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Introduction: Groundwater recharge mapping is crucial for sustainable water
resource management in arid and semi-arid regions, particularly in hydro-
climatically stressed areas such as the Feija Basin in southeastern Morocco.
Characterized by shallow aquifers, irregular rainfall, and over-extraction for
agriculture, this region faces increasing groundwater depletion. Recent
extreme rainfall events during the 2024–2025 season have highlighted both
the vulnerability and opportunity for recharge, emphasizing the need for data-
driven, proactive strategies.

Methods: This study introduces a GeoAI-based framework combining remote
sensing, geospatial analysis, and advanced artificial intelligence (AI) models to
predict optimal groundwater recharge zones. Ten conditioning factors (e.g.,
elevation, slope, topographic wetness index, NDVI, rainfall, soil permeability,
geomorphology) were used to construct the input dataset. Five AI models
TabNet, TabTransformer, Multilayer Perceptron (MLP), CatBoost, and
AdaBoost were trained and optimized using grid search and particle swarm
optimization (PSO). Performance was evaluated using accuracy, AUC-ROC,
Cohen’s Kappa, and feature importance. Spatial validation was conducted
using in-situ borehole data.

Results: Among the tested models, TabNet achieved the highest performance
(accuracy = 97.8%, AUC = 0.99), followed closely by TabTransformer (accuracy =
97.6%). Both models demonstrated strong generalization and produced spatially
coherent recharge maps. Predicted optimal zones corresponded with low-lying,
vegetated, and permeable areas, aligning with known hydrogeological features.

Discussion: This study presents a novel application of tabular deep learning
models in groundwater science, enhancing the precision and interpretability of
recharge zone mapping. The results provide actionable insights for water
resource planners, especially in light of recent anomalous hydrological events.
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The proposed framework supports the development of rainwater harvesting and
artificial recharge systems to ensure long-term groundwater sustainability in
climate-sensitive areas.
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Introduction

Groundwater is a fundamental component of water security in arid
and semi-arid regions, acting as a buffer against the variability and
scarcity of surface water resources. A global synthesis of well data reveals
rapid declines often exceeding 0.5 m/year in dry-region aquifers,
underscoring their crucial role in sustaining ecosystems, agriculture,
and livelihoods in the absence of reliable rivers or reservoirs (Jasechko
et al., 2024). In Morocco’s southern and southeastern provinces,
including the Middle Drâa Valley, groundwater similarly underpins
agricultural activity, domestic supply, and ecological balance. For
example, the Feija watershed is overwhelmingly reliant on pumped

groundwater, and intensifying farming and aridity have led to
overexploitation of the aquifers (Moumane et al., 2021).

Although agriculture remains central to the Feija Plain’s
economy, the shift toward large-scale, export-driven watermelon
cultivation has dramatically intensified groundwater pumping.
Socio-hydrological research (Bossenbroek et al., 2023; Fico and
Kenti, 2023; Fico, 2024; Silva-Novoa Sánchez et al., 2025)
confirms that this expansion has not only depleted aquifers but
also aggravated social inequities and ecological fragility. Crucially,
this over-extraction has diminished the aquifer’s natural buffering
capacity, making the system highly susceptible to both prolonged
drought and episodic floods. Between late 2024 and early 2025,
southernMorocco experienced a spate of intense flash floods even as
the region faced one of the worst droughts in decades, the most
striking being the September 7–8, 2024 Atlantic-origin extratropical
cyclone that dumped more than a year’s worth of rain in only 2 days
(Moumane et al., 2025; Egbejule, 2024; NASA Earth Observatory,
2024), temporarily filling Lake Iriqui after more than 50 years
(Moumane et al., 2025). Yet, despite this dramatic influx, key
oases like Ternata remain groundwater-stressed, weakened by
persistent extraction pressure and upstream dam regulation. In
May 2025, a violent 10-min storm in Zagora Province destroyed
fields and thousands of watermelon crops (Freshplaza, 2025),
illustrating that even extreme, short-duration rainfall events fail
to recharge deep aquifers without intentional capture and storage
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Abbreviations: AI, artificial intelligence; ANN, artificial neural network; AUC-
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systems. These compounding factors highlight the urgent need for
targeted infrastructure such as managed aquifer recharge, retention
basins, and infiltration ponds to convert episodic floods into reliable
groundwater reserves and enhance both water security and
agricultural resilience (Moumane et al., 2024).

Recent studies have shown that deep learning techniques are
increasingly used across various scientific fields, including hydrology,
physics, and speech recognition (Kheddar, Hemis, and Himeur, 2024;
Tripathy and Mishra, 2024; Bezekci, 2025; Bezekci and Kuru, 2025;
Bezekçi, 2025), demonstrating their flexibility and problem-solving
potential across disciplines. They have also proven effective in
extracting water surfaces from satellite imagery using semantic
segmentation models such as U-Net (Elmotawakkil and Enneya, 2025).

