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Accurate crop classification is essential for agricultural management, resource
allocation, and food security monitoring. GF-1 Wide Field View (WFV) imagery
suffers from Bidirectional Reflectance Distribution Function (BRDF) effects due to
large viewing angles (0°–48°), reducing crop classification accuracy. This study
innovatively integrates BRDF correction with deep learning to address this. First, a
BRDF correction method based on normalized difference vegetation index
(NDVI) and anisotropy flat index (AFX) is developed to normalize radiometric
discrepancies. Secondly, utilizing four spectral bands from WFV images along
with three effective vegetation indices as feature variables, a multi-feature fusion
deep learning classification system was constructed. Three typical deep learning
architectures—Feature Pyramid Network (FPN), Fully Convolutional Network
(FCN), and UNet, are employed to perform classification experiments. Results
demonstrate that BRDF correction consistently improves accuracy across
models, with UNet achieving the best performance: 95.02% overall accuracy
(+0.65%), 0.9316 Kappa (+0.0088), and 91.29% mean IOU (+1.06%). The
improved classification accuracy of mIoU (+2.31%) of FPN and OA (+2.11%) of
FCN proves the necessity of BRDF correction. By integrating physical BRDF
correction with deep learning techniques, this study establishes a new
benchmark for precision crop mapping in large-viewing satellite imagery,
thereby advancing scalable solutions for agricultural monitoring.
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1 Introduction

Crop classification is a key task in remote sensing, supporting agricultural monitoring,
food security, and ecological management (Ding et al., 2023; Gentry et al., 2025). The
Gaofen-1 (GF-1) satellite, launched in 2013, offers large-scale land monitoring via four
Wide Field View (WFV) cameras. These sensors provide 16 m resolution multispectral
imagery (0.45–0.89 µm) over an 800 km swath, enabling observations of vegetation, land
degradation, and water resources (Chen et al., 2022). However, due to the wide viewing
angles (0°–48°), GF-1 data are affected by bidirectional reflectance distribution function
(BRDF) effects (Hautecœur and Leroy, 1998), which cause spectral inconsistencies and
hinder accurate crop classification in heterogeneous landscapes.

In order to eliminate the effect of BRDF effect on crop classification, BRDF correction of
GF-1 WFV image is needed. BRDF correction normalizes the surface reflectance from
different observation directions to nadir observation reflectance, systematically eliminates
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the radiation distortion caused by large observation angles, and
enhances the radiation consistency of wide-viewing-angle images.
Traditional BRDF correction methods (Schläpfer et al., 2014), such
as the Ross Thick-LiSparse Reciprocal model (Roujean et al., 1992),
predominantly rely on kernel-driven parameters derived from low
spatial resolution data (e.g., MODIS). However, their limited
parameter spatial scales struggle to effectively characterize the
micro-scale anisotropic reflectance heterogeneity in high-
resolution imagery (10–30 m), such as GF-1 and Landsat
(Román et al., 2011). To overcome this limitation, (Roy et al.,
2016) utilized MODIS BRDF parameters to normalize Landsat
reflectance into nadir bidirectional reflectance-adjusted
reflectance (NBAR), thereby improving data consistency. Building
on this theoretical foundation, studies by Jiang et al. (2023) and Jiang
et al. (2024) demonstrated that BRDF correction enhances the
radiometric consistency of WFV imagery and subsequently
improves vegetation parameter retrieval accuracy. Jia W. et al.
(2024) reported a maximum increase of 2.9% in tree species
classification accuracy using BRDF-corrected airborne
hyperspectral imagery compared to raw data. Similarly, Guan
et al. (2020) found that BRDF-corrected Landsat imagery
achieved a 9.0% improvement in change detection capability and
a 1.08% overall increase in land use classification accuracy. Despite
these advancements, the influence of BRDF effects on crop
classification in WFV imagery remains underexplored,
highlighting a critical research gap in precision agricultural
monitoring.

Crop classification in agricultural remote sensing generally
adopts either traditional machine learning or deep learning
methods. Traditional approaches (e.g., decision trees, support
vector machines) rely on handcrafted spectral and geometric
features but struggle with complex, high-resolution imagery. In
contrast, deep learning models offer superior performance by
learning hierarchical features from data, and have become the
mainstream choice. Notably, Fully Convolutional Networks
(FCN), Feature Pyramid Networks (FPN), and UNet have shown
strong potential. FCNs enable end-to-end pixel-level classification
and effectively capture field boundaries (Maggiori et al., 2016). FPNs
enhance multi-scale feature extraction for improved recognition of
crop regions with varying sizes (Xu et al., 2023). UNet integrates
high-level semantics and spatial details via skip connections,
showing robustness in dealing with spectral variability due to
crop height and planting density (Jia Y. et al., 2024; Wang et al.,
2024; Chang et al., 2024). However, most of these models overlook
the impact of Bidirectional Reflectance Distribution Function
(BRDF) effects, which arise from varying observation angles.
BRDF-induced spectral distortion reduces classification accuracy
and weakens model generalization, especially in large-scale
applications, and remains a major technical challenge for high-
resolution agricultural monitoring.

