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Maize is an important food crop grown in the Yellow River irrigation area of Inner
Mongolia. Its yield and quality are closely related to nitrogen nutrition status.
Traditional nitrogen fertilizer management relies on empirical fertilization, which
often leads to low utilization rates and environmental pollution. Therefore,
establishing a precise nitrogen nutrition diagnosis and regulation technology
system to achieve efficient use of nitrogen fertilizers and the synergy of high crop
yield and quality is necessary. This study utilized unmanned aerial vehicle remote
sensing technology and integrated multiple feature methods to construct three
learning algorithms for the dynamic inversion of maize leaf area index (LAI) values
at different growth stages in Yellow River irrigation areas. The LAl prediction
values obtained from the model were used to construct critical nitrogen
concentration curves for the different irrigation treatments. The curves were
improved based on actual farmland conditions and a nitrogen nutrition index
(NNI) model was constructed. The nitrogen balance of each fertilization
treatment under different irrigation conditions was analyzed, and a fertilization
plan was formulated. Spectral indices, texture indices, texture features, and
structural information of the maize pixels were calculated. Ridge regression,
random forest (RF), and convolutional neural networks were used to construct
LAl inversion models for different maize growth periods. The critical nitrogen
concentration dilution curves for the different water treatments were improved
by combining the LAl prediction values. The accuracy (R?) of simulating maize
plant height using multispectral image digital elevation data was >0.8 in three
different growth stages. Combining multiple features and three different learning
models for predicting maize LAl revealed that the RF model had the highest fitting
accuracy, with R? values of 0.80, 0.82, and 0.83 in different growth stages. Critical
nitrogen concentration dilution curves for maize were improved by combining
irrigation and density factors. Compared to the original dilution curve, the
accuracy (R?) improved to varying degrees. A reasonable fertilization regime
for different growth stages was formulated based on the NNI model with a total
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fertilizer application of 225 kg/hm? These results can provide theoretical
references for unmanned aerial vehicle multispectral precise guidance for

farmland fertilization.

unmanned aerial vehicle remote sensing, nitrogen content in maize leaves, maize LAI
value, critical nitrogen concentration dilution curve, Yellow River irrigation area

1 Introduction

Maize is the largest grain crop grown in China. In terms of planting
area, the annual sown area of maize accounts for approximately one-
third of the country’s cultivated land area. Its production areas are
spread throughout the country, and guaranteeing its output and quality
import (Wang and Hu, 2021; Xie et al., 2022). Accurate monitoring of
the growth status of maize and optimization of nutrient management
are key factors in achieving a high yield and quality of maize (Guo et al,,
2016). Leaf area index (LAI), defined as the sum of the total area of plant
leaves per unit of land area and the total land area (Nandan et al., 2022),
is a key parameter of maize and is directly related to crop yield. The LAI
of crops varies in different environments and growth stages. The timely
and accurate estimation of the LAI of crops at critical growth stages is
important (Guo et al., 2023). Manual and remote sensing monitoring
methods are two important methods in the current agricultural
production process (Fuentes-Penailillo et al, 2024), Manual
monitoring methods mainly include methods such as the length-
width coefficient and leaf area meter methods (Zhao et al, 2023);
however, these methods have multiple problems, such as being time-
consuming, laborious, and unsuitable for large-scale monitoring (Jude,
2025). On the contrary, remote sensing monitoring has been widely
accepted because spectral images have the advantage of high resolution,
with accuracy reaching the centimeter level. They can detect
heterogeneous information in space and reliably determine the
growth status of crops within a spatial range in real-time (Guanter
et al, 2007; Wang et al., 2023). Therefore, remote sensing monitoring
technology avoids the many drawbacks of traditional monitoring and is
more suitable for farmland monitoring. In the current global context of
actively advocating smart agriculture, various remote sensing data
platforms, such as satellite remote sensing, ground remote sensing,
and unmanned aerial vehicle (UAV) spectral data, have become
popular means of estimating crop growth at the farmland scale
(Istiak et al., 2023; Jiang et al,, 2023).

With the rapid development of technologies, such as remote
sensing and computers, UAV imaging technology has gradually
matured. UAVs are easy to operate and have short operational
cycles. When combined with multispectral and hyperspectral
lenses, they can clearly capture an overall image of the
farmland (Gano et al., 2024). Spectral sensors carried by
UAVs provide more spectral information about vegetation by
observing the reflectance of crop canopies. The spectral index is a
dimensionless value obtained by combining and calculating the
spectral reflectances of different bands. It can enhance vegetation
information, reduce the interference of factors such as the soil
background and atmosphere, and highlight the growth status and
physiological characteristics of the vegetation. In the field of
agricultural remote sensing, spectral indices have been widely
applied to crop-type identification, growth monitoring, yield
estimation, and other applications (Berger et al., 2022; Zhu
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et al., 2023). However, relying solely on spectral indices to
invert crop information has inherent drawbacks (Song et al.,
2023), For example, in the case of high vegetation coverage, the
spectral index is prone to saturation, resulting in obvious
uncertainty when inverting crop conditions based on the
spectral index (Mutanga et al., 2023). Therefore, texture
information must be introduced to overcome these limitations.
Texture information reflects the spatial variation pattern of the
gray level or color in the image and can provide detailed
information, such as the surface structure, roughness, and
spatial distribution of the object (Li and Khan, 2023). In the
agricultural remote sensing scenario, the texture features (TFs) of
the crop canopy contain rich information, such as plant
morphology, arrangement pattern, and density, which are
closely related to the growth status of crops (Huang et al,
2024). Moreover, the texture index (TI) has significant effects
on the estimation of crop biomass, LAI and yield (Yuan et al.,
2023). Furthermore, compared with using spectral information
alone, combining spectral information with texture information
makes the model more accurate (Gao et al., 2023a). Recently, 3D
point cloud data technology has gradually emerged in the
agricultural field. Using 3D point cloud data obtained by
sensors and other devices carried by UAVs, the three-
dimensional spatial distribution of maize plants can be
presented intuitively and accurately (Wang et al., 2018). Plant
height information extracted through the analysis of 3D point
cloud data is a key parameter that reflects the growth trends of
maize. The plant height of the crop reflects the longitudinal
growth of maize at different growth stages and has a close
connection with the LAI This information can also solve
problems such as spectral saturation (Xiang et al., 2019).
Owing to the current cross-development of computer vision
and agricultural remote sensing, deep learning models have
received increasing attention. Therefore, this study combines
machine and deep learning, to invert the LAI value of crops
and analyzes their respective advantages and applicable scenarios
(Liu et al., 2021). However, in existing research on the inversion
of crop indicators by UAVs, most researchers have only focused
on inversion techniques, thereby ignoring whether the indicators
after inversion can be applied to the actual situation. Therefore,
this study further innovates and improves the critical nitrogen
The
concentration curve has certain limitations when reflecting the

concentration  curve. traditional ~ critical nitrogen
nitrogen nutritional status of maize, accurately adapting to the
complex and changeable conditions in the field is difficult (Li
etal, 2022). In this study, by integrating the LAI values retrieved
by UAVs with the leaf nitrogen content measured in the field and
comprehensively considering different irrigation conditions and
the characteristics of maize planting density, a more accurate and

widely applicable critical nitrogen concentration curve was
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FIGURE 1

Location of the study area and test layout. (A) Ordos City, Inner Mongolia.

constructed. This innovative achievement enables a more
effective diagnosis of nitrogen deficiency in various farmland
treatments and provides a new idea and reference framework for
subsequent researchers in the study of crop nutrition diagnosis
and growth regulation using UAV technology, contributing to
the continuous innovation and development of precision
agriculture technology (Roosjen et al., 2018).