While machine learning techniques have gained considerable
attention in hydrogeological studies, most conventional models,
such as random forest, support vector machines, or decision trees,
are limited in their ability to capture complex, nonlinear interactions
among environmental variables (Maity et al., 2024; Biazar et al., 2025).
These models often rely on predefined feature hierarchies and may
struggle to generalize in heterogeneous, data-scarce contexts like arid

and semi-arid regions (Borzì, 2025). Furthermore, traditional
machine learning (ML) approaches frequently lack mechanisms for
automated feature selection and spatial awareness, which are critical
for accurately delineating recharge zones (Roy et al., 2025). This gap
highlights the need for more sophisticated models capable of learning
intricate spatial and hydrological patterns directly from structured
data without extensive manual preprocessing.

To address the pressing challenges of groundwater recharge
assessment in the Feija Basin, this study presents an integrated
GeoAI-based modeling framework. The approach leverages five
advanced AI algorithms: TabNet, TabTransformer, MLP,
CatBoost, and AdaBoost. Despite the growing availability of
geospatial data in structured tabular formats derived from
environmental layers such as soil, geomorphology, and
hydrology, there remains a significant research gap in applying
tabular deep learning models to groundwater recharge prediction,
particularly in arid regions. While MLmethods have gained traction
in hydrogeology (Jari et al., 2023; Al Atawneh et al., 2024; Liu et al.,
2024; Sarkar et al., 2024; Hosseini et al., 2025), deep learning (DL)
architectures like TabNet and TabTransformer are rarely explored

FIGURE 1
Methodological flowchart of the AI-driven framework for groundwater potential mapping.

Frontiers in Remote Sensing frontiersin.org03

Elmotawakkil et al. 10.3389/frsen.2025.1622360

mailto:Image of FRSEN_frsen-2025-1622360_wc_f1|tif
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1622360


in this field. These models offer a distinct advantage in handling
high-dimensional, heterogeneous tabular data. Their application in
this study represents a novel attempt to adapt state-of-the-art DL
techniques to the specific demands of recharge zone mapping in
arid, fragile environments such as the Middle Drâa Valley.

This study pursues two principal aims. First, it explores the novel
application of tabular DL architectures, specifically TabNet and
TabTransformer, for hydrogeological modeling in arid
environments, leveraging structured geospatial datasets to predict
groundwater recharge zones with enhanced spatial accuracy. These
models are systematically evaluated using robust performance metrics
and validated against in situ borehole data to ensure empirical
reliability. Second, the study aims to develop high-resolution
groundwater recharge maps capable of identifying priority zones
for artificial recharge. These outputs are intended to inform and
accelerate the design of strategic water harvesting infrastructure, such
as infiltration ponds and recharge basins, particularly in anticipation
of increasing numbers of flood events projected under future climate
scenarios (Amiha et al., 2024; Rieder et al., 2025). By aligning
advanced AI techniques with geospatial intelligence, the research
provides actionable insights to support sustainable water
management and reduce the vulnerability of agriculture, especially
watermelon production, in the water-stressed Feija Basin.

Related work

Groundwater resources in arid and semi-arid regions are
increasingly under pressure due to anthropogenic overuse and
climate variability. In southeastern Morocco, particularly the
Feija Basin and the wider Middle Drâa Valley, this issue is acute.
Lamqadem and Pradhan (2019) employed multi-temporal Landsat
imagery to monitor land use transformations, documenting a shift
from traditional pastoralism to agriculture, driven primarily by
informal groundwater abstraction. Complementing this,
Moumane et al. (2021) used a combination of remote sensing
and geostatistical tools to assess groundwater salinization and
drawdown in the Feija region, revealing significant degradation
between 2013 and 2018.

Beyond hydrological metrics, sociopolitical studies such as those
by Bossenbroek et al. (2023) and Fico (2024) have highlighted the
role of land commodification, the expansion of commercial crops
(e.g., watermelon), and unequal water access in intensifying the
groundwater crisis in the region. Although these studies provide
critical insights, they predominantly rely on GIS-based multi-
criteria evaluation or qualitative assessments, with limited
incorporation of predictive, data-driven modeling tools such as
machine learning (ML) or deep learning (DL).