Therefore, this study aims to develop a high-precision
classification framework for GF-1 WFV 16 m imagery,
systematically investigating the impacts of BRDF effects on crop
classification accuracy and the performance variations across deep
learning architectures. An NDVI-level driven BRDF parameters
method is used to correct BRDF effect of WFV image. In
addition, hierarchical feature architecture combining FCN, FPN,
and UNet paradigms to synergistically enhance spectral-spatial

feature representation. Through controlled experiments with
BRDF-corrected and uncorrected reference data, quantitatively
evaluate how BRDF effect influences classification fidelity across
different crop types and evaluate applicability of different deep
learning methods for crop classification in WFV Images.

2 Study area and data sources

2.1 Overview of the study area

The study area is situated in Shuangya City (46°40′–47°04′N,
131°30′–131°50′E), eastern Heilongjiang Province, China (Figure 1),
within the core region of the Sanjiang Plain formed by alluvial
deposits from the Heilongjiang, Songhua, and Wusuli Rivers.
Characterized by flat low-lying topography with average
elevations of 50–60 m, this agriculturally significant zone features
fertile black soils and meadow soils, serving as a crucial commercial
grain production base in China. The region experiences a temperate
continental climate with mean annual temperatures of 1°C–3°C and
precipitation ranging 500–600 mm. With a frost-free period of
120–140 days, the climatic conditions support cultivation of
early-maturing crops including maize, rice, and soybean (Qu
et al., 2024; Gentry et al., 2025), whose distinct phenological
stages are detailed in Table 1.

2.2 Data and preprocessing

2.2.1 GF-1 WFV data
This study utilized 16-m spatial resolution GF-1 WFV remote

sensing images, com- prising four spectral bands: blue
(450–520 nm), green (520–590 nm), red (630–690 nm), and
near-infrared (770–890 nm). In this study, an image of GF-1
WFV4 level 1A on 28 August 2022 was downloaded from the
China Centre for Resources Satellite Data and Application
(CRESDA) (https://data.cresda.cn/), covering the core agricultural
region of the Sanjiang Plain in eastern Heilongjiang Province, China.
Prior to application, GF-1 WFV data undergo rigorous
preprocessing steps, including radiometric calibration,
atmospheric correction, orthorectification, and geometric
correction. The atmospheric correction was performed using the
fast line-of-sight atmospheric analysis of spectral hypercubes
(FLAASH) model. In addition, to conduct BRDF correction for
WFV image, the per-pixel observation geometry of WFV image was
calculated, including the solar zenith angle θs, view zenith angle θv,
and relative azimuth angle (ϕ). The θv of the study area ranges from
32.0°to 35.6°, θs ranges from 39.3° to 39.8°, and ϕ ranges from 153.7°
to 155.7°.

2.2.2 JiLin-1 KF01C data
The Jilin-1 Wide 01C satellite, launched on 5 May 2022, has a

swath width of over 150 km and provides imagery products with a
panchromatic resolution of 0.5 m and a multispectral resolution of
2 m. In this study, four scenes of Level-3 Jilin-1 KF01C imagery data,
acquired on 10 July 2022, with a resolution of 0.5 m, were
downloaded from https://www.jl1mall.com/ to assist in the
creation of crop classification labels. The Level-3 Jilin-1 KF01C
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data is high-precision image data that has undergone radiometric
calibration, geometric precision correction, and image fusion, and
can be directly used for image interpretation.

2.2.3 Ground sample label data
To create labeled samples for crop classification, this study

integrated labeled data from Qu et al. (2024) with Jilin-1 KF01C
imagery, based on WFV imagery, to produce 210 labeled samples.
The labeled samples in the study by Qu et al. (2024) were obtained
from field survey experiments conducted from July to August 2022.
In this study, a total of 210 sample points were obtained through

field investigations, with balanced distribution among three major
crops: rice (70), soybean (70), and maize (70), as illustrated in
Figure 1. Around each labeled point, multiple image patches of 128×
128 pixels were extracted. The multispectral data were vectorized
and preprocessed using ENVI software, resulting in the creation of
two crop classification datasets (with and without BRDF correction)
paired with corresponding label sets. Each dataset contains
1,000 image patches of 128× 128 pixels, divided into training
(800 images) and validation (200 images) subsets. The BRDF
correction was implemented to account for bidirectional
reflectance effects in satellite observations.

FIGURE 1
Study area and classification labels.

TABLE 1 Climatic period of major crops in the study area.
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A hierarchical classification system was developed to align with
agricultural monitoring requirements. Target features were
categorized into three primary crop classes (rice, maize,
soybean) and a composite background class encompassing non-
cultivated features such as buildings, roads, water bodies, and
woodlands. Each class was assigned a unique identifier
(background: 0; rice: 1; maize: 2; soybean: 3) to facilitate precise
model training, as outlined in Table 2. To enhance visual
interpretability of classification outputs, a dedicated pseudocolor
mapping scheme was designed: rice paddies in blue (RGB: 0, 0,
255), maize in red (RGB: 255, 0, 0), soybean fields in yellow (RGB:
255, 127, 80), and background features in black (RGB: 0, 0, 0). This
scheme enables clear discrimination between target croplands and
non-target regions, with dataset visualization and manual
annotations.

3 Methods

This study aims to enhance the classification accuracy of crops
in single-scene wide field-of-view (WFV) remote sensing images
by constructing a classification technology system based on
bidirectional reflectance distribution function (BRDF)
correction and deep learning methods (as shown in Figure 2).
The specific implementation process consists of four progressive
steps: Firstly, based on the WFV image metadata and preprocessed
data, the observation geometric angles are calculated and the

normalized difference vegetation index (NDVI) is extracted.
Secondly, the AFX index is calculated based on the NDVI-
based BRDF parameters to achieve the processing of
normalized BRDF parameters, and then the BRDF correction of
the WFV image is completed, ultimately obtaining nadir
reflectance data. Subsequently, crop classification studies are
conducted based on the WFV images before and after
correction. Two experimental datasets were generated from
uncorrected and corrected WFV data.