The main purposes of this study were to (1) use UAVs to invert
the LAI of crops to clarify the correlation between each feature and
LAI and provide a multi-feature fusion method; (2) compare the
accuracy differences of different machine and deep learning models
when inverting the maize LAI at the farmland scale; and (3) establish
an effective connection with the field application scenarios, because
most studies rely only on the inversion of the LAI obtained by UAV
remote sensing technology. This study achieved an important
breakthrough. Constructing and optimizing the crop critical
nitrogen concentration curve model based on LAI-predicted
values successfully promoted the deep integration of remote
sensing monitoring data and crop nutrition diagnosis, providing
a feasible technical solution for precision agricultural management.

2 Materials and methods
2.1 Overview of the test area

The experiment was conducted from 2023 to 2024 in Guangmao
Fifth Community, Jirigalangtu Town, northern Hangjin Banner,
Ordos City, Inner Mongolia (107.9" W, 40.8° N), where there is
abundant sunlight and a large temperature difference. The multi-
year average temperature is 7.9 °C, the annual average precipitation
is 168 mm, and the annual average number of precipitation days is
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(B) Field sampling photographs. (C) Layout of field trial plots.

20 days. Moreover, this area belongs to the Hetao Plain, with open
terrain and no obstructions, and is suitable for UAV flights. The
specific location of the study areas is shown in Figure 1.

The local maize variety “Ningyu 688"was tested. The
experimental field was subjected to rotary tillage and leveling
before sowing. In 2023, there were nine treatments in the
experiment and each treatment was repeated three times.
There were 27 plots, each with an area of 10 m x 4 m. The
the
experimental area was consistent with that in the local area,

plots were arranged randomly. Maize planting in
and film-mulched planting was adopted, with one film and two
rows, film width of 60 cm, row spacing (wide spacing of 1 m,
narrow spacing of 35 cm), and plant spacing of 23 cm. The
planting density was 61,100 plants per hectare and the plants
were sown on May 29th. This experiment used two variables,
irrigation and fertilization, to form a comparative experiment.
Three irrigation quotas were set: 50%, 75%, and 100% of the local
irrigation volume (W1:150 m*/hm? W2:225 m’/hm’, W3:
300 m’/hm’, respectively), irrigate eight times during the
growth period, with drip irrigation as the irrigation method,
and measure the irrigation water with a water meter. The three
nitrogen application rates were set as N1:140 kg/hm?, N2:210 kg/
hm?, N3:280 kg/hm?, urea. They were applied at a ratio of 2:3:3:
2 during the jointing, large trumpet mouth, stamening, and
grain-filling stages without applying base fertilizer.

Based on the 2023 test, the 2024 test included three new
treatments and set an irrigation quota (W4:225 m*/hm?). The
three nitrogen application rates were C1:140 kg/hm?, C2:210 kg/
hm? and C3:280 kg/hm* (of which 30% was used as the base
fertilizer and 70% as the top dressing); the remaining conditions
were the same as those in the 2023 experiment. The specific

irrigation and fertilization systems are listed in Table 1.
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TABLE 1 Maize irrigation system.

Irrigation volume (m3*/hm?)

Fertilizer application amount (kg/hm?)

Treatment  Jointing Trumpet Grouting Total irrigation Jointing Trumpet Extraction Grouting Total nitrogen
stage stage period volume stage stage period period application
(m3*/hm?) (kg/hm?)

WINI 300 600 300 1,200 28 4 42 28 140

WIN2 300 600 300 1,200 42 63 63 42 210

WIN3 300 600 300 1,200 56 84 84 56 280

W2NI1 450 900 450 1800 28 4 42 28 140

W2N2 450 900 450 1800 42 63 63 42 210

W2N3 450 900 450 1800 56 84 84 56 280

W3N1 600 1,200 600 2,400 28 4 42 28 140

W3N2 600 1,200 600 2,400 4 63 63 42 210

W3N3 600 1,200 600 2,400 56 84 84 56 280

WA4C1 450 900 450 1800 19.6 29.4 29.4 19.6 98

W4C2 450 900 450 1800 29.4 44.1 44.1 29.4 147

WA4C3 450 900 450 1800 39.2 58.8 58.8 39.2 196

e 38 oely
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2.2 Acquisition and processing of
spectral images

2.2.1 Band introduction, image stitching, and other
processing

ADJI M300RTK was used as the drone. The drone has a long
flight time (55 min). The fuselage was also equipped with binocular
vision and infrared sensors for omnidirectional perception up and
down 30 m, and forward, backward, left, and right 40 m. It has a six-
way obstacle avoidance function and features precise positioning
and flexible flight. The UAV is equipped with Zenthink H20T and
MS600 pro cameras, which include six multispectral bands, namely,
blue (B, 450 + 35 nm), green (G, 555 + 25 nm), red (B, 660 + 20 nm),
red edge 1 (RE1, 720 + 10 nm), and red edge 2 (RE2, 750 £ 15 nm),
and near-infrared (NIR, 840 + 35 nm). The Zenthink H20T comes
standard with a 23x hybrid optical zoom system, 20-megapixel zoom
camera, 12-megapixel wide-angle camera, and 1200-m laser
rangefinder.

Spectral collection was mainly concentrated from June to
September 2024 and was conducted at the jointing, large
trumpet, tasking, filling, and maturity stages of maize. The flight
time ranged from 10 a.m. to 12 p.m. The flight conditions were clear
and cloudless, with open terrain and no obstructions. The flight
parameters were set as follows: flight altitude of 20 m, take-off speed
of 10 m/s, route speed of 1.2 m/s, overlap rate of both sidewalks and
heading of 80%, and equal photo intervals. Before flight, black and
white target cloths were arranged for the radiometric calibration of
the multispectral images. The camera lens captured pictures directly
above the crops during the flight. The flight parameters at each
growth stage remained constant and were set prior to the first flight.

Drone images captured by cameras cannot be directly applied to
the acquisition of remote sensing image data. It is necessary to use
software pix4Dmapper to stitch the drone images. First, create a new
project, import spectral photos, select AgMultispectral as the
processing option template, and under the processing option
DSM, under the Raster Digital Surface Model module in
Orthophoto and Index, select GeoTiff and Synthetic tiles, then
select GeoTiff and synthetic tiles in orthophoto images and start
processing. Digital cameras can obtain characteristic maps of the B,
G, and R indices, whereas multispectral cameras can produce
reflectance maps of the red (red), green (green), blue (blue),
rednir (near-infrared), and redage (red edge) bands. ENVI
software was used for radiometric correction, band fusion, and
setting the central wavelengths of each band to synthesize true-
color image data. Finally, the reflectance values at each measurement
site were extracted and used to calculate the vegetation index (VI).