FIGURE 2
Delineation of the Feija Watershed and ephemeral stream network on Sentinel-2 imagery (18 March 2025). This map delineates the Feija watershed
in southeasternMorocco, outlined in red and overlaid on a Sentinel-2 L2A true color image acquired on 18March 2025. The background satellite imagery
illustrates the topographic and land use contrasts. The map highlights the ephemeral stream network (in blue), including Oued El Feija and Oued Bou
Tiouas, which are typically dry but become active during flash flood events. Several key localities, such as Lmghader, Bouzkar, and Foum Lachar, are
marked. These transient channels played a major role in surface runoff transport during storm events, underscoring the urgent need for floodwater
harvesting and aquifer recharge infrastructure in the plain.
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In other parts of the world, machine learning and deep learning
have been successfully applied to groundwater potential mapping.
Nugroho et al. (2024) evaluated the performance of random forest

(RF), support vector machine (SVM), and artificial neural network
(ANN) for predicting groundwater zones inWest Java, Indonesia, using
GIS and remote sensing layers. RF was found to outperform the other
models in both accuracy and spatial coherence. Sarkar et al. (2024)
applied a suite of MLmodels, including ANN and logistic regression, to
assess groundwater potential in Bangladesh under climate change
scenarios, demonstrating that integrating hydroclimatic variables into
the modeling framework enhances spatial prediction accuracy. In
Morocco, Ragragui et al. (2024) compared multiple ML classifiers
and concluded that a voting ensemble model yielded the highest
predictive accuracy for groundwater potential mapping,
underscoring the effectiveness of ensemble strategies in data-scarce
arid regions. Similarly, Elmotawakkil et al. (2024) explored the
integration of geospatial data and ML techniques to improve
groundwater level prediction and support sustainable water resource
management in the Rabat–Salé–Kénitra region.

Recent developments in deep learning have led to the emergence
of models tailored specifically for tabular data, such as TabNet and
TabTransformer. These architectures address limitations of
traditional CNN and LSTM models when applied to non-
sequential, structured datasets (Arik and Pfister, 2021; Huang
et al., 2021) by enabling efficient feature selection and improved

FIGURE 3
Post-flood Sentinel-2 image of the Feija Plain (2 May 2025) depicting agricultural damage following the early May 2025 flash floods. This Sentinel-2
L2A true color image, acquired on 2 May 2025, captures the Feija Plain in the immediate aftermath of severe flash floods that struck the region in early
May. The area, including the agricultural zones around the village of Lmghader, was heavily impacted by torrential rains and hail. The ephemeral streams
Oued Feija and Oued Boutious, visible as bright sediment-laden channels, overflowed and inundated surrounding farmland. According to field
reports, approximately 4,000 to 5,000 tonnes of watermelonwere destroyed 1 week before harvest, affecting more than 700 farmers who lost up to 95%
of their crop. The absence of floodwater retention infrastructure resulted in widespread waterlogging and the total loss of cultivable land parcels across
the plain.

TABLE 1 Descriptive statistics of input features.

Factors Mean Std Dev Min Max

NDVI 0.0746 0.0425 0.0294 0.3379

Stream distance 816.4746 799.6260 0.0000 3786.2095

Soil permeability 1.4568 1.2221 0.0000 3.0000

Rainfall 92.7709 6.0181 79.5719 98.8845

TWI 7.3940 2.2004 3.9654 19.4476

Geomorphology 1.5463 0.8407 1.0000 5.0000

Lineament density 0.1346 0.3070 0.0000 1.4887

Curvature −0.0856 0.6359 −4.1250 1.9479

Slope 7.7233 8.6287 0.3428 32.7110

Elevation 859.9074 186.9025 664.0000 1348.0000
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interpretability. While DL approaches like ANN have been adopted
in recent groundwater studies, most applications continue to focus
on conventional ML techniques such as random forest or logistic
regression. Few studies attempt to compare these models statistically

or explore newer tabular DL frameworks like Igwebuike et al. (2024).
Moreover, model evaluation remains largely dependent on singular
performance metrics such as receiver operating characteristic
(ROC)-AUC or accuracy, without multi-criteria decision-making

TABLE 2 Groundwater conditioning factors used in the study, along with their data characteristics and hydrological relevance.

Factor Type Unit/Class Source Hydrological relevance

Elevation Continuous Meters (m) USGS EarthExplorer (30 m) Governs flow direction and recharge zone location

Slope Continuous Degrees (°) Derived from DEM (USGS) Influences runoff intensity and infiltration

Curvature Continuous Unitless Derived from DEM (USGS) Identifies concave/convex zones affecting accumulation

TWI Continuous Unitless Derived from DEM (USGS) Highlights areas of potential saturation

Soil permeability Categorical Low, medium, high Moumane et al. (2024) Controls percolation and subsurface infiltration rate

Geomorphology Categorical Landform classes Topographic maps (El Gloa and Zagora, 1:100,000) Reflects lithology and terrain influencing recharge

NDVI Continuous 0–1 Landsat 8
Landsat 9 (30 m)

Proxy for vegetation health and evapotranspiration

Rainfall Continuous mm/year NASA POWER
Local station (Zagora)

Represents direct recharge potential from precipitation

Stream distance Continuous Meters (m) Derived from DEM and topographic maps Indicates surface water proximity and indirect recharge zones

Lineament density Continuous km/km2 Derived from DEM (USGS) using GIS Indicates fractures and pathways aiding infiltration

FIGURE 4
Feature correlation matrix among input variables.
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or significance testing. Tools such as the Friedman test and the
Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) method, which enable rigorous model comparison and
selection, are rarely employed in this context (Yariyan et al., 2021;
Atenidegbe and Mogaji, 2023). This study introduces TabNet and
other advanced models for groundwater potential mapping in the
Feija Basin, offering a novel contribution by integrating tabular deep
learning with rigorous statistical validation and spatial performance
assessment.