By constructing spectral and vegetation index features, three
typical deep learning models (FPN, FCN, and Unet) are selected for
comparative analysis. Finally, the impact of BRDF correction on the
classification effect of crops is evaluated by comparing the
classification accuracy of the images before and after correction,
and the feature expression ability and classification performance
differences of different models are deeply analyzed.

3.1 BRDF correction of WFV image

In order to eliminate the radiation differences caused by
different viewing angles of WFV images, BRDF correction was
carried out to normalize the reflectance of WFV images at
different viewing angles to the nadir observation. The WFV
image BRDF correction is implemented based on the RTLSR-
chen BRDF model (Chen and Cihlar, 1997), a semiempirical
kernel-driven model with considering hotspot effect. The RTLSR-
chen equation of the bidirectional reflectance factor (BRF) is given as
Equation 1:

ρλ θs, θv,φ( ) � fiso λ( ) + fvol λ( )Kvol θs, θv,φ( )
+ fgeo λ( )Kgeo θs, θv,φ( ) (1)

where θs, θv,and φ are the sun zenith angle, view zenith angle, and
relative azimuth angle, respecstively, ρλ is the reflectance at λ band,
and fiso is a constant corresponding to isotropic reflectance.
Kvol(θs, θv,φ) and Kgeo(θs, θv,φ) are volumetric scattering and

TABLE 2 Crop category labels.

Crops Labels

Background 0

Rice 1

Maize 2

Soybean 3

FIGURE 2
The process of BRDF correction and crop classification workflows.
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geometric scattering kernels, respectively, and fvol and fgeo are the
weights of the two kernels respectively.

The RossThickChen kernel (Chen and Cihlar, 1997), which
takes into account hotspot variations, is used to calculate volume
scattering in this study, as shown in Equations 2, 3:

KRTC �
π
2 − ξ( )cos ξ + sin ξ

cos θv + cos θs
× 1 + C1e

−ξ
C2( ) − π

2
(2)

cos ξ � cos θs cos θv + sin θs sin θv cosφ (3)
where ξ is the phase angle and 1 + C1e

−ξ
C2 is the modified hotspot

function.C1 and C2 are two free parameters, the C1 and C2 values of
the blue, green, and red bands are set to 0.7 and 5.2, respectively,
while C1 and C2 values of the NIR band are set to 0.5 and 4.5,
respectively (Jiao et al., 2016).

The fiso, fvol and fgeo three BRDF parameters of WFV
correction are determined by coupled NDVI-based BRDF
parameters and AFX method. The AFX formula is given as
Equation 4:

AFX λ( ) � 1 + fvol λ( )
fiso λ( ) × 0.189184 − fgeo λ( )

fiso λ( ) × 1.377622 (4)

The cropland NDVI-based BRDF parameters in Jiang et al.
(2024) study are employed to calculate AFX, following the
methodology of Jiao et al. (2014). Subsequently, the normalized
NDVI-based BRDF parameters are derived using the AFX value in
conjunction with the BRDF archetype (as referenced in Jiao et al.
(2014)). The final normalized Fiso, Fvol and Fgeo values, which are
categorized by different NDVI ranges, are utilized for BRDF
correction (as shown in Table 3). It is important to note that the
same normalized Fiso value of 0.5 is applied across different NDVI
ranges and different spectral bands.

GF-1 WFV reflectance at nadir observation θ] � 0° was
calculated by Equation 5:

ρλ θs, 0,φ( ) � ρλ θs, θv,φ( ) × fiso λ( ) + fvol λ( )Kvol θs, 0,φ( ) + fgeo λ( )Kgeo θs, 0,φ( )
fiso λ( ) + fvol λ( )Kvol θs, θv,φ( ) + fgeo λ( )Kgeo θs, θv,φ( )

(5)
where ρλ(θs, 0,φ) represents the nadir reflectance retrieved using
BRDF parameters for band λ and ρλ (θs, θv,φ) represents the actual
directional reflectance for band λ.

3.2 Feature extraction and selection

In this study, crop classification of WFV imagery was developed
using spectral bands and vegetation indices as feature variables.
Specifically, ten commonly used vegetation indices were calculated
as candidate features for the classification experiments, based on
both raw WFV images and BRDF-corrected WFV images. These
indices include the Normalized Difference Vegetation Index
(NDVI), Atmospherically Resistant Vegetation Index (ARVI),
Difference Vegetation Index (DVI), Enhanced Vegetation Index
(EVI), Green Normalized Difference Vegetation Index (GNDVI),
Renormalized Difference Vegetation Index (RDVI), Ratio
Vegetation Index (RVI), Triangular Vegetation Index (TVI), Soil
Adjusted Vegetation Index (SAVI), and Visible-band Difference
Vegetation Index (VDVI). The formulas for calculating these indices
are provided in Table 4. To optimize model performance by
addressing multicollinearity issues, we systematically analyzed
feature (four spectral bands and ten vegetation indices)
correlations through Pearson’s correlation coefficient analysis
(Figure 3). In this study, variables exhibiting inter-correlation
coefficients exceeding the 0.85 threshold were subsequently
eliminated to mitigate redundancy and prevent model overfitting.
Through this rigorous feature selection process, the final input
variables were streamlined to four spectral bands (blue, green,
red, and NIR) and three vegetation indices demonstrating unique
information contributions: NDVI, RVI, and VDVI.