2.3 Acquisition of ground measured data

UAV  multispectral remote sensing data collection was
conducted simultaneously with ground data collection, including
crop height (CH) and LAIL CH and LAI measurements were used to
establish and verify the estimation model. While collecting the data,
the locations of the sampling points were recorded using a
handheld GPS.

To measure the CH at each maize growth stage, three maize
plants with uniform growth were selected from each plot. Plant

Frontiers in Remote Sensing

10.3389/frsen.2025.1614958

height was measured and recorded using a tape measure. When
measuring the LAJ, at each maize growth stage, the LAI of each plot
was measured using a Sunscan canopy meter. Six datasets were
uniformly collected from each plot, and seventy-two were measured
at the jointing, tasking, and filling stages of maize. The uniform
distribution of data in each group was conducive for capturing
spatial changes in vegetation and enhancing the representativeness
and reliability of the data.

Determination of nitrogen content in plants: Place the plants at
105 °C for 30 min of blanching, then dry them at 75 °C until a
constant weight is achieved, followed by crushing and sieving. After
digestion with H2SO4-H202, the nitrogen content in various parts
of the maize plant was determined using the Kjeldahl method.
Seventy-two datasets were measured at each maize stage, and the
average value was calculated as the final nitrogen content
of each plot.

2.4 Extraction of canopy spectral
information

2.4.1 Spectral information

Based on the literature, the reflectance of six spectral bands (B,
G, R, RE1, RE2, and NIR are the blue light, green light, red light, red
edge 1, red edge 2, and near-infrared bands, respectively) was
utilized in this study. Based on these initial reflectance values, a
set of VIs with 18 spectral variables was constructed for analysis. The
spectral responses of maize LAI under different water and nitrogen
treatments are shown in Table 2.

2.4.2 Texture information

In this study, ENVI5.6 software was used to extract image TFs
based on second-order probabilistic statistical filtering. Eight TFs
were obtained by extracting each band: mean (MEA), variance (AR),
synergy (HOM), contrast (CON), dissimilarity (DIS), information
entropy (ENT), second moment (SEM), and correlation (COR).
During the texture analysis, the window size was selected as 7 x 7,
and the default offsets X and Y of the spatial correlation matrix were
1. Through this method, the TFs of different bands can be effectively
extracted from multispectral images, and these features can help us
better understand the surface characteristics of ground objects. The
second-order probabilistic statistical filtering method can describe
the TFs of the surface of ground objects more accurately, which is
helpful for applications such as ground object classification, change
detection, and target recognition.

Similar to the calculation of the VI, the UAV multispectral
system consisted of six bands with eight types of TFs in each band.
Forty-8 TFs were obtained, and the TI was calculated by combining
two different features, denoted as TIs. The texture metrics used in
this study were the Normalized TT (NDTI), Differential TI (DTI),
and Ratio TI (RTT). The calculation formula is shown in Equations
1-3, and are denoted as TIS.

DII=T,-T, (1)
T,-T,
NDTI = 2
Tl + T2 ( )
T,
RTI = — 3
T, (3)
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TABLE 2 Calculation of spectral parameters.
Vegetation index (VIs)

Green index Difference vegetation index (DVI)

Calculation formula

NIR-R

10.3389/frsen.2025.1614958

Document number

Naji (2018)

Nonlinear vegetation index (NLI)

Renormalize the vegetation index (RDVI)

(NIR*-R)/(NIR*+R)

(NIR-R)/(NIR + R)*3

Gong et al. (2003)

He et al. (2019)

Green normalized difference vegetation index (GNDVI)

Improve the nonlinear vegetation index (MNLI)

(NIR-G)/(NIR + G)

1.5x(NIR*-G)/(NIR*-R+0.5)

Richard and Abah (2019)

Feng et al. (2019)

Normalized vegetation index (NDVI)

Ratio vegetation index (RVI)

(NIR-R)/(NIR + R)

NIR/R

Essaadia et al. (2022)

Liu et al. (2022)

Soil-regulated vegetation index (SAVI)

Structural index Improve the simple vegetation index (MSR)

1.5%(NIR-R)/(NIR + R+0.5)

[(NIR/R)-1]/[(NIR/R)*® + 1]

Yugqi et al. (2023)

Gao et al. (2023b)

Optimized soil-adjusted vegetation index (GOSAVI)
Optimized soil-adjusted vegetation index (REOSAVI)

The red-edge re-normalized vegetation index (RERDVI)

TABLE 3 Filter the input of the correlation threshold variable.

Fertile period Input variable

1.16x(NIR-G)/(NIR + G+0.16)
1.16x(NIR-R)/(NIR + R+0.16)

(NIR-RE)/(NIR + RE)

Screening result

Mao et al. (2020)
Zhang et al. (2024)

Zhao et al. (2025)

Jointing stage VIs + CH1 DVI, RDVI, GOSAVI, RERDVI, CH1

TFs VAR-nir, HOM-rel, VAR-rel, SEC-re2, HOM-re2

TIs NDTI(VAR-nir, HOM-re2), NDTI(VAR-nir,SEC-re2), NDTI(VAR-nir, HOM-re2)
Tasseling stage VIs + CH2 DVI, RDVI, GNDVI, GOSAVI, CH2

TFs SEC-re2, CON-nir, COR-b, DIS-re2, DIS-rel

TIs NDTI(SEC-re2,CON-nir), RTI(SEC-re2,CON-nir), RTI(SEC-re2,DIS-rel)
Filling period VIs + CH3 DVI, RDVI, SAVI, GOSAVI, CH3

TFs HOM-re2, HOM-rel, ENT-r, SEC-rel, HOM-g

TIs DTI(HOM-re2,HOM-rel), DTI(HOM-re2,SEC-rel), DTI(HOM-re2, HOM-g)

T1 and T2 are the texture values of certain frequency bands
screened based on TFs. The TFs used in this study are listed
in Table 3.

2.4.3 Structural information

In the bare soil, jointing, tasking, and filling stages of the study
area, a DSM was generated using UAV multispectral images to
extract the CH values of maize plant height at different periods. The
DSM marker produced at the bare soil stage was DSMO, and the
DSM markers extracted at each stage of crop growth were DSM
(1,2,3). The CH was obtained by calculating the differences between
DSM and DSMO in each period, and the calculation formula is
shown in Equation 4. At each growth stage of maize, the fitting
accuracy R* between the predicted crop plant height from UAV
images and the measured crop plant height was >0.8, showing a high
degree of fitting. The height status of maize plants at different
periods can be accurately predicted using UAV remote sensing, as
shown in Figure 2.

Frontiers in Remote Sensing 06

CH(A,B,C) = DSM(A,B,C) - DSMO (4

~

2.5 Data analysis methods

The multispectral reflectance data of summer maize at the
jointing, tasking, and filling stages were collected and combined
with maize LAI data measured synchronously on the ground to
form a sample dataset. Maize LAI was measured six times in each
community using a Sunscan canopy meter. The averages of the
measured values at each position were calculated, and 72 datasets
were obtained. A model was constructed using the selected VI,
CH, texture characteristics, T1, and LA, including the modeling
(2/3) and verification (1/3) sets. Comprehensively considering
the significance levels of the sample data and LAI the
independent variables were screened to establish a machine
learning model, namely, ridge regression (RR), and ensemble
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FIGURE 2

Relationship between the measured plant height calculated using remote sensing at different growth stages and the actual measured plant height.