In summary, the literature reveals that while GIS- and multi-
criteria decision analysis (MCDA)-based approaches are commonly
used for groundwater potential mapping in southeastern Morocco,
the adoption of machine learning and DL techniques remains limited.
International studies highlight the potential of these models, yet they
often lack rigorous comparative validation and spatial assessment. To
address these gaps, the present study implements and compares five
advanced models, including TabNet, TabTransformer, MLP,
CatBoost, and AdaBoost, for groundwater potential mapping in
the Feija Basin. By integrating spatial accuracy evaluation with
robust statistical techniques such as confusion matrices, ROC
analysis, the Friedman test, and the TOPSIS ranking method, this
study provides a comprehensive and reproducible framework for
groundwater assessment in complex arid environments.

Methodology

This study presents a comprehensive ML pipeline designed to
classify groundwater potential zones based on remote sensing and
geospatial features. The methodology consists of sequential stages,
including data preprocessing, augmentation, feature scaling, model
selection, hyperparameter optimization, model training, and
performance evaluation Figure 1.

Study area description

The Feija Plain is located in southeastern Morocco within the
Middle Drâa Valley (MDV). This region, historically characterized

by subsistence agriculture and seasonal pastoralism, is ecologically
fragile and climatically arid (Schulz and Manfred, 2013). It lies along
the western flank of the Drâa River near the city of Zagora and forms
part of an interconnected oasis system extending over 200 km
(Karmaoui and Adil, 2016).

Over the past 2 decades, Feija has undergone a rapid
transformation toward intensive, export-oriented agriculture
(Lamqadem and Pradhan, 2019). In particular, watermelon
farming has emerged as the dominant land use, incentivized by
government-subsidized drip irrigation systems and the widespread
availability of high-yield hybrid seeds from international agribusinesses
(Fico, 2022; Silva-Novoa Sánchez, 2024). The region’s warm winter
climate allows for two harvests per season prior to the main production
peaks in competing regions, granting it a comparative advantage in the
national market (Bossenbroek et al., 2023).

Hydrogeologically, the Feija Plain is primarily underlain by
shallow, unconfined phreatic aquifers hosted in Quaternary
alluvial deposits, which have traditionally been accessed through
hand-dug wells (Aoubouazza and Elmeknassi, 1996; Klose, 2013;
Bassin Hydraulique de Souss Massa et de DraaABHSMDAgence du,
2014). However, the intensification of irrigated agriculture,
particularly for high-demand crops such as watermelon, has
triggered a dramatic increase in groundwater abstraction. As a
result, deep boreholes, often exceeding 100 m in depth, are now
being drilled into older, confined aquifer systems embedded within
Ordovician and Cambrian geological formations. These deep
aquifers exhibit low recharge rates due to their lithological
composition and structural confinement, rendering them highly
vulnerable to overexploitation. The cumulative impact has been a
significant decline in piezometric levels, raising critical concerns
over long-term aquifer sustainability, ecological degradation, and
the socioeconomic viability of agricultural livelihoods in the region
(Moumane et al., 2021; 2024).

The area is also traversed by ephemeral watercourses, including
Oued Feija and Oued Boutious, which become active during high-
intensity rainfall events. During the 2024–2025 hydrological season,
both streams experienced significant flash floods Figures 2, 3, with at
least five episodic flow events recorded. A particularly destructive
storm occurred in early May 2025, when torrential rains and hail

FIGURE 5
Mutual information scores between features and groundwater potential classes.
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struck the Feija Plain. This event devastated nearly 4,000 to
5,000 tons of watermelon crops, only 1 week before the main
harvest. According to field reports, more than 700 farmers lost
90%–95% of their production, leading to severe financial distress
and widespread concerns about the repayment of agricultural loans
(Freshplaza, 2025). Many cultivation areas were rendered
inaccessible due to waterlogged tracks, and no water harvesting
or artificial recharge systems were in place to capture the millions of
cubic meters of floodwater lost to the desert.

Dataset description

The dataset used in this study integrates both remote sensing-
derived features and in situ observations to support accurate
classification of groundwater potential zones. The in situ
component consists of field-based groundwater potential
assessments or borehole productivity data, which serve as
ground-truth labels for supervised machine learning. Predictor
variables were extracted from multiple geospatial and satellite
data sources, including stream distance, drainage density, soil
permeability, rainfall, topographic wetness index (TWI),
geomorphology, lineament density, curvature, slope, elevation
(DEM), and the Normalized Difference Vegetation Index
(NDVI). These features were obtained from processed satellite
imagery (e.g., Sentinel-2), digital elevation models (e.g., SRTM),
and thematic layers such as geological or hydrological maps. All
spatial layers were resampled and reprojected to a common spatial
resolution and coordinate system to ensure consistency. After
preprocessing and integration, the dataset was formatted as a
structured table where each entry corresponds to a geospatial
unit associated with the input variables and a labeled
groundwater potential class. Summary statistics for all input

features, including their mean, standard deviation, minimum,
and maximum values, are presented in Table 1.