3.3 Classification methods

3.3.1 Unet
The UNet architecture (Ronneberger et al., 2015), an end-to-end

fully convolutional network, employs an encoder-decoder structure
to effectively capture multi-scale feature information, as illustrated
in Figure 4. The encoder progressively extracts high-level semantic
features through downsampling, while the decoder restores spatial
details via upsampling. Skip connections integrate shallow texture
features with deep semantic information, enabling precise image
segmentation. In remote sensing-based crop classification tasks, this
architecture facilitates the simultaneous extraction of local crop
details (e.g., leaf textures) and global distribution patterns (e.g.,

TABLE 3 The AFX values and normalized BRDF parameters in different NDVI ranges.

NDVI range Blue band Green band Red band NIR band

AFX Fvol Fgeo AFX Fvol Fgeo AFX Fvol Fgeo AFX Fvol Fgeo

0.1–0.2 1.571 2.6713 0.0028 1.014 0.7446 0.0072 0.545 0.0288 0.1426 0.540 0.1218 0.1096

0.2–0.3 1.786 2.6713 0.0028 1.206 0.7446 0.0072 0.774 0.1282 0.1134 0.742 0.1218 0.1096

0.3–0.4 1.747 2.6713 0.0028 1.316 0.7446 0.0072 0.966 0.3082 0.0585 0.962 0.3135 0.0679

0.4–0.5 1.732 2.6713 0.0028 1.393 0.7446 0.0072 0.969 0.3082 0.0585 0.987 0.3521 0.0477

0.5–0.6 1.769 2.6713 0.0028 1.413 0.7446 0.0072 0.776 0.1282 0.1134 0.945 0.3135 0.0679

0.6–0.7 1.763 2.6713 0.0028 1.349 0.7446 0.0072 0.958 0.3082 0.0585 0.930 0.3135 0.0679

0.7–0.8 1.839 2.6713 0.0028 1.190 0.7446 0.0072 1.189 0.4826 0.0274 0.856 0.2337 0.086

0.8–1.0 2.072 2.6713 0.0028 0.921 0.7446 0.0072 0.962 0.0288 0.1426 1.124 0.4321 0.0262
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field boundaries), significantly enhancing classification accuracy (Yu
et al., 2022; Liu et al., 2025).

The proposed model is based on the UNet architecture and is
designed for semantic segmentation of multi-channel remote
sensing images. The input comprises 9-channel images with a
spatial resolution of 128× 128 pixels. Prior to processing, input
data is normalized to standardize pixel intensity distributions. The
network adopts a symmetric encoder–decoder structure to facilitate
nonlinear feature representation and pixel-wise classification. This
UNet-based design effectively combines hierarchical contextual

information with spatial precision, making it well-suited for
handling the heterogeneous textures and class imbalances
typically found in agricultural remote sensing imagery.

3.3.2 FPN
Feature Pyramid Network (FPN) (Lin et al., 2017), originally

designed for object detection tasks (e.g., Mask R-CNN), introduces
multi-scale feature fusion through hierarchical pyramid
construction. By combining deep semantic information with
shallow spatial details, FPN enhances model sensitivity to objects

TABLE 4 Vegetation indices in the cropland classification.

Vegetation index Formula

Normalized Difference Vegetation Index (NDVI) NDVI � ρnir −ρred
ρnir +ρred

Atmospherically Resistant Vegetation Index (ARVI) ARVI � ρnir−2(ρred−ρblue )
ρnir+2(ρred−ρblue )

Difference Vegetation Index (DVI) DVI � ρnir − ρred

Enhanced Vegetation Index (EVI) EVI � 2.5( ρnir−ρred
ρnir+6ρred−7.5ρblue+1)

Green Normalized Difference Vegetation Index (GNDVI) GNDV � ρnir−ρgreen
ρnir+ρgreen

Renormalized Difference Vegetation Index (RDVI) RDVI � ρnir −ρred������
ρnir +ρred√

Ratio Vegetation Index (RVI) RVI � ρnir
ρred

Triangular Vegetation Index (TVI) TVI � 0.5 · 120 · ρnir − ρgreen( ) − 200 · ρred([
−ρgreen )]

Soil Adjust Vegetation Index (SAVI) SAVI � (1 + L) ρnir−ρred
ρnir+ρred+L

Visible-band Difference Vegetation Index (VDVI) VDVI � 2ρgreen −ρred −ρblue
2ρgreen +ρred +ρblue

FIGURE 3
Correlation analysis of remote sensing bands.
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of varying scales (Figure 5). When applied to remote sensing image
classification, this approach effectively addresses challenges
including multi-scale object coexistence, small-target omission,
and complex background interference, thereby improving crop
classification accuracy in heterogeneous landscapes (Xu et al., 2021).

This model, based on Lin et al. (2017), is specifically designed for
semantic segmentation of multi-channel remote sensing images.
The input consists of 9-channel images with a resolution of 128×
128 pixels, and the output is pixel-level classification results across
four categories: background, rice, maize, and soybean. The
architecture employs a ResNet-like backbone network to extract
multi-scale features in a bottom-up manner. To mitigate spatial
information loss caused by downsampling, shallow high-resolution
features are preserved through upsampling and lateral connections.
Subsequently, a top-down pathway is implemented to integrate
multi-scale features hierarchically. The Fuse module processes

feature maps from different levels by upsampling and
concatenation, ultimately generating the segmentation results.
This design effectively balances the retention of fine-grained
spatial details and the integration of deep semantic information,
addressing challenges such as multi-scale object coexistence and
complex background interference in agricultural remote
sensing scenarios.