(A) Jointing stage. (B) Tasseling stage. (C) Grouting period.

learning models, namely, random forest (RF) and convolutional
neural network (CNN), thereby achieving high-precision
estimation of maize LAI in various periods.

The Hill regression (RR) model provides an effective method for
improving the generalization ability of linear regression models by
balancing the relationship between the fitting data, controlling the
complexity of the model, and adding a regularization term to the
model to avoid overfitting and enhance its predictive ability. The RF
model is an ensemble learning method. RF enhances prediction and
model performance by combining multiple decision trees. CNN can
perform unsupervised feature learning and automatically acquire
features. Its architecture includes convolution, pooling, batch
normalization, fully connected, discarded, and regression layers.
The convolution kernel is set to half the number of input variables.
The ReLU activation function was used to accelerate convergence. A
dropout rate of 20% was set during training to prevent overfitting.
The SGDM algorithm was used to optimize the weights. The initial
learning rate was 0.01. Various machine, deep learning, and LAI
inversion models were established using multiple learning packages,
such as sklearn in PyCharm, and model fitting graphs were drawn
using Origin 2021.

2.6 Model evaluation indicators

R - 2in(Xi —_);()2 (i - Y)i ; 5)
Z:’:I (Xi - X) Z:‘:l (Yi - Y)

rvsE = (2= Y) (Y;;' -Y) (6)

SD (xi)
RMSE @

RPD =

where X;, X, Y;, and Y represent the measured, measured average,
estimated, and estimated average values, respectively, and n
represents the number of samples in the model. The model
accuracy was evaluated using the coefficient of determination R?,
root mean square error (RMSE), and the ratio of performance to
standard deviation (RPD). When the coefficient of determination R*
was larger, the prediction effect of the model was better, the RMSE
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was smaller, and the model was more accurate. It is generally
believed that RPD<1.4 indicates that the model is unreliable,
1.4<RPD<2.0 indicates that the model has moderate reliability,
and if RPD>2.0, the model has higher reliability. SD is the
standard deviation of the measured values of the sample. The
calculation formula is shown in Equations 5-7.

2.7 Construction of the critical nitrogen
concentration model

2.7.1 Model construction

Critical nitrogen concentration refers to the critical value of
the nitrogen concentration at which the LAI of the plant is the
largest at each stage of crop growth. When the nitrogen
concentration in a plant is below the critical nitrogen
concentration, growth is restricted. When the
concentration of the plant exceeded the critical nitrogen
concentration, nitrogen had no obvious effect on the LAI of

nitrogen

the crop. Instead, the excess activated nitrogen in the soil is lost,
which causes environmental pollution. According to the critical
nitrogen concentration dilution model theory proposed by
previous researchers, the construction of a curve model was
divided into the following steps:

1. The predicted LAI values of different fertilization treatments
were obtained using the model, the corresponding plant
nitrogen concentrations were determined, and whether crop
growth was restricted by nitrogen was determined through
analysis of variance.

2. Function fitting was performed on the predicted values of the
nitrogen-restricted LAI and the corresponding nitrogen
concentrations.

3. The maximum predicted LAI value of the test material under
unrestricted growth was obtained.

4. The theoretical critical nitrogen concentration was the
maximum LAT on each sampling date on the corresponding
vertical coordinates of the function.

According to the definition of the critical nitrogen concentration
dilution curve, the calculation formula is shown in Equation 8:
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N,=ax LAI® (8)

In this study, to establish the critical nitrogen concentration
curves under different irrigation conditions and improve the
accuracy of the model, irrigation and density factors were added.
The calculation formula is shown in Equation 9:

No=axLAI?x(1+cxK)-dxD 9)

where a, b, ¢, and d are coefficients; K is the irrigation factor
(normalizing the different irrigation treatments in this study);
and D is the density factor.

2.7.2 Test of the critical nitrogen concentration
dilution model

The critical nitrogen concentration dilution model was verified
using the RMSE and standard mean square error (n-RMSE). Its
reliability and degree of fit were determined using a 1:1 histogram of
the measured and simulated values. The smaller the RMSE value, the
smaller the deviation between the simulated and measured values.
n-RMSEs of <10%, 10% and 20%, 20% and 30%, and >30% indicate
extremely good, relatively good, average, and poor simulation
performances, respectively. The calculation formula is shown in

, " (Bi—F,
RMSE = —Z“I(n’ )

RMSE
mean (B;)

Equations 10, 11
(10)
n—- RMSE = (11)

where Bi represents the measured value, Fi is the simulated value,
and 7 is the sample size.

Frontiers in Remote Sensing

10.3389/frsen.2025.1614958

A Modeling set 7
I (R>=0.80,RMSE=0.21,RDP=26.58%y"
—  Liline
: % A
i " LAl(em*em?)
A 742 l Curve improvement
A‘é/ :
A

NN

I e M

hegm BEBE F W 0

33 4 1 234 T2 3 4

| DiagfiGsis (NNI)

Woevesie

B L
18 y
OO0 0 s

e

d

Recommended Fertilizer Rate,

G 1

0% I
Wi 1518

P e r—

2.7.3 Nitrogen nutrition index (NNI) model
The NNI refers to the ratio of the actual nitrogen concentration
of crops to the critical nitrogen concentration, which can be used to
reflect the nitrogen nutrition situation of drip-irrigated maize more
accurately. Based on the critical nitrogen concentration dilution
model, the concept of the NNI was proposed, the calculation
formula is shown in Equation 12:
NNI = &
N

c

(12)

where Ni represents the measured nitrogen concentration (%) of the
drip-irrigated maize and Nc represents the simulated value (%).
When NNI = 1, the nitrogen nutritional level in the plant body was
optimal. An NNI > 1 indicates an excess of nitrogen nutrition and an
NNI < 1 indicates insufficient nitrogen nutrition.

2.8 Workflow of this research

Figure 3 presents the workflow of this study. First, a multispectral
sensor installed on an UAV was used to obtain maize canopy images in
the study area. Farmland image maps of maize at various growth stages
were obtained using methods such as image stitching, radiation
correction, and band fusion. Based on these images, the VIs, TFs,
TIs, and CH were extracted. Second, correlation analysis was conducted
to select optimal remote sensing indicators and their combinations. The
above-mentioned combined indicators were used as independent
variables, and the measured LAI values were used as dependent
variables. Three models were established: CNN, RF, and RR. Two-
thirds were used for the modeling set and one-third for the validation
set. The accuracy of the model was evaluated using the coefficient of
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FIGURE 4

Maize LAl and leaf nitrogen content under different treatment conditions. (A) Jointing stage. (B) Tasseling stage. (C) Grouting period.

determination (R*), RMSE, and RPD. Subsequently, the LAI-predicted
data and measured nitrogen content of the leaves were obtained using
the optimal model. A critical nitrogen concentration dilution curve
model was constructed, the critical nitrogen concentration curve was
improved, and the curve was verified using 2023 data. A NNI model
was constructed to clarify the fertilizer dosage for each treatment at
different growth stages, and to formulate a fertilization system that
provides a reference for precise fertilization in agriculture.