Data preprocessing
The preprocessing workflow began with handling missing

values, ensuring consistent data formats, and detecting and
removing outliers to improve data quality. The dataset was then
partitioned into training (64%), validation (16%), and testing (20%)
subsets using stratified sampling to maintain a balanced distribution
of groundwater potential classes across all sets.

To address class imbalance and improve model robustness, data
augmentation was applied exclusively to the training set. Synthetic
samples were generated by injecting Gaussian noise into the original
features, with noise parameters constrained within the observed
feature ranges. This technique preserved the statistical
characteristics of the original data while increasing the diversity

TABLE 3 Grid search: hyperparameter ranges and best settings for deep learning models.

Model Hyperparameter Search space Best value

TabNet n_steps [3, 5] 3

n_d, n_a [8, 16, 32] 32

gamma [1.0, 1.3, 1.5] 1.3

lambda_sparse [1e-3, 1e-4] 0.0001

lr [0.005, 0.01, 0.02] 0.01

TabTransformer num_layers [1, 2, 3] 1

num_heads [2, 4, 8] 2

hidden_dim [64, 128, 256] 64

dropout [0.1, 0.2, 0.3] 0.1

lr [0.0001, 0.001, 0.01] 0.001

MLP hidden_size1 [32, 64, 128] 128

hidden_size2 [16, 32, 64] 32

dropout [0.2, 0.3, 0.4] 0.3

lr [0.0001, 0.0005, 0.001] 0.001

weight_decay [1e-4, 1e-5] 0.0001

TABLE 4 Swarm optimization: hyperparameter ranges and best settings for
machine learning models.

Model Hyperparameter Search space Best
value

CatBoost depth [4, 5, 6, 7, 8] 7

learning_rate [0.01, 0.1] 0.0971

iterations [50, 150] 99

l2_leaf_reg [1, 2, 3, 4, 5] 2

AdaBoost n_estimators [50, 150] 150

learning_rate [0.01, 0.1] 0.01

algorithm [‘SAMME’,
‘SAMME.R’]

‘SAMME.R′
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of training samples, thereby reducing the risk of overfitting and
improving model generalization in underrepresented classes.

Feature scaling was performed using the StandardScaler from
Scikit-learn. The scaler was fitted on the training data and then
applied consistently to the validation and testing sets to prevent data
leakage and ensure uniform scaling across the entire
modeling pipeline.

Selection of predictor variables for
groundwater modeling

Groundwater recharge is fundamentally controlled by
hydrological, hydrogeological, and land-surface characteristics
that affect infiltration, flow paths, and storage. We selected ten
conditioning factors: elevation, slope, curvature, TWI, soil
permeability, geomorphology, rainfall, NDVI, stream distance,
and lineament density, based on their established roles in
recharge processes and support in recent hydrogeological studies:

Elevation, slope, curvature, and TWI: These topographic indices
determine runoff potential and soil moisture accumulation. The use of
TWI and slope as recharge proxies is demonstrated in global hydrology
models and distributed watershed frameworks (Mathewos et al., 2024;
Patel et al., 2024; Ajayakumar and Reghunath, 2025).

Rainfall: As the principal source of recharge, precipitation is
universally included in recharge assessments across Indian, African,
and Chinese basins (Kaewdum and Chotpantarat, 2021; Mezali
et al., 2025; Tabassum et al., 2025).

Soil permeability and geomorphology: Soil texture and landform
types strongly influence infiltration rates. These factors have been
weighted heavily in analytical hierarchy process (AHP) and MCDA
studies (Moumane et al., 2025).

NDVI and LULC: Vegetation significantly impacts
evapotranspiration and soil moisture. Plant cover, estimated via
NDVI, is essential in recharge studies (Meng et al., 2024).

Stream (drainage) distance: Areas close to streams or with low
drainage density often indicate greater infiltration potential (Sedghi
and Zhan, 2023).

Lineament density: Fracture and fault frequency control
subsurface fluid pathways. High-density lineament zones
positively correlate with recharge (Sander, 2007).

These factors are widely recognized across hydrological
literature, from GIS-based MCDA/AHP frameworks to data-
driven predictive schemes. Table 2 includes a detailed summary
of each variable’s data source, unit type, and hydrological relevance,
citing these foundational studies to enhance transparency and
methodological robustness.

