrms (0.5 cm). For NNs
constructed for dry to slightly wet conditions (Figure 3e), RMSE for
NN4 (SP) is highest for very low and very high Hrms values
(~7.0 vol.% for Hrms of 0.5 and 5.0 cm). For NN5 (DP) and
NN6 (QP), RMSE values were around 4.5 and 4.0 vol.%,
respectively across the range of Hrms. For NNs developed for
very wet conditions, NN7 (SP configuration) and NN8 (DP
configuration) had their highest RMSE values for very low Hrms
(~6.5 and ~5.0 vol.% for Hrms = 0.5 cm) while NN9 (QP
configuration) resulted in an RMSE of around 3.5 vol.% across
the range of Hrms values.

RMSE was highest at both the lowest and highest Hrms values in
our study, particularly when using the SP configuration. However,
using the QP configuration and a priori knowledge of soil moisture
conditions significantly reduced RMSE andminimized the impact of
Hrms on SSM estimation.

Figure 4 presents the bias on SSM estimation as a function of θ
and Hrms for the various NNs. Figure 4a shows that without a priori
knowledge of soil moisture conditions, Bias is around 0 vol.% for
NN1, NN2, and NN3 (no bias). In the case of a priori dry to slightly
wet conditions, bias was positive, NN4 (SP configuration) had a bias
ranging from 1.0 for low θ (30°) to 2.0 for high θ (50°). For NN5 (DP
configuration), bias ranged between 0.5 and 2.0 vol.%, and NN6 (QP
configuration) ranged between 0.5 and 1.0 vol.% (Figure 4b). When
working in very wet soil moisture conditions (Figure 4c), bias that
more negative greater when θ increases, ranging
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from −1.0 to −2.0 vol.%, for NN7 (SP configuration), from ~−0.5 to
~−1.5 vol.% for NN8 (DP configuration), and from ~0 to ~−1 vol.%
for NN9 (QP configuration).

Figures 4d–f show estimation bias as a function of reference
Hrms. When a priori soil condition knowledge was not used, bias
values ranged from −10.0 to 7.0 vol.%, when Hrms increased from
0.5 to 4.0 cm, for NN1 (SP configuration), from −5.0 to 3.5 vol.% for
NN2 (DP configuration) and from −2.0 to 3.0 vol.% for NN3 (SP
configuration) (Figure 4d). NNs constructed for a priori dry to
slightly wet conditions resulted in smaller ranges of bias values, with
NN4 resulting in bias values varying between −5.0 to 6.5 vol.%, as
Hrms increased from 0.5 to 4.0 cm NN5 resulted in bias values
ranging from −3.0 to 4.0 vol.%, while bias values for NN6 ranged
from −1.0 to 3.0 vol.%. For NNs constructed with a priori knowledge
of very wet soil moisture conditions, bias values ranged from −6.0 to
2.0 vol.% and from −4.0 to 2.0 vol.%, respectively for NN7 (SP
configuration) and NN8 (DP configuration) when Hrms increases
from 0.5 to 4.0 cmNN9 (QP configuration) shows a mostly constant
bias at around −1.0 vol.% for Hrms values between 0.5 and 3.0 cm,
outside that range, bias increases, reaching 2.0 vol.% for Hrms
of 4.0 cm.

Bias was generally more negative for lower Hrms values and
more positive for higher Hrms values. However, the effect of Hrms
on bias was reduced when using QP configuration and a priori

knowledge of soil moisture conditions, as shown by the
improvement in the range of bias between NN1 and NN9, as
Δbias was ~17.0 vol.% for NN1 and ~2.0 vol.% for NN9.