3 Results and analysis
3.1 Changes in maize growth parameters

The LAT and leaf nitrogen content of maize at different growth
stages are shown in Figure 4. As the growth period progressed, the
LAI of different treatments gradually increased, whereas the
nitrogen content of the leaves showed a gradually decreasing
trend. During the jointing stage, the LAI of maize was
approximately 1.5, and the LAI of the treatment with base
fertilizer was relatively larger than that of the treatment without
base fertilizer. Under the 12 different treatment conditions, the
nitrogen content of the leaves did not vary significantly and was
generally close to 4% (Figure 4A). During the tasking stage, the LAI
of maize under different treatments showed significant changes. The
LAT under the low fertilizer treatment was significantly smaller than
that of the high and medium fertilizer treatments, indicating that
fertilization significantly impacted the growth of maize leaves. The
nitrogen content of the maize leaves during this period was close to
3% (Figure 4B). During the filling period, the LAI of maize under
different treatments varied slightly. The low-water irrigation
condition was smaller than that of the other irrigation
treatments, and the overall LAI reached 4.5 (Figure 4C). The
nitrogen content in the maize leaves during this period was
approximately 2%. The LAI of maize increased rapidly from the
jointing stage to the tasseling stage but increased relatively slowly
from the tasseling stage to the filling stage. The nitrogen content of
leaves gradually decreased and reached a minimum during the filling
period. The growth of the maize LAI was inversely correlated to the
nitrogen content of the leaves.
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3.2 Correlation analysis of maize LAl and
spectral variables

Based on the multispectral images, the VI was calculated using
the six extracted single-band reflectance rates: B, G, R, RE1, RE2, and
NIR. The maize CH retrieved by remote sensing and the measured
LAI values of the corresponding plots were added to construct the
sample dataset. A correlation analysis was conducted between the
measured LAI values and spectral variables during the jointing,
tasking, and filling stages. Seventy-two samples were collected
during each growth period. During the maize germination stage,
the NIR, Ratio VI (RVI), and Improved Simple VI (MSR) had a
relatively weak correlation with LAI, and the Nonlinear VI (NLI),
Green Normalized Difference VI (GNDVI), Improved NLI (MNLI),
Soil-adjusted VI (SAVI), and Red-edge Optimized SAVI
(REOSAVI) showed negative correlations. Among them, the
Green Optimized SAVI (GOSAVI) had the most obvious
correlation with LAI (0.57), whereas CH1 also had a relatively
high correlation with LAI (0.55). The Difference VI (DVI), Re-
normalized VI (RDVI), GOSAVI, Red-edge Re-normalized
(RERDVI), and CHI1 were selected as the VIs for the input
model at the jointing stage (Figure 5A). During the maize
tasseling period, VIs such as the NIR, NLI, MNLI, MSR, and
REOSAVI showed a relatively small correlation with LAI,
whereas RVI showed a negative correlation. Among them,
GOSAVI had the most obvious correlation with LAI (0.56),
whereas CH2 had a relatively high correlation (0.41). The DVI,
RDVI, GNDVIL, GOSAVI, and CH2 were selected as the VIs for the
input model during the tasseling period (Figure 5B). Using the same
analysis method, DVI, RDVI, SAVI, GOSAVI, and CH3 were
selected as the VIs for the input model during the filling
period (Figure 5C).

3.3 Correlation analysis of maize LAl with
texture characteristics and index

Correlation analysis was conducted using the measured LAT of
maize at various stages and the TFs constructed using the six single
bands (B, G, R, REI, RE2, and NIR) of the UAV multispectral
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FIGURE 6

Correlation between texture characteristics and LAl in different periods. (A) Jointingstage. (B) Tasselingstage. (C) Groutingperiod.

images. At each growth stage of maize, 48 groups of TFs were
observed. Five TFs with the highest correlation with the LAI were
selected to construct the model. During the jointing stage, VAR-nir,
HOM-rel, VAR-rel, SEC-re2, and HOM-re2 were selected as the
TFs of the model input, with correlations of 0.42, 0.41, 0.38, 0.36,
and 0.35, respectively (Figure 6A). During the maize tasseling
period, using the same method, SEC-re2, CON-nir, COR-b, DIS-
re2, and DIS-rel were selected as the TFs of the model input, with
correlations of 0.54, 0.48, 0.38, 0.38, and 0.34, respectively
(Figure 6B). During the growth and filling stages, HOM-re2,
HOM-rel, ENT-r, SEC-rel, and HOM-g were selected as the TF
inputs to the model, with correlations of 0.5, 0.46, 0.46, 0.42, and 0.4,
respectively (Figure 6C).

TFs with high correlations in each period were selected to
construct a NDTI, DTI, and RTI Three texture indices with high
correlations with maize LAI were selected as independent variables
for model construction (Figure 7). At the jointing stage (Figure 7A),
NDTI(VAR-nir, HOM-re2), NDTI(VAR-nir,SEC-re2), and
NDTI(VAR-nir, HOM-rel) were selected for model construction.
During the tassel extraction period (Figure 7B), NDTI(SEC-
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re2,CON-nir), RTI(SEC-re2,CON-nir), and RTI(SEC-re2,DIS-rel)
were selected. During the grouting period (Figure 7C), DTI(HOM-
re2,HOM-rel), DTI(HOM-re2,SEC-rel), and DTI(HOM-
re2, HOM-g) were selected.

3.4 LAl estimation based on data fusion

The accuracy of multi-feature fusion was significantly improved
compared to the univariate feature model. Multi-feature fusion can
better describe the changes in crop growth patterns. Therefore, in
this study, the process of constructing the model using univariate
features was reduced, and the four features were directly fused for
model construction.

From 2023 to 2024, multispectral image data were obtained
during the jointing, tasseling, and filling stages of maize. Four VIs
and predicted plant height (CH) values for crops, 5 TFs, and three
texture indices, totaling thirteen groups of characteristic variables,
were used to construct the model. The selection conditions are listed
in Table 3. The 13 selected eigenvalues were taken as independent
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variables, and the LAI values for each period were taken as
dependent variables. The independent variables were divided into
a training set (accounting for 2/3 of the total sample) and a
validation set (accounting for 1/3 of the total sample) using the
random sampling method to ensure the wide applicability of the
constructed model. The training sets were then input into the RR,
RF, and CNN models. The models constructed for different periods
are shown in Figure 8. In comparison, the RF model exhibited the
highest estimation accuracy. The R* values of the modeling sets at
the different growth stages were 0.84, 0.80, and 0.87, which
were >25% higher than those of the RR and CNN models. The
RMSE values were 0.11, 0.21, and 0.15, which were >20% lower than
those of the other models, indicating that the RDP parameters were
relatively reliable. The R* values of the RF model validation set were
0.61, 0.63, and 0.73, which increased by >22% compared with those
of the RR and CNN models, and the RMSE decreased by >15%.
Compared with the RR and CNN models, the RF model showed a
better effect in inverting the maize LAI This is possibly because,
from the perspective of the model principle, RR is an improved form
of linear regression. Although the regularization term is robust, it
limits the complexity and makes it difficult to fit the complex
nonlinear relationships of the maize image data. The accuracy of
the CNN model was lower than that of the ensemble learning RF.
One possible reason is that a CNN requires many diverse samples to
fully learn the inherent laws and feature patterns of the data.
However, in this study, there were only 72 samples in each
period, making it difficult to support the CNN model. RF can
effectively handle high-dimensional data. Although the sample
size was small, the multi-dimensional data information contained
in the samples, such as multispectral images, VI, and TFs, RF can
fully mine valuable information in the data from different
perspectives through multiple trees and has a good predictive
ability for the LAI of maize. Therefore, in this study, RF based
on feature fusion demonstrated high model accuracy and could
effectively invert the dynamic changes in maize LAI at different
growth stages.