Feature selection

To improve model robustness and reduce redundancy in the
input space, feature selection was conducted using both linear and
nonlinear dependency analyses. First, a Pearson correlation matrix

FIGURE 6
Spatial distribution of four of the ten groundwater conditioning factors used in the study: rainfall, elevation, stream distance, and soil permeability.
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(Figure 4) was computed to identify pairs of features with high
collinearity. Features exhibiting strong correlations (i.e., |r | > 0.9)
were examined, and one feature from each correlated pair was
removed to avoid multicollinearity, which can distort model
learning and increase variance.

In parallel, mutual information (MI) was computed
between each input feature and the target groundwater

potential class to capture nonlinear dependencies Figure 5.
Features with low MI scores, indicating weak predictive
relevance, were excluded from the final feature set. This dual
approach allowed for the retention of variables that were both
independent and informative, thereby optimizing the input
space used for model training and reducing computational
complexity.

FIGURE 7
Spatial distribution of four of the ten groundwater conditioning factors used in the study: slope, TWI, drainage density, and NDVI.

FIGURE 8
Spatial distribution of two of the ten groundwater conditioning factors used in the study: curvature and lineament density.
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Machine learning and deep learning models

In this study, a combination of traditional ML algorithms and
modern DL architectures was employed to classify groundwater
potential zones based on a set of geospatial and environmental
features. The chosen models were selected to provide a
comprehensive comparison between interpretable, efficient
classifiers and more complex, representation-learning-based
models. Specifically, the ML models used include CatBoost and
AdaBoost. These algorithms are known for their robustness,
generalization capabilities, and suitability for structured data.

To complement these, three DL models, MLP, TabNet, and
TabTransformer, were implemented to evaluate their ability to
capture high-order feature interactions and complex patterns.
TabNet and TabTransformer are recent architectures designed
specifically for tabular data, offering attention-based mechanisms
that improve interpretability and learning efficiency. The diversity of
models allows for a comprehensive evaluation of predictive
performance, computational cost, and interpretability across
different learning paradigms.

AdaBoost classifier

AdaBoost (adaptive boosting) is an ensemble method that
combines multiple weak classifiers, typically decision stumps, to
form a strong classifier. It improves performance by focusing on the
training instances that were previously misclassified. At each
iteration, AdaBoost assigns a weight to the weak learner based on
its accuracy and updates the weights of the training samples to
emphasize difficult examples.

Given a dataset of n samples (x1, y1), . . . , (xn, yn){ }, where
yi ∈ −1,+1{ }, the final strong classifier H(x) is defined as follows:

H x( ) � sign ∑T
t�1
αtht x( )⎛⎝ ⎞⎠

where:

• T is the total number of boosting rounds,
• ht(x) is the weak learner at iteration t,
• αt � 1

2 ln(1−ϵtϵt ) is the weight assigned to ht,
• ϵt is the weighted error of ht.

After each iteration, the weights of the training samples are
updated according to their classification outcome, thereby guiding
the model to focus on harder-to-classify examples. This adaptive
mechanism helps AdaBoost improve the overall prediction accuracy
while maintaining good generalization.

AdaBoost has demonstrated robust performance across various
classification tasks and has solid theoretical foundations, particularly
in reducing both bias and variance (Schapire, 1999).

CatBoost

CatBoost is a gradient boosting decision tree (GBDT) algorithm
developed to handle categorical features efficiently without extensive
preprocessing (Dorogush, Ershov, and Gulin, 2018). The model
constructs an ensemble of decision trees, where each tree Tm

corrects the errors of its predecessors by minimizing a
differentiable loss function L:

Fm x( ) � Fm−1 x( ) + γmTm x( ),
where γm is the learning rate. CatBoost incorporates ordered boosting
and novel techniques to mitigate prediction shift, making it highly
effective for heterogeneous tabular datasets with mixed data types.

FIGURE 9
Radar plots of performance metrics for training (left) and testing (right) sets across all models.
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Multilayer perceptron (MLP)

MLP is a fundamental DL architecture composed of multiple
layers of interconnected neurons, where each neuron applies an
affine transformation followed by a nonlinear activation function
(Goodfellow, Bengio, and Courville, 2016). Given an input

feature vector x ∈ Rd, the hidden layer output h is computed
as follows:

h � σ W1x + b1( ),
whereW1 and b1 are the weight matrix and bias vector, respectively,
and σ(·) is a nonlinear activation function such as a rectified linear

FIGURE 10
Confusion matrices for each model evaluated on the test set.
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unit (ReLU). This hidden representation is then passed through
additional layers or directly to the output layer for final prediction:

ŷ � ϕ W2h + b2( ),
where ϕ(·) denotes the activation function used in the output layer
(e.g., softmax for classification or identity for regression). MLPs are
powerful function approximators capable of modeling complex
nonlinear relationships between input features and target variables.