3.3 Evaluating error in Hrms estimation as a
function of θ and SSM

In this section, Hrms estimation were assessed using RMSE and
bias values as a function of reference SSM and θ values for each
configuration in our study (SP, SP, and QP). RMSE has been
calculated without a priori knowledge of soil moisture conditions
because the results of Section 3.2 showed that using a priori
knowledge did not significantly enhance Hrms estimation.
Figure 5a shows the RMSE on Hrms estimation as a function of
reference θ. For NN1 (SP configuration), RMSE values decreased
from ~0.9 to ~0.6 cm when θ increases from 30° to 50°. For NN2 (DP
configuration), RMSE went from ~0.7 down to ~0.5 cm when θ
increases, while for NN3 (QP configuration), RMSE values
decreased from ~0.4 to ~0.3 cm when θ decreased. ΔRMSE,
calculated as the difference between maxRMSE and minRMSE,
was ~0.3 cm for NN1, compared to ~0.2 cm for NN2, and
~0.1 cm for NN3, which had the lowest RMSE values overall.
Figure 5b shows RMSE as a function of reference SSM. NN1 had

FIGURE 3
RMSE on SSM estimation as a function of reference θ (a–c) and as a function of reference Hrms (d–f) for each polarization-configuration. (a, d)No a
priori information. (b, e) A priori dry to slightly wet. (c, f) A priori very wet. (NN1, NN4, NN7): single polarization (HH), (NN2, NN5, NN8):dual polarizations
(HH and HV), (NN3, NN6, NN9): quad polarizations (HH, VV, and HV).
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FIGURE 4
Bias on SSM estimation as a function of reference θ (a–c) and as a function of reference Hrms (d–f) for each polarization-configuration. (a, d) No a
priori information. (b, e) A priori dry to slightly wet. (c, f) A priori very wet. (NN1, NN4, NN7): single polarization (HH), (NN2, NN5, NN8): dual polarizations
(HH and HV), (NN3, NN6, NN9): quad polarizations (HH, VV, and HV).

FIGURE 5
RMSE on Hrms estimation as a function of reference θ (a) and as a function of reference SSM (b). NN1: SP configuration (HH), NN2: DP configuration
(HH and HV), NN3. QP configuration (HH, VV, and HV).
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its highest RMSE at around 1.0 cm for very low and very high SSM
reference SSM values (2 vol.%, and 40 vol.%, respectively). The
lowest RMSE achieved by NN1 was around 0.6 cm for an SSM value
of around 20 vol.%, NN2 showed RMSE varying between ~0.5 and
~0.6 cm, while NN3 had the lowest overall RMSE varying between
~0.3 and ~0.4 cm.

Therefore, RMSE decreased when θ increases. Moreover, RMSE
was highest for very low and very high SSM values. However, for the
QP configuration (NN3), these effects were not as strong when
compared to the other polarization-configurations.

Figure 6a presents the bias values as a function of reference θ.
Bias was around 0 cm for the three NNs tested with NN3 having
slight positive bias of around 0.1 cm for really high and really low θ
values (30° and 50°, respectively). The bias was also examined as a
function of reference SSM (Figure 6b). For NN1 (SP configuration),
there was a negative bias for low SSM values (lower than 20 vol.%),
reaching −0.8 cm at an SSM of 2.0 vol.%. Conversely, for high SSM
values (>20 vol.%), the bias was positive, reaching 0.8 cm at an SSM
of 40 vol.%. Similarly, for NN2 (DP configuration) and NN3 (QP
configuration), the bias followed the same trend: negative for low
SSM values and positive for high SSM values. For NN2, the bias
reached −0.4 cm at an SSM of 2.0 vol.% and 0.4 cm at 40 vol.%. For
NN3, the bias was the smallest, reaching −0.2 cm at 2.0 vol.% and
0.2 cm at 40 vol.%.

4 Discussion

A noisy synthetic SAR dataset of S and L frequency bands was
created following Dubois-B simulations of SAR backscattering
coefficients. This dataset was then split equally into a training
dataset, and validation dataset with the aim to estimate both the
surface soil moisture (SSM) and the surface roughness (Hrms) using
neural networks. Validation was carried out using synthetic data
only because NISAR data is not yet operational and so the data is not
yet available (launch expected in 2025). NISAR will provide L- and

S-bands acquisitions simultaneously in three configurations: Single-,
Dual-, and Quad-Polarization configurations. These configurations
were tested without a priori information on soil moisture conditions,
and with a priori information on the soil moisture conditions (dry to
slightly wet or very wet soils). Results showed that the quad
polarization configuration achieved the highest precision for SSM
and Hrms estimation, performing better than single and dual
polarizations configurations.