3.3.3 FCN
Conventional convolutional neural networks (CNNs) typically

rely on fully connected layers for category labeling, which often
compromises spatial localization. In contrast, the Fully
Convolutional Network (FCN) (Long et al., 2015) replaces fully
connected layers with 1× 1 convolutional layers, enabling arbitrary-
sized input processing and generating pixel-aligned feature maps.
This modification preserves spatial structures while achieving pixel-

FIGURE 4
Crop classification process based on Unet.

FIGURE 5
Crop classification process based on FPN.
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wise category prediction, making FCN particularly suitable for
handling the large-scale and multi-resolution characteristics of
remote sensing imagery. The framework provides an efficient
pixel-level solution for crop classification tasks in agricultural
remote sensing applications (Wan et al., 2021).

The model is based on the FCN-16s semantic segmentation
classification model with VGG16 backbone, which outputs multi-
level features through the VGG16 feature extractor, which acts as a
backbone network. Then pixel-level classification results are
generated by fusing deep semantic features with mid-level detail
features. The input of the model is a 9-channel image of 128 ×
128 pixels, and the output is a pixel-level classification result
(4 categories, namely, background, rice, maize, and soybean).

3.4 Metrics

This study employs 7 quantitative metrics:Overall Accuracy
(OA), Mean Intersection over Union (MIoU), Kappa coefficient,
User’s Accuracy (UA), Producer’s Accuracy (PA), F1-score (F1),
and Intersection over Union (IOU),to systematically evaluate the
impact of BRDF correction on crop classification accuracy.

Define the classification task to contain four categories, and the
elementCi,j in the confusionmatrixC ∈ Nk×k denotes the number of
samples where the true category is i is predicted to be category j.
And N � ∑k

i�1∑k
j�1Cij is the total number of samples. The specific

calculation formulas are shown in Equations 6–13.

OA � ∑k
i�1Cii

N
× 100% (6)

κ � OA − pe

1 − pe
(7)

where pe � 1
N2 ∑

k

i�1
(∑

k

j�1
Cij)(∑

k

j�1
Cji).

IoUi � Cii

∑k
j�1Cij +∑k

j�1Cji − Cii

× 100% (8)

mIoU � 1
k
∑
k

i�1
IoUi (9)

PAi � Cii

∑k
j�1Cij

× 100% (10)

UAi � Cii

∑k
j�1Cji

× 100% (11)

F1i � 2 ×
PAi × UAi

PAi + UAi
(12)

F1macro � 1
k
∑
k

i�1
F1i (13)

4 Results

Focusing on crop classification tasks using GF-1 16-m spatial
resolution imagery, a controlled variable experimental framework
was implemented with three representative deep learning models:
FPN, FCN, and UNet. The analysis investigates BRDF-induced
variations in classification performance through three

dimensions: (1) Overall crop classification performance, (2)
Crop-specific classification performance, (3) Confusion matrix
analysis and (4) Crop Classification Mapping. This
multidimensional evaluation elucidates the influence of BRDF
correction on classification accuracy, providing critical insights
for optimizing agricultural remote sensing workflows in
anisotropic reflectance scenarios.

4.1 The setting of training coefficient

To ensure the fairness of model training, all experimental
models were optimized using the Adam optimizer with a unified
learning rate of 0.001. The cross-entropy loss function was employed
as the loss criterion. The classification task involved four categories:
Background, Rice, Maize, and Soybean.

4.2 Overall crop classification performance

This study evaluates the impact of BRDF correction on crop
classification performance using three metrics: OA, Kappa
coefficient, and MIoU, demonstrating its critical role in
improving model accuracy and mitigating directional reflectance
bias. As shown in Table 5, BRDF correction significantly enhanced
the classification capabilities across all models. Specifically, UNet, a
representative model with an encoder-decoder architecture,
achieved an increase in OA from 94.37% to 95.02%, with the
MIoU improving by 1.06%. This indicates that BRDF correction
not only optimized overall classification accuracy but also
significantly enhanced detailed segmentation capabilities,
confirming its advantage in characterizing complex geometric
features. The FPN exhibited a 1.54% improvement in OA and a
2.31% increase in MIoU, demonstrating that BRDF correction
effectively reduced directional bias in surface reflectance. This
highlights FPN’s ability to efficiently utilize spectral consistency
post-correction through multi-scale feature fusion, particularly
excelling in fine-grained category discrimination. In contrast, the
FCN showed limited improvement (2.11% gain in OA), likely
attributed to its shallow architecture, which constrained its
capacity to characterize complex BRDF effects and spatial details.
These results underscore the importance of integrating BRDF
correction with deep architectures to fully exploit its benefits in
agricultural remote sensing applications.