TabNet
TabNet is a unifiedDL architecture that employs a sequentialmulti-

step decision process to enhance both feature selection and the
representation of high-dimensional data (Arik and Pfister, 2021). At
each step in the sequence, a D-dimensional feature vector is processed
and passed through a Feature Transformer module. This module
comprises several layers that may be either shared across all decision
steps or uniquely assigned to individual steps.Within each Transformer
block, fully connected layers are integrated with batch normalization
and gated linear unit (GLU) activations. The GLU is further enhanced

with a residual connection followed by normalization, which
contributes to maintaining stable variance across the network. This
hierarchical structure not only facilitates effective feature selection but
also optimizes the model’s parameter usage.

At each decision step, TabNet uses an Attentive Transformer to
generate a sparse mask that selects relevant features. This mask is
computed as follows:

M t[ ] � Sparsemax P t[ ] · a t−1[ ]( )
where P[t] is a learnable projection matrix and a[t−1] is the
aggregated context from the previous step. The selected features
are element-wise multiplied with the input and passed through a
Feature Transformer block, producing outputs h[t], which are
aggregated over T steps:

z � ∑T
t�1
h t[ ]

The final prediction is computed as follows:

FIGURE 11
ROC curves (micro-average) for all models on (a) training and (b) testing datasets.
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ŷ � σ Wo · z + bo( )
This step-wise attention mechanism enables TabNet to focus on

the most informative features at each stage, offering both high
predictive performance and interpretability for structured datasets.

TabTransformer with self-
supervised learning

The TabTransformer is a DL architecture tailored for tabular
data, effectively modeling both categorical and numerical features
through contextual embeddings and self-attention mechanisms
(Huang et al., 2021). In this framework, each categorical feature
xi is mapped to a dense embedding vector ei ∈ Rd, forming an
embedding matrix E ∈ RC×d for C categorical features:

E � e1; e2; . . . ; eC[ ]

These embeddings are processed through Transformer encoder
layers utilizing multi-head self-attention to capture inter-feature
dependencies. The output embeddings are then concatenated with
normalized numerical features xnum to form a combined
representation h:

h � Flatten Transformer E( )( ); xnum[ ]
This representation h is subsequently passed through an

MLP for downstream tasks such as classification or regression.
The architecture supports self-supervised pretraining
strategies, including masked feature modeling, to enhance
performance on tasks with limited labeled data (Vyas and
Bertsimas, 2024).

FIGURE 12
Feature importance scores across all models.
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FIGURE 13
Percentage distribution of groundwater potential classes for each model on the test set.

FIGURE 14
Spatial prediction maps of groundwater potential generated by AdaBoost, CatBoost, MLP, and TabTransformer.
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Model optimization

Hyperparameter optimization was critical for maximizing the
predictive performance of the models. Two different strategies
were applied depending on the model type: grid search for DL
models and particle swarm optimization (PSO) for classical
ML models.

Grid search optimization
Grid search (Bergstra and Bengio, 2012) is a systematic

approach that exhaustively explores a manually defined subset of
the hyperparameter space. In Table 3, grid search was applied to
optimize DL models such as TabNet, TabTransformer, and MLP.
Although computationally intensive, grid search guarantees the
identification of the optimal hyperparameter combination within

FIGURE 15
Spatial prediction maps of groundwater potential generated by Tabnet.

FIGURE 16
Friedman test average ranking (left) and TOPSIS closeness score (right) for all models.
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the predefined grid. It is particularly effective when the search space
is moderate in size and model training times are relatively
manageable. Cross-validation was used during the search process
to ensure the robustness and generalization capability of the selected
hyperparameters.

Swarm optimization
Particle swarm optimization (PSO) (Kennedy and Russell, 1995)

was utilized for classical ML models, including support vector
machine (SVM) and AdaBoost. PSO is a nature-inspired
metaheuristic algorithm modeled after the collective behavior of
bird flocking and fish schooling. It optimizes hyperparameters by
initializing a swarm of candidate solutions that move through the
search space guided by their own best-known positions and the
global best-known position Table 4. PSO is particularly
advantageous for efficiently exploring large, non-convex, and
multi-modal search spaces, offering faster convergence and better
avoidance of local minima than grid-based methods.

The reason PSO, and more generally, swarm optimization (SO),
is often preferred for ML models rather than DL models comes
down to efficiency, scalability, and internal training complexity. ML
models typically have fewer parameters and faster evaluation cycles,
making SO-based tuning more computationally feasible. In contrast,
DL models involve expensive gradient-based internal optimization
during training, making external swarm-based hyperparameter
tuning impractical due to high computational cost and time
requirements.

Model evaluation

We employed several standard evaluation metrics to
comprehensively assess the performance of the developed
classification models, including accuracy, precision, recall
(sensitivity), F1-score, specificity, and Cohen’s kappa score. These
metrics are essential for evaluating both overall and class-wise
performance, especially in the presence of class imbalance
(Sokolova and Lapalme, 2009; Chicco and Jurman, 2020; Kumar
and Singh, 2022).