4.1 Analysis of estimation errors

Errors in SSM estimates from neural networks were shown to be
influenced by SAR incidence angle (θ) and by soil surface roughness
(Hrms). Regarding the effect of incidence angle, RMSE on SSM was
highest when θ was highest for all NNs tested, however QP
configuration proved to be less affected by θ when compared to
other configurations. This degradation in SSM estimation with
increasing radar incidence is well documented in the literature, as
the sensitivity of the radar signal to soil moisture decreases with
increasing incidence angle due to noise caused by soil roughness
(Aubert et al., 2011; Baghdadi et al., 2008).

Additionally, for NNs constructed with a priori knowledge of
dry to slightly wet soil moisture conditions, there was a slight
overestimation (positive estimation bias) that gently increased
when θ increases. Inversely, for NNS constructed with a priori
very wet soil moisture conditions, a slight underestimation (negative
estimation bias) was observed, slightly increasing when θ increases.
This underestimation of SSM for high moisture values (30–40 vol.%)
is due to saturation of the radar signal for this range of SSM
(30–40 vol.%) (Baghdadi et al., 2016).

Regarding the effect of Hrms on SSM estimation, when no a
priori information on SSM was used, very low or very high Hrms led
to an increase in RMSE for SP configuration. For DP configuration,
RMSE on SSM decreased when Hrms decreased; while QP
configuration was not significantly affected by Hrms. For a priori

FIGURE 6
RMSE on Hrms estimation as a function of reference θ (a) and as a function of reference SSM (b). NN1: SP configuration (HH), NN2: DP configuration
(HH and HV), NN3. QP configuration (HH, VV, and HV).
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dry to slightly wet condition, RMSE on SSM for SP configuration
was highest for very low or very high Hrms, while Hrms did not
affect RMSE on SSM for the DP and QP configurations in this soil
moisture condition. Regarding a priori very wet conditions, RMSE
on SSM for the SP and DP configurations increased when Hrms
decreases, while Hrms did not significantly affect RMSE of the QP
configuration. Regarding bias, lower Hrms values led to more
negative SSM estimation bias while higher Hrms values led to
more positive SSM estimation bias for all cases, with QP
configuration performing the best being affected less than SP and
DP configurations by Hrms. These over- and under-estimation of
the SSM estimates depending on the range of Hrms were observed
by El Hajj et al. (2017), who note that a smooth surface (Hrms <
1 cm) results in decreased backscattering and underestimated SSM
with high RMSE on SSM. On the other hand, a rough surface
(Hrms > 3.0 cm) augments radar backscatter, leading to SSM
overestimation. However, NNs using the Quad polarization
configuration were able to mitigate this limitation of smooth or
rough surfaces.

Regarding Hrms estimation errors, RMSE on Hrms was shown
to be affected by θ for both SP and DP configurations, as RMSE
decreases when θ increases. This better estimation of ground
roughness for high values of θ is due to a better sensitivity of the
radar signal to roughness for high values of θ compared to low
incidence angles values because the dependence of the radar signal
on surface roughness in agricultural areas is mainly significant at
high incidence angles (Baghdadi et al., 2008). Hrms estimated from
QP configuration was not shown to be affected by θ. SSM affected
Hrms estimation errors for very high and for very low SSM, when
using SP configuration, however there was no significant effect for
neither the DP or QP configurations. On the other hand, SSM
affected bias for Hrms estimation with negative bias for low SSM
value and positive bias for high SSM values with QP configuration
being affected less than the SP and QP configuration.