4.3 Crop-specific classification performance

A detailed analysis of individual crop categories reveals varying
impacts of BRDF correction on classification performance in Tables
6–8. The correction demonstrates more pronounced benefits for
high-canopy crops. For example, under the FPN model, soybean’s
F1-score improves from 89.25% to 90.92%, with a 2.76% increase in
IoU, likely attributable to strong directional reflectance caused by
leaf geometry. Similarly, UNet shows significant gains for soybean
classification (IoU: 91.64% to 92.48%), validating the adaptability of
BRDF correction to complex canopy structures. In contrast, low-
stature crops such as rice exhibit marginal improvements in FPN
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that PA is increased 0.59% and UA is increased 0.38%), suggesting
weaker BRDF effects. Notably, Maize achieves a 3.72% IoU
improvement in FPN but only 2.6% in FCN, highlighting the
interaction between model performance and correction efficacy:
deeper networks (e.g., UNet) better exploit spatial-spectral
features in corrected data, whereas shallow models (e.g., FCN)
struggle to fully eliminate residual BRDF noise.

The observed variations in correction effectiveness stem from
the interplay between crop growth characteristics and model
architectures. BRDF correction standardizes multi-angle
observation data, reducing classification ambiguity induced by
canopy geometry—particularly critical for crops with distinct 3D
structures (e.g., maize and soybean). For instance, FPN improves

maize’s F1-score by 2.4%, while FCN enhances soybean
classification by 1.28%. These findings elucidate the regulatory
role of canopy geometry and BRDF angular effects in
classification accuracy. However, crops with homogeneous
canopy structures (e.g., rice) exhibit limited gains due to their
high coverage density.

4.4 Confusion matrix analysis

As illustrated in Figure 6, BRDF correction markedly improves
rice classification accuracy in FCN. Post-correction, the number of
correctly predicted rice samples increases from 559,912 to 601,907,

TABLE 5 Classification performance evaluation of models with/without BRDF correction.

Model BRDF uncorrected BRDF corrected

OA (%) Kappa MIoU (%) OA (%) Kappa MIoU (%)

FPN 86.89 0.8191 78.75 88.43 0.8409 81.06

FCN 68.95 0.5745 54.73 71.06 0.6040 57.15

UNet 94.37 0.9228 90.23 95.02 0.9316 91.29

TABLE 6 Classification evaluation of different crop regions based on FPN with/without BRDF correction.

FPN BRDF uncorrected BRDF corrected

PA (%) UA (%) IOU (%) F1 (%) PA (%) UA (%) IOU (%) F1 (%)

Rice 94.20 94.65 89.44 94.43 94.79 95.03 90.31 94.91

Maize 83.65 87.09 74.42 85.33 87.5 87.96 78.14 87.73

Soybean 84.49 94.58 80.59 89.25 89.18 92.73 83.35 90.92

TABLE 7 Classification evaluation of different crop regions based on FCN with/without BRDF correction.

FCN BRDF uncorrected BRDF corrected

PA (%) UA (%) IOU (%) F1 (%) PA (%) UA (%) IOU(%) F1 (%)

Rice 80.85 79.72 67.05 80.28 86.91 79.51 71.01 83.05

Maize 69.36 71.25 54.19 70.29 72.59 72.29 56.79 72.44

Soybean 72.75 69.38 55.07 71.03 72.09 72.54 56.63 72.31

TABLE 8 Classification evaluation of different crop regions based on UNet with/without BRDF correction.

UNet BRDF uncorrected BRDF corrected

PA (%) UA (%) IOU(%) F1 (%) PA (%) UA (%) IOU (%) F1 (%)

Rice 97.98 97.05 95.14 97.51 98.20 97.37 95.66 97.78

Maize 94.19 93.87 88.74 94.03 94.87 94.54 89.94 94.70

Soybean 96.51 94.78 91.64 95.64 95.58 96.62 92.48 96.09
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while misclassifications as maize and soybean decrease from
15,708 to 9,337 and from 14,373 to 9,474, respectively. This
demonstrates effective mitigation of spectral confusion between
rice and high-reflectance crops. However, background
misclassification remains unresolved, with background samples

misidentified as maize increasing from 229,276 to 232,498. This
persistence may stem from FCN’s shallow architecture, which lacks
sensitivity to the intricate spectral features of corrected data,
perpetuating low discriminability between background and maize.
Additionally, limited improvement in soybean classification

FIGURE 6
Confusion matrixs for different models.
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suggests FCN’s weak representation of anisotropic reflectance in
soybean canopies.

FPN exhibits balanced performance enhancement post-BRDF
correction. Correct maize predictions rise from 809,590 to 846,839,
while misclassifications as background decline from 150,724 to
113,636, confirming the correction’s efficacy in suppressing
background confusion induced by directional reflectance in maize
canopies. Soybean classification improves significantly, with correct
predictions increasing from 419,441 to 442,732 and major
misclassification sources (background and maize) reduced by
13,198 and 9,626, respectively, validating BRDF’s optimization
for 3D canopy structures. Rice classification remains stable
(correct predictions: 652,426 to 656,454), though
misclassifications as maize slightly increase from 2,195 to 2,438,
suggesting a slight spectral overlap that may still pose challenges
post-correction.

UNet achieves superior classification consistency after BRDF
correction. Correct maize predictions increase notably from
911,598 to 918,147, with background misclassifications decreasing
from 51,053 to 45,490, indicating deep networks’ capacity to
leverage corrected spectral-spatial features and suppress
directional reflectance noise. Soybean classification shows minor
trade-offs: correct predictions slightly decline from 479,091 to
474,455, while background misclassifications increase from
14,123 to 18,389, likely due to over-smoothed spectral
distinctions between soybean canopies and background post-
correction. Rice performance continues to improve, with correct
predictions rising from 678,572 to 680,121 and misclassifications as
maize and soybean further reduced.