The predicted LAI values for maize at each growth stage were
obtained using the RF and fitted to the measured values. The model
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showed high fitting accuracy at each maize growth stage. The results
are presented in Figure 9. The fitting accuracies at the jointing,
tasseling, and filling stages were 0.80, 0.82, and 0.83, respectively.
Moreover, the LAI generally remained between 0.9 and 1.8, 2 and 4,
and 3 and 4.8 during the jointing, emasculation, and filling stages,
respectively. The variation patterns of the estimated and measured
LAI values at the three growth stages were consistent. RF shows a
good estimation ability. Some researchers have used different
learning models to estimate the maize LAI and found that RF
showed a better effect. This result verifies the effectiveness of the
multi-source information fusion strategy and provides a reference
for other researchers when inverting the maize LAIL

3.5 Construction and improvement of the
critical nitrogen concentration dilution
curve model

The leaf area indices of plants at different nitrogen application
levels were obtained according to the definition of the critical
nitrogen concentration dilution curve, and the corresponding
nitrogen concentrations of the plants were determined. Analysis
of variance was used to determine whether crop growth was limited
by nitrogen. Functional fitting was performed between the leaf area
under nitrogen limitation and the corresponding nitrogen
concentration. The maximum LAI of the experimental material
with unrestricted growth was substituted into the equation for the
calculation. The corresponding vertical coordinates represent the
critical nitrogen concentrations. In this study, a variance analysis
was conducted for each treatment. Under the irrigation condition of
W1, treatments N1 and N2 were the nitrogen-restricted groups and
N3 was the non-nitrogen-restricted group. Under the remaining
irrigation treatment conditions, N1 was the nitrogen-restricted
group, and N2 and N3 were the non-nitrogen-restricted groups.
There were three sampling values for each treatment. The dilution
curves of the critical nitrogen concentration in leaves based on
summer maize LAI under different moisture treatments are shown
in Figure 10.
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FIGURE 10

The critical nitrogen dilution curve based on the LAl of summer maize. W1, W2, W3, and W4 represent different irrigation treatments. For further

details, see Table 1.

The nitrogen concentration of each irrigation treatment showed
a downward trend with an increase of the predicted LAI value, and
its change process was fitted by the power function equation. In the
critical nitrogen concentration dilution curve model, the power
function fitting parameters a for the WI, W2, W3, and
W4 irrigation treatments were 4.556, 3.997, 4.268, and 4.202, and
those for parameters b were —0.702, —0.571, —0.690, and —0.658,
respectively. Because the classification of nitrogen restriction groups
in the W1 treatment was different from that in other irrigation
treatments, excluding the W1 treatment, parameter a of the other
treatments increased with an increase in irrigation water volume,
and parameter b decreased with an increase in irrigation water
volume. This meets the general characteristics of constructing the
critical nitrogen concentration curve, which had a relatively high
accuracy. The R* values under the W1, W2, W3, and W4 irrigation
conditions were 0.90, 0.86, 0.89, and 0.82, respectively.

Based on the above critical nitrogen concentration curve, the
original form of the critical nitrogen concentration curve is Na = a x
LAT?. This curve was improved, and the improved form of the curve
is Na=a x LAI'* x (1 + ¢ x K)-d x D, where a, b, ¢, and d are variable
coefficients. Because critical nitrogen concentration dilution curves
were established in this study under different irrigation conditions,
the irrigation factor K was introduced to normalize the irrigation
volume of the different irrigation treatments. After normalization, K
(wl) =0, K (w2) = 0.5, K (w3) =1, and K (w4) = 0.5. The density
factor D was 6 plants/m®. Critical nitrogen concentration curves
improved under different irrigation conditions (Figure 11). Under
the irrigation condition of W1, the critical nitrogen concentration
curve R” after improvement showed no significant change compared
to that before improvement. Therefore, the critical nitrogen
concentration curve for W1 irrigation did not improve. Under
the W2 irrigation condition, the R* of the improved critical
nitrogen concentration curve was 0.89, which was 3.37% higher
than that before the improvement. Under the W3 irrigation
condition, R* was 0.92, which was 3.26% higher than that before
the improvement. Under the W4 irrigation condition, R* was 0.89,
which was 7.87% higher than that before the improvement. Under
different irrigation conditions, the R®> of the critical nitrogen
concentration curve after improvement increased compared to
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that before improvement. Therefore, these results provide a
theoretical basis and methodological reference for establishing
dilution curves for critical nitrogen concentration in crops under
different irrigation conditions.

3.6 Verification of the critical nitrogen
concentration dilution curve model

This study used data from 2024 for model construction and
independent data from 2023 for verification. Because no
W4 irrigation treatment was set up in 2023, only three types of
water treatments were verified. For the LAI of drip-irrigated maize
under the three moisture conditions on each sampling day in 2023,
three sets of duplicate data were taken and substituted into the
model to obtain the simulated values. Figure 12 shows a histogram of
the 1:1 relationship between the measured and simulated values
under different moisture conditions. Under the three moisture
conditions, the RMSE values were 0.38, 0.6, and 0.6, and the
n-RMSE values were 13.9%, 18.7%, and 17.5%, respectively. By
integrating the RMSE and n-RMSE values, the simulation effect of
the model was shown to be good, and the model accuracy was high.
This method can be applied to the nitrogen nutrition diagnosis of
drip-irrigated maize under different moisture conditions.

3.7 Construction of NNI model and
recommendation of fertilizer
application amount

Figure 13 shows that during the maize growth process, the NNI
in the upper ground is not uniform and fluctuates dynamically. The
variation trend of the NNI under different water treatment
different growth stages had a significant
relationship with the amount of fertilization at the growth stage.

conditions at
In this experiment, the ratio of the top dressing amount at each
growth stage was 2:3:2 for the jointing, tasseling, and filling stages.
Under the W1 irrigation condition, during the jointing (V6) and the
grain-filling (V8) stages, the NNI at the N3 topdressing amount was
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Grouting period.

close to 1, whereas under the N2 and N1 conditions, the NNI values
were all below 1. Water shortage may lead to low fertilizer utilization
efficiency, resulting in fertilizer deficiency in the N2 and
N1 treatments. Under the conditions of relatively sufficient
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irrigation in W2 and W3, the NNI in the N3 treatment was >1,
the NNI in the N2 treatment remained approximately 1, and the
NNI in the N1 treatment was <1. Under the condition that irrigation
in W4 was relatively sufficient, base fertilizer was applied before
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TABLE 4 Recommended fertilizer application amounts.