4.2 Using a priori knowledge of soil moisture
conditions

In this study, three cases were examined 1) no a priori
knowledge of soil moisture conditions, 2) soil conditions were
considered known as dry to slightly wet, 3) soil conditions were
considered known as very wet. Incorporating a priori information
that can be easily obtained from in situ precipitation stations or from
other sources (remote sensing data or/and model-based simulation)
enhances the precision of SSM estimates. However, in the cases

where soil moisture conditions is known, the range of SSM values in
the training phase are smaller (case 2: 2 vol.% ≤ SSM ≤ 30 vol.%; case
3: 20 vol.% ≤ SSM ≤ 40 vol.%) compared to the range of SSM values
when no a priori soil moisture knowledge were used (case 1:
2 vol.% ≤ SSM ≤ 40 vol.%), reducing the over- and
underestimations of SSM. Therefore, in order to correctly assess
the improvement in SSM estimation in the cases of a priori
information on SSM, the same range of SSM has be considered
when calculating RMSE on SSM estimates. Table 3 shows RMSE and
Bia values on SSM estimation when using the same range of SSM
values for NN constructed without and with a priori information of
soil moisture conditions. When comparing NNs for without a priori
knowledge of soil moisture condition (case1: NN1, NN4, and NN7)
to NNs constructed with a priori knowledge of dry to slightly wet
conditions (case 2: NN2, NN5, and NN8), RMSE was calculated
using only SSM values ranging between 2 and 25, which is the range
used for a priori dry to slightly wet NNs. Similarly, when comparing
non a priori NNs to NNs constructed with a priori knowledge of
very wet conditions (case 3: NN3, NN6, and NN9), RMSE was
calculated using only SSM values ranging between 26 and 40, which
is the range used for a priory very wet NNs. Table 3 shows that the
improvement in RMSE on SSM for a priori dry to slightly wet NNs
in “non a priori” NNs was 1.2 vol.% for SP configuration, 0.5 vol.%
for DP configuration, and 0.3 for QP configuration. For “a priori
very wet” NNs, the improvement in RMSE was 3.6 vol.% for SP
configuration, 1.4 vol.% for DP configuration, and 1.0 vol.% for QP
configuration. Therefore, using a priori knowledge of soil moisture
conditions slightly improved the SSM estimation results when
working in dry to slightly wet soil conditions, and greatly
improved soil moisture estimation when working in very wet soil
condition for all NISAR configurations.

4.3 Using single frequency data (L or S-band)

NISAR will provide both of S and L frequency bands
simultaneously, enabling dual-frequency radar observations
during a single pass (NISAR, 2025; Kellogg et al., 2020). This is a
significant feature of NISAR, not currently available in other SAR
constellations. For this reason, our work used L and Sbands in
tandem; however, it is important to assess the use of two frequency
bands by comparing it to results we get using a single
frequency band.

For this reason, single-frequency noisy datasets were built for
each frequency band (L, and S-band). For each of these two, NNs
were constructed and tested in the Single, Dual, and Quad-

TABLE 3 Performance on SSM estimates of a priori NNs compared to no a priori NNs.

SP configuration DP configuration QP configuration

RMSE (vol. %) Bias (vol. %) RMSE (vol. %) Bias (vol. %) RMSE (vol. %) Bias (vol. %)