Before and after the BRDF correction, the confusion matrices of
each model show varying degrees of increase along the diagonal
(correctly classified samples), indicating that the normalization of
lighting and angular differences effectively enhances the stability and
accuracy of remote sensing image classification. Correspondingly,
the number of misclassifications in the off-diagonal areas has
decreased, particularly the boundary between the background and
crop categories has become clearer, further verifying the positive
impact of the BRDF correction on improving classification accuracy.

4.5 Crop Classification Mapping

Mapping results of BRDF-corrected remote sensing image
classification tasks in Figure 7 reveal significant differences
among the three models in feature extraction and spatial
information preservation. For the FCN model, uncorrected
classification results exhibit blurred regional boundaries and
pronounced background noise interference. After BRDF
correction, crop boundary clarity improves substantially, with
enhanced texture features in maize canopies and reduced
confusion between soybean and rice classifications. This
demonstrates that BRDF correction effectively mitigates
reflectance variations caused by illumination angle changes,
thereby improving ability of FCN to discriminate spectrally
similar crops. The FPN model demonstrates robust multi-scale
feature extraction on uncorrected images but still misclassifies
certain soybean and maize regions. Post-correction, it captures
the strip-distribution characteristics of crops more accurately. In

the UNet model, uncorrected results show speckled
misclassifications within soybean cultivation areas. BRDF
correction enhances illumination consistency, optimizing the
fusion efficiency between low-level features and high-level
semantic information. This improves internal homogeneity in
soybean regions and better aligns rice field boundaries with
ground-truth labels.

Further comparison of the spatial segmentation performance
across models, as illustrated in Figure 8, underscores the superior
capability of UNet in delineating farmland boundaries. Its edge
contours are notably clearer, making it particularly suitable for fine-
grained classification of crops with complex canopy textures such as
soybean. However, the direct concatenation of deep semantic
features with shallow spatial details in UNet may result in
suboptimal visual classification for small-scale targets, such as
sparsely distributed maize plants, indicating a trade-off between
detail preservation and scale adaptability. In contrast, the FPN
model focuses on global farmland distribution patterns (e.g.,
large-scale rice cultivation areas), while preserving local crop
textures through low-level features. Nevertheless, FPN still
exhibits edge blurring effects in high-resolution regions. As a
fully convolutional baseline, the FCN model suffers from severe
spatial detail loss due to its single-scale feature mapping. Mapping
results indicate FCN’s limited capability in suppressing background
interference, manifesting as extensive classification voids within
farmlands and low recognition rates for small-area crops.

5 Discussion

5.1 BRDF effect on crop classification

BRDF effect significantly affects the accuracy of crop
classification through spectral distortion and spatial interference.
In terms of spectral dimension, the anisotropic reflectance
characteristics of vegetation canopy lead to the differential
spectral response of similar crops under different observed
geometry, and the sensitivity of upright structure crops (such as
maize) is significantly higher than that of diffuse canopy crops (such
as soybean) or homogeneous background crops (such as rice). The
results showed that the IOU of maize increased by 3.72% (FPN) to
1.2% (UNet) after BRDF correction, while that of rice only increased
by 0.52% (UNet), confirming the regulation of crop morphology on
BRDF effect. In spatial dimension, oblique observation increased the
pixel heterogeneity at the edge of the field, resulting in the boundary
mixing rate of corn and soybean in the uncorrected data (Mean IOU
of FPN increased by 2.31%), while rice was less affected by the strong
contrast of water background. In addition, the coupling
amplification of BRDF effect with farmland spatial heterogeneity
(plot fragmentation degree, planting pattern) requires coordinated
suppression by physical model correction and deep learning feature
decoupling. From a modeling perspective, UNet’s encoder–decoder
structure and skip connections allow for effective integration of
multi-scale BRDF-corrected features, enhancing robustness in
complex agricultural landscapes. In contrast, FCN lacks fine-
grained feature reconstruction capabilities, making it more
dependent on the quality of correction inputs and less able to
fully exploit BRDF correction benefits. Overall, while BRDF
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correction consistently improves classification performance, its
efficacy is jointly governed by model architectural complexity
and crop-specific canopy traits.

5.2 Applicability of FCN, UNet, and FPN in
crop classification

The response of the three deep learning models to BRDF effects
and crop types showed significant differences. With its encoder-
decoder structure and multi-scale jump connection, UNet shows
the strongest robustness in complex field scenarios, especially for
high-precision classification of BRDF-sensitive crops (maize,
soybean) (IOU > 89% after correction), but its high
computational cost limits its wide range of applications. FPN
achieves a balance between efficiency and precision through the
feature pyramid, and can reduce leakage points (PA increased by
4.69%) in multi-crop mixed areas (such as soy-corn rotation
fields), but cross-scale noise leads to misclassification risk (UA
decreased by 1.85%). Although FCN is computationally efficient,
due to the lack of context modeling capabilities, it relies heavily on
BRDF correction data quality, and is only suitable for crops with
high spectral contrast (such as rice) or preliminary screening.
Notably, UNet exhibits lower sensitivity to BRDF correction
compared to FPN. This can be attributed to UNet’s ability to
preserve more low-level textures and structural details during
feature fusion, making it more reliant on local geometric and

textural information. As a result, it demonstrates greater
robustness to absolute radiometric variations caused by BRDF
effects. In contrast, FPN fuses features through weighted
summation across multiple scales, which relies more on
consistent semantic brightness distributions and is thus more
susceptible to radiometric bias.