Treatment  Bottom Jointing

stage

Big flare
period

fertilizer

10.3389/frsen.2025.1614958

Tasseling
stage

Filling
period

Total nitrogen application
(kg/hm?)

w2 0 42 63 63 56 224
w3 0 42 63 63 42 210
W4 84 29.4 44.1 58.8 39.2 255.5

sowing in the W4 treatment. Therefore, during the jointing stage
(V6), the NNI of the N3 treatment was >1, whereas that of the
N2 treatment was approximately 1. As the growth period
progressed, the amount of top dressing used in the W4 treatment
was relatively small. Therefore, during the emasculation and filling
stages, the NNI under the N3 treatment was close to 1, whereas those
under the N2 and N1 treatments were <1.

When the NNT is between 0.9 and 1.1, nitrogen is considered to
be in an appropriate condition. Based on the comparison of the
fertilization levels of each irrigation treatment with an NNI close to 1
(Figure 11), the fertilization system for the growth period of this
experiment was roughly formulated Table 4. According to the
critical nitrogen concentration dilution curve, the fertilizer
application amounts for each irrigation treatment were optimized
as follows: Under the condition of no base fertilizer treatment and
horizontal irrigation of W1, the total nitrogen application amount
was 238 kg/hm’; under the condition of horizontal irrigation of W2,
the total nitrogen application amount was 224 kg/hm? and under
the condition of horizontal irrigation of W3, the total nitrogen
application amount was 210 kg/hm*. When the irrigation condition
was W4, the base fertilizer was applied at 84 kg/hm?, top dressing
amount at 171.5 kg/hm?, and total nitrogen application amount at
255.5 kg/hm®. After comparing the growth conditions and yield
factors of maize under different treatments, the mixed application
mode of base fertilizer and top dressing was better for the overall
growth of maize. Therefore, in the maize planting process in this
area, W4 irrigation and the fertilization mode of the base fertilizer
and top dressing are the most recommended, with a total nitrogen
application rate of 255.5 kg/hm®>. Among them, 84 kg/hm® was
applied as base fertilizer, 29.4 kg/hm” during the jointing stage,
44.1 kg/hm® during the large trumpet mouth stage, 58.8 kg/hm?
during the emasculation stage, and 39.2 kg/hm* during the grain
filling stage.

4 Discussion

4.1 Changes in LAl and leaf nitrogen content
of maize at different periods

The LAI and leaf nitrogen content of maize are important
indicators of plant growth and play key roles in photosynthesis,
nutrient absorption, and plant growth and development (Chi et al.,
2023). LAI represents the growth status of plants and determines the
photosynthetic efficiency and yield of maize, whereas the nitrogen
content in leaves directly affects the growth and overall nutritional
status of plants. In this study, the effects of water-nitrogen coupling
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on the LAI value and nitrogen content of maize leaves were studied
through a field experiment involving drip irrigation under film.
Research has found that, with the advancement of the growth
period, the LAI value of maize generally shows a trend of first
increasing and then decreasing. In the early stages of grain filling, the
LAI of maize reached its maximum value, and at this time, maize
growth stopped. However, in the later stage, with the maturity of the
maize, the LAI value decreased significantly. The LAI value of maize
in each treatment during the jointing stage was generally maintained
at approximately 1.5, and was maintained between 3 and 4 during
the tasseling stage. The grouting period was approximately 4.5. The
overall trend of nitrogen content in the maize leaves was inversely
proportional to the LAI. As the growth period progressed, the
nitrogen content in the maize leaves gradually decreased. The
nitrogen contents in the maize leaves under each treatment
during the jointing, tasseling, and filling stages were generally
maintained at approximately 4%, 2%, and <2%, respectively.

4.2 Multi-feature fusion methods and
optimal model selection

In the current field of crop physiological parameter inversion
research, model construction methods based on a single variable
have gradually been replaced by multivariable fusion models, and
the multivariable feature fusion approach has become mainstream
(Su et al., 2024). Previous studies have found that multiple features
mainly include VI, TFs, TI, predicted crop plant height, and
coverage (Zhou et al.,, 2023). The main purpose of this study was
to explore the potential of using different learning models to
improve the accuracy of estimating the LAI of maize at various
growth stages by combining VIs, CH, TFs, and TIs based on UAV
multispectral images. This study revealed a robust correlation
between the VI and the LAI of maize at different growth stages.
During the maize jointing stage, the VIs with higher correlations
were DVI, RDVI, GOSAVI, and RERDVT; those during the tasseling
period were DVI, RDVI, GNDVI, and GOSAVI; and those during
the grouting period were DVI, RDVI, SAVI, and GOSAVI. These
indices sensitively capture the changes in vegetation structure and
coverage rate, thereby indicating a significant positive correlation
with LAI Indicators such as DVI, RDVI, and GOSAVI were selected
during the three growth stages of maize. These indices were
corrected for atmospheric influence and soil background,
effectively reducing the interference of vegetation reflectance and
providing more accurate information about the maize LAIL
Therefore, these indices are significantly correlated with LAI (Liu
et al., 2023).

frontiersin.org


https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1614958

Miao et al.

However, some researchers believe that the correlation between
most TFs and LAI is relatively weak, and the extraction of TFs is
often affected by factors such as the atmosphere, light, and soil
background (Zou et al, 2024). Therefore, in this study, while
selecting TFs with high correlation, a diverse and comprehensive
TI was constructed by combining TFs with high correlation. TFs
were combined to eliminate this influence. The NDTI, DTI, and RTI
formed by the combination of each band were highly correlated with
the LAI value. Moreover, the normalized, difference, and ratio
texture indices improved the monitoring accuracy and anti-
ability of the through
difference amplification, and ratio operations. They are suitable

interference crops standardization,
for multiple growth stages and complex environments, and better
reflect the canopy structure of maize (Fan et al., 2023).

Some researchers also believe that combining crop structure
indices, such as CH, can significantly improve model accuracy.
During the growth and development of maize, there was a
positive correlation between CH and LAI. Adding plant height
information can compensate for the deficiency of multispectral
data Through the

synergistic effect of three-dimensional morphological and spectral

in vertical structure characterization.
reflection characteristics, the inversion accuracy of LAI is improved,
and the robustness of the model against differences in planting
density and lodging stress is enhanced, making it suitable for
dynamic monitoring of LAI throughout the growth period (Zhao
et al,, 2024). Therefore, in the process of inverting the maize LAI in
this study, the structural information, CH, was added. Moreover, in
this study, a high accuracy was achieved in extracting CHs using
UAYV images. The R* values of the measured and predicted values for
each period were 0.8344, 0.8912, and 0.878. Meanwhile, some
researchers believe that it is not particularly significant to first
construct a model using a single feature variable and then use
multiple feature variables to build a model and compare the
accuracies among them because the model constructed using
fused features must have higher accuracies. Therefore, in this
study, the process of constructing a model using a single feature
variable was not performed; the model was constructed directly
using multiple features. This research found that at three different
growth stages of maize, the RF model showed high accuracy. The R
values of the modeling sets for the jointing, tasseling, and grain-
filling stages were 0.84, 0.80, and 0.87, with RMSE values of 0.11,
0.21, and 0.15, respectively. The R* values of the validation sets were
0.61, 0.63, and 0.73, and the RMSE values were 0.21, 0.26, and 0.25,
respectively, and the RDP was in an ideal state. The R* values of the
RF testing and validation sets were >25% higher than those of the RR
and CNN, and the RMSE was 20% lower. Through multimodal data
collaboration, nonlinear modeling, and a self-service sampling
RF  deeply
spectral-structural-texture

mechanism, the explores the interaction of
The

automatically learns the dynamic adjustment of the feature

features. decision  tree
weights during the growth period, enabling the model to achieve
high accuracy. The CNN and RR algorithms performed poorly. A
possible reason for this is the insufficient number of training samples
used. The limited scale of the dataset restricts the full advantage of
the deep learning model, resulting in the failure of its nonlinear
feature extraction ability to be effectively transformed into
deep
significant advantages for processing large-scale data (Ahmed

performance improvement. However, learning  has
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et al,, 2023). Monitoring the growth status of crops using remote
sensing will be a trend for future research. Satellite remote sensing
images, with their wide coverage and multitemporal characteristics,
can form a spatiotemporal complementarity with UAV data in
terms of their spectral and texture information (Zhu et al,, 2018).
The feature fusion method can improve the accuracy of crop
monitoring at a regional scale by integrating data sources from
multiple platforms (Himeur et al., 2022).