A priori dry to slightly wet 6.1 1.5 4.5 1.1 3.9 0.8

No a priori – dry SSM range [2–25] vol.% 7.3 1.9 5.0 0.7 4.2 0.2

A priori very wet 4.6 −1.8 3.8 −1.4 3.2 −0.5

No a priori – wet SSM range [26–40] vol.% 9.2 −3.1 5.2 −1.1 4.2 −0.8
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polarization configurations. Table 4 compares RMSE values for SSM
estimation resulting from NN built using two frequencies and one
frequency and without a priori knowledge of soil moisture condition
(the entire range of SSM). L-band and S-band showed similar
performance showed in the table as “L or S-band.” As seen in
Table 4, NNs utilizing both L- and S-bands together consistently
outperformed those relying on a single band, achieving lower RMSE
values across all configurations. Specifically, in the SP configuration,
RMSE increased from 8.2 vol.% (dual frequency bands) to 9.3 vol.%
(single frequency band), reflecting a 1.1 vol.% performance degradation
when using only one frequency. Similarly, in the DP configuration,
RMSE increased from 5.1 vol.% (dual frequency band) to 6.2 vol.%
(single frequency band), and in the QP configuration, it worsened from
4.2 vol.% to 5.4 vol.%, indicating a 1.2 vol.% decline. These findings
underscore the benefits of dual-frequency SAR observations, which
provide more accurate soil moisture estimates by integrating
complementary scattering information from both frequency bands.

Table 5 compares RMSE values for Hrms estimation (cm)
without a priori knowledge of soil moisture condition using both
L and S bands or one of the bands only (L or S). NNs utilizing both
L- and Sbands together performed better than NNs relying on a
single band, achieving lower RMSE of around 0.1 cm across the
different configurations.

4.4 Comparison with L-band alone and with
Sentinel-1 C-band SAR

In order to better assess the use of multiple frequencies
simultaneously for soil moisture estimation, results of the dual
frequency (L- and S-band) bands were compared to single frequency
(L-band). When working without a priori information on SSM, using
L-band alone (results not presented in the manuscript), achieved an
RMSE on SSM estimation of 8.3 vol.% for SP configuration, 6.1 vol.%
for the DP configuration and 5.3 vol.% for the QP configuration.
Therefore, using dual frequency bands results in better SSM estimation
of around 0.2 vol.% for the SP configuration, 1.0 vol.% for the DP
configuration and around 1.1 vol.% for the QP configuration. NISAR
Soil Moisture Science Team (2023) also investigated the benefit of using
the dual frequency bands compared to L-band only, utilizing only the
single polarization configuration (HH only) with results of dual-
frequencies showing improvements in unbiased RMSE of 1 vol.%
for corn and 0.2 vol.% for soybean over single frequency (L-band).

Concerning Sentinel-1, the S1 constellation currently provides
satellite acquisitions in cross polarization configuration (VV/VH)
over the majority of the Globe (P. Potin et al., 2019; Ticehurst et al.,
2019). It is one of the more widely used SAR constellation for SSM
and Hrms estmation (Hamze et al., 2021; Choker et al., 2017; El Hajj
et al., 2017; Choker, Baghdadi, and Zribi, 2018). In recent works,
(Ettalbi et al., 2023), constructed NN model trained and validated
using synthetic C-band data simulated using the Integral Equation
Model (IEM) model. In the validation phase using synthetic dataset,
they showed that the Dual-polarization (VV and VH) lead to RMSE
on SSM of around 6.0 vol.%. In addition, Choker, Baghdadi, and
Zribi (2018) applied NNs, trained with synthetic data, on S1 data for
SSM and Hrms estimation, with dual polarization performing better
than single polarization, resulting in an SSM estimation with a
RMSE of 7.5 vol.% and 5.8 vol.% when using NNs constructed
without, and with a priori knowledge of soil moisture conditions,
respectively. Regarding Hrms estimation, Choker et al. (2018)
obtained an RMSE of 0.8 cm when working without a priori
knowledge of soil moisture conditions and 0.7 cm when working
with a priori knowledge of soil moisture conditions.

Compared to these findings by Ettalbi et al. (2023), and Choker
et al. (2018), the NNs developed in our work performed better, resulting
in lower RMSE values when using theDP andQP configurations. A few
reasons are behind this improvement. Firstly, Sentinel-1 operates at a
single frequency (C-band, wavelength ~ 5 cm) whereas NISAR can rely
on two bands (L and S-bands); these two independent frequency bands
could provide complementary information that improve to
performance of the NNS. Secondly, Sentinel-1 operates in the cross
polarizationmode (VV/VH), meaning that it is limited to using NNs in
the DP configuration whereas NISAR can provide quadpolarization
data.What is notable here is that in our work, the DP configuration was
significantly outperformed by the QP configuration in terms of overall
error as well as in terms of performance stability thus signaling the
potential importance of NISAR for SSM and Hrms estimation.