Future studies should combine crop physiological characteristics
with model architecture innovation. For BRDF-sensitive crops such
as maize, UNet variants with inputting three sun-sensor observation
angle parameters can be designed; For large-scale monitoring tasks,
the cascaded framework of FPN and lightweight BRDF
compensation module is proposed. In the edge computing
scenario, dynamic kernel convolution optimization of FCN
should be explored to suppress Angle noise at low cost. The
ternary cooperative optimization of “crop - model - BRDF
correction” can significantly improve the operational efficiency of
agricultural remote sensing classification system.

5.3 Limitations

Despite the systematic investigation of BRDF effects on crop
classification and model applicability, this study has several
limitations. First, only three crop classifications under single-
scene GF-1 WFV images are discussed, and the limited
geographical/temporal coverage limits the validation of model
generality across climatic zones, growth stages, and crop types

FIGURE 7
Mapping of crop classification by different models.
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(such as wheat or cotton). Second, the employed BRDF correction
models (e.g., RTLSR) may lack adaptability to complex agricultural
scenarios, such as hilly terrain or mixed-cropping systems, where
local illumination-geometry relationships deviate from theoretical
assumptions, potentially introducing residual errors. Third, while
deep learning models like UNet demonstrated robustness, their high
computational costs and the absence of lightweight deployment
strategies (e.g., pruning or quantization) hinder their practical
application in large areal crop classification and resource-
constrained scenarios.

Secondly, the misclassification rate for the background class is
higher than that for crop classes. For example, in the FCN model,
prior to BRDF correction, a total of 668,888 pixels were misclassified
as background. This phenomenon can be attributed to several
inherent challenges:

Diversity of background components: Unlike the relatively
homogeneous crop fields, the background class comprises highly
heterogeneous features such as roads, water bodies, and agricultural
residues, which lack consistent spectral patterns. This variability
complicates feature learning, even when ample training samples are
available; Boundary and mixed pixel effects: At the edges of crop
fields or in fragmented landscapes, mixed pixels often contain
signals from both crops and background elements, making
deterministic classification inherently difficult. For instance,

although the UNet model achieved high accuracy for crop classes
(e.g., 911,598 correctly classified maize pixels), its performance on
the background class was comparatively lower. This suggests that
edge-related ambiguities are a major contributor to background
classification errors.

To further address the challenges associated with background
misclassification, future strategies could include incorporating
temporal spectral trajectories to distinguish dynamic crop
patterns from static background elements, or applying object-
based segmentation to reduce pixel-level noise. Nevertheless, our
current results demonstrate that the combination of BRDF
correction and model optimization already substantially mitigates
these issues. For instance, maize classification achieved an F1-score
exceeding 0.92, supporting the reliability of crop mapping—the core
objective of this study.

Building on these findings, future research should systematically
investigate the classification impact and underlying mechanisms of
BRDF effects in WFV imagery, particularly under complex terrain
conditions and in regions with mixed cropping patterns. To this end,
it is essential to develop a multi-temporal analysis framework based
on WFV image time series, enabling the evaluation of BRDF’s
dynamic influence throughout the crop growth cycle—especially
its role in enhancing temporal consistency across different
phenological stages.

FIGURE 8
Mapping panorama of different models for classification of crops.
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Moreover, integrating physical BRDF models with deep
learning represents a promising direction. Developing
lightweight neural networks that embed prior BRDF knowledge
could ensure high classification accuracy while significantly
reducing computational costs, thus laying a theoretical and
technical foundation for real-time crop monitoring using
satellite-based remote sensing data.

Finally, future studies may leverage multi-angle satellite
observations. for example, using the off-nadir imaging capability
of the GF-1 WFV sensor to acquire imagery of the same area from
different viewing angles. By assessing whether BRDF-corrected
reflectance values converge toward the nadir direction, a
physically consistent evaluation framework can be established.
This would allow BRDF correction performance to be assessed
without reliance on ground-truth data, effectively mitigating
issues related to spatial scale mismatch and spatiotemporal
heterogeneity.

6 Conclusion

Based on single-scene GF-1 WFV remote sensing images,
this study systematically explored crop classification methods
through BRDF correction and different deep learning models. By
constructing a normalized NDVI-based BRDF parameterized
correction model, the BRDF effect of WFV image is
effectively corrected. With spectral information and multi-
vegetation index as feature variables, three deep learning
frameworks of FPN, FCN and UNet were used to carry out
crop classification experiments. The results showed that BRDF
correction could significantly improve the crop classification
performance of WFV images, and FPN method had the most
significant improvement after BRDF correction, with the overall
accuracy and average crossover ratio increased by 1.54% and
2.31%, respectively. The difference of classification accuracy of
UNet method before and after correction is relatively small. The
classification results based on the corrected images show that the
overall classification accuracy of FPN model is 88.43%, the
Kappa coefficient is 0.84, and the mean IOU is 81.06%. FCN
model was 71.06%, 0.60 and 57.15%, respectively. UNet model
has the best performance with the overall accuracy of 95.02%, the
Kappa coefficient of 0.93 and the mean IOU of 0.9129. The
results validate the effectiveness of BRDF correction in
improving crop classification accuracy, and reveal the
performance differences of different deep learning
architectures in handling BRDF effects.
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