4.3 Improvement of the critical nitrogen
concentration dilution curve and
optimization of nitrogen application rate

The critical nitrogen concentration dilution curve based on
the dry matter of plants has been widely applied to crops such as
maize, sunflower, rice, cotton, and chili peppers. Moreover,
factors such as planted crops, planting regions, and water
affect the
concentration dilution curve (Liu et al., 2024). However, the

and fertilizer management critical nitrogen
construction of a critical nitrogen concentration curve based on
the dry matter of plants is relatively cumbersome, and the dry
matter collection process is time-consuming and laborious. The
LAI can also be used to construct a critical nitrogen
With  the

technologies such as LAI detectors and remote sensing in

concentration curve. wide application of
agriculture, constructing a curve using the LAI has become
convenient (Liu et al., 2024). Therefore, in this study, the
predicted values of maize LAI was obtained using the RF
model. Combined with the nitrogen content of maize leaves,
dilution curves of the critical nitrogen concentration under
different water treatments were constructed. The accuracies
of each irrigation treatment were as follows: R* = 0.90, R* =
0.86, R*> = 0.89, and R?> = 0.82 under W1, W2, W3, and W4,
respectively. Moreover, as the maize growth period progressed,
the LAI gradually increased, whereas the nitrogen content in the
leaves gradually decreased. This is consistent with the rule of
constructing curves using dry matter. Furthermore, based on
the construction of critical nitrogen concentration curves for
the different irrigation treatments in this study, the curve was
improved. The form of the improved curve was Na=a x LAT™® (1
+ ¢ x K)-d x D, where K was obtained by normalizing the
irrigation volume of each irrigation treatment. After
normalization, K (wl) = 0, K (w2) = 0.5, and K (w3) = 1. K
(w4) = 0.5 D represents the planting density. For W1 irrigation,
K was 0. The accuracy R* of the critical nitrogen concentration
curve after improvement did not increase significantly
compared to that before improvement. Considering the
complexity of the curve form after improvement, the
W1 irrigation treatment was not applied in this curve
The

treatments improved to varying degrees compared with that

improvement. accuracy of the model after other
before the improvement. Nitrogen deficiency was determined
based on the NNI models for each treatment. When the NNI is
between 0.9 and 1.1, nitrogen is considered to be in an
appropriate condition. According to these conditions, in this
experiment, the NNI model was used to determine the most

suitable fertilizer application amount during the growth period.
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Combined with the growth status and yield requirements of
maize during the growth period, the irrigation and fertilizer
application amount is determined as follows. The most
recommended irrigation method is W4, which involves a
combination of base fertilizer and top dressing. Specifically,
the base fertilizer should be applied at a rate of 84 kg/hm?,
29.4 kg/hm® during the jointing stage, 44.1 kg/hm? during the
58.8 kg/hm’ the
emasculation stage, and 39.2 kg/hm® during the grain filling

large trumpet mouth stage, during
stage. The total nitrogen application rate was 255.5 kg/hm”.
The advantage of this study is that when most researchers use
UAV remote sensing to invert crop indicators, they only consider
technical means, such as comparing multiple models and combining
multiple methods, to improve the inversion accuracy of the models.
These technical methods only remain at the theoretical and technical
levels, fail to be effectively related to actual ground scenes, such as
farmland, and lack practical application value. However, the present
study did not address these limitations. After the inversion of the
LAJ, a critical nitrogen concentration curve was constructed and
improved. The improved critical nitrogen concentration dilution
curve precisely matched the requirements of different irrigation and
planting densities, overcoming the limitations of the universality of
traditional curves and contributing a new perspective to the

construction of the critical nitrogen concentration curve.

5 Conclusion

This study utilized multispectral images from UAVs to extract
spectral and texture features, while incorporating plant height
information to estimate the LAI of maize. The effectiveness of
different algorithms in predicting the LAI values of maize was
evaluated through a comparative analysis. The estimated LAI
values were used to construct a critical nitrogen concentration
curve, which was then improved based on actual field conditions
to formulate fertilization plans for each growth stage. The main
conclusions are as follows.

1. The combination of TFs can significantly enhance the
correlation between TFs and maize LAI. The CH value
extracted from UAV images plays an important role in LAI
estimation. Combining feature information can significantly
improve the LAI estimation accuracy. Machine and deep
learning algorithms have achieved satisfactory results in
accurately estimating the maize LAI using UAV remote
sensing data.

. By integrating the irrigation and density factors, the critical
nitrogen concentration curves under different irrigation
treatments were improved. The improved R* values are 0.90,
0.89, 0.92, and 0.89 compared with the R*> values before
improvement (0.90, 0.86, 0.89, and 0.82, respectively), and
the average improvement was 3.5%. After improvement, the
curves eliminated the fitting deviations of the traditional model
under high-density planting or water stress conditions,
providing a basis for constructing critical nitrogen
concentration curves under different irrigation treatments.

. After comparing the NNI model and combining the growth

and yield information of the crops during the reproductive
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period, a reasonable fertilization plan was formulated. The

optimal mode for maize cultivation in this area was determined

to be the split application of the base fertilizer and topdressing
under W4 irrigation conditions. The specific plan is as follows:
apply 84 kg/hm” of pure nitrogen as base fertilizer, followed by

29.4 kg/hm? during the jointing stage (accounting for 11.5% of

the total), 44.1 kg/hm*> during the large-flower stage

(accounting for 17.2%), 58.8 kg/hm® during the tasseling

stage (accounting for 23.0%), and 39.2 kg/hm* during the

filling stage (accounting for 15.3%). The total amount of

nitrogen applied throughout the growth period was
255.5 kg/hm?. This plan provides a scientific basis for high-
yield and high-efficiency maize cultivation on the southern
bank of the Yellow River region by precisely regulating the
nitrogen supply intensity during the growth period.

. This study has some limitations in predicting the maize LAI
using multiple features. The structural features in this study
only describe the extraction of the CH. In subsequent studies,
the three-dimensional structural features of the canopy, such as
maize porosity and leaf inclination distribution, will be
combined. Moreover, dynamic changes in the maize leaf

growth

considered to improve the adaptability of the prediction

morphology during different stages can be

model to complex field environments.
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