5 Conclusion

This study aims to gauge the potential of using data from the
NISAR satellite for SSM and Hrms estimation over bare soils. The
NISAR satellite will utilize L and S frequency bands and will provide data
in single-, dual-, and quad-polarization configurations. For this reason,
simulated radar backscattering coefficients inNISAR configurationswere

TABLE 4 Comparing RMSE values (vol.%) on SSM estimates for of Dual and Single frequency bands, without a priori knowledge of soil moisture conditions.

SP configuration DP configuration QP configuration

L and Sbands L or Sband L and Sbands L or Sband L and Sbands L or Sband

8.2 vol.% 9.3 vol.% 5.1 vol.% 6.2 vol.% 4.2 vol.% 5.4 vol.%

TABLE 5 Comparing RMSE values (cm) on Hrms estimates, for of Dual and Single frequency bands, without a priori knowledge of soil moisture conditions.

SP configuration DP configuration QP configuration

L and Sbands L or Sband L and Sbands L or Sband L and Sbands L or Sband

0.7 cm 0.8 cm 0.6 cm 0.7 cm 0.3 cm 0.4 cm
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generated for S- and L-bands using the Dubois-B model. Using S- and
L-bands data simultaneously, nine neural networks were constructed,
assessing each of NISAR’s three polarization configurations (single “SP”,
dual “DP” and quad “QP” polarization). Additionally, a priori
information on soil moisture conditions, that could be obtained using
meteorological data, was tested (no a priori, a priori dry to slightly wet
soils, and a priori very wet soils).

Results showed that without a prior information on soil
moisture, RMSE on SSM estimation is 4.2 vol.% for the QP
configuration, compared to 5.1 vol.% and 8.2 vol.% for the SP
and DP configurations, respectively. Similarly, the RMSE for
Hrms was 0.3 cm in the QP configuration, whereas it increased
to 0.7 and 0.6 cm in the SP and DP configurations, respectively.
Therefore, quad-polarization (QP configuration) is the most
performant for SSM and Hrms estimation. Furthermore, the QP
configuration reduced the impact of the SAR incidence angle (θ) and
the Hrms on the SSM estimates, exhibiting RMSE values
consistently lower than those of single-polarization (SP) and
dual-polarization (DP) configurations across the range of θ.
Comparing the use of dual-frequency and single-frequency
showed that using both S- and L-bands improves SSM and Hrms
estimation compared to using either S- or L-band alone.
Additionally, our study found that using a priori knowledge of
soil moisture conditions improves SSM estimation precision for all
NISAR configurations, especially for very wet soil moisture
conditions, but has little impact on Hrms estimation.

These results highlight the potential of future NISAR data for
SSM and Hrms estimation and lay the groundwork for applying
NNs trained on synthetic data (from radar backscattering
models). Future work will focus on validating these NNs using
real NISAR data, comparing estimates to in situ SSM and Hrms
measurements.

Future works would focus on building NISAR data inversion
networks over agricultural surfaces with vegetation cover. This
requires the use of a radar backscatter model integrating soil and
vegetation components. One of the most frequently used models is
the Water Cloud Model, which can be calibrated using real NISAR
backscatter coefficient data in conjunction with in situmoisture and
roughness measurements. The vegetation component is in general
modeled using a vegetation index calculated from optical images
(Sentnel-2, Landsat, among others). Furthermore, in this approach,
we trained neural networks which, would rely solely on imagery-
derived data, when real data become available. However, machine
learning methods usually benefit from more input features (e.g.,
environmental, meteorological), improving retrieval accuracy.
Indeed, Auxiliary data sometimes used in addition to radar and
optical data sources (air temperature, precipitation, net radiation,
digital elevation model, soil texture. . .) could provide significant
added value.
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