The following equations define the metrics used:
Table 4 evaluation metrics (mathematical definitions).

Accuracy � TP + TN

TP + TN + FP + FN
Precision � TP

TP + FP

Recall � TP

TP + FN

F1-Score � 2 · Precision · Recall
Precision + Recall

Specificity � TN

TN + FP

Kappa � po − pe

1 − pe

where po is the observed accuracy and pe is the expected accuracy
under random chance. Here, TP, TN, FP, and FN denote true
positives, true negatives, false positives, and false negatives,
respectively. The kappa score evaluates the degree of agreement
beyond chance, where a value of κ> 0.6 generally indicates
substantial agreement (McHugh, 2012).

All metrics were computed using weighted averages to
accommodate class imbalance, and models were evaluated on
both training and testing data to ensure generalization. In
addition, receiver operating characteristic (ROC) and precision-
recall (PR) curves were plotted to assess classification thresholds
and model discrimination capacity (Davis and Goadrich, 2006).

Model selection using the Friedman test
and TOPSIS

To identify the best-performing ML model among multiple
candidates, we adopted a dual evaluation strategy based on (1)
the Friedman test with post hoc ranking and (2) TOPSIS. These
methods were chosen for their robustness in multi-metric and
multi-model comparison scenarios, where conventional single-
metric evaluations may lead to biased or inconsistent conclusions.

The Friedman test is a nonparametric statistical test used to
detect significant differences in the performance rankings of models
across multiple metrics or datasets. It does not assume normality
and is particularly suitable for ML experiments involving repeated
measures. In our case, we applied the Friedman test across six
performance metrics (accuracy, recall, specificity, precision, F1-
score, and Cohen’s kappa) to evaluate six models. A significant
test result indicates that at least one model performs differently. If
significance is confirmed, post hoc analyses (e.g., the Nemenyi test)
can identify which models differ significantly (Demšar, 2006).

The Friedman test was employed in parallel to compare the
performance of each model based on multiple evaluation metrics.
This test ranks the models by considering their performance across
all metrics (classification accuracy, AUC-ROC, Cohen’s kappa, and
feature importance) and identifies statistically significant differences
between them (Hwang and Yoon, 1981). This approach allows for
the selection of the best-performing model without the need for
aggregation into a single composite score.

Combining both the Friedman test and TOPSIS allows for
statistically grounded, robust, and interpretable model selection.

TABLE 5 Model comparison using TOPSIS score and Friedman test ranking.

Model TOPSIS score Friedman Avg. Rank Performance verdict

TabNet 1.0000 1.00 Excellent

CatBoost 0.8935 3.00 Good

TabTransformer 0.8016 4.00 Good

MLP 0.2316 5.00 Moderate

AdaBoost 0.0000 6.00 Poor
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The former ensures that differences are not due to randomness,
while the latter facilitates holistic evaluation across all
performance aspects.

The proposed methodology integrates advanced data
preparation techniques, including cleaning, augmentation, and
feature scaling, with tailored optimization strategies adapted to
each model type. Deep learning models (TabNet,
TabTransformer, and MLP) are fine-tuned using grid search,
while machine learning models (CatBoost and AdaBoost) benefit
from swarm optimization to efficiently explore large
hyperparameter spaces. Finally, model evaluation is conducted
using a comprehensive set of metrics to ensure robust and
interpretable groundwater potential classification.

Results

Groundwater conditioning factors

The spatial distribution of the selected groundwater
conditioning factors is illustrated in Figures 6–8. These factors,
derived from remote sensing and geospatial datasets, were carefully
selected based on their relevance to groundwater recharge dynamics
in arid and semi-arid environments. Topographic features such as
elevation, slope, curvature, and the TWI influence surface runoff,
water accumulation, and infiltration capacity. Soil permeability and
geomorphological classes reflect lithological and structural controls
that govern the percolation of water through subsurface formations.
The Normalized Difference Vegetation Index (NDVI) serves as an
ecological proxy for vegetation cover, which is often indicative of
groundwater availability in shallow aquifers. Hydrological
parameters, including rainfall, lineament density, and stream
distance, capture climatic inputs and structural pathways that
facilitate recharge. Together, these twelve factors provide a
comprehensive representation of the hydro-environmental
variability across the Feija Basin and form a robust input set for
data-driven groundwater potential modeling.

Model performance evaluation

All performance results presented in this section are based on
the optimal hyperparameter configurations obtained through the
tuning procedures outlined in the Methodology section. To ensure
a comprehensive evaluation, the classification performance of the
five models (TabNet, TabTransformer, MLP, CatBoost, and
AdaBoost) was assessed separately on the training and testing
datasets. A range of standard evaluation metrics was computed,
including accuracy, recall, specificity, precision, F1-score, and
Cohen’s kappa. Figure 9 presents radar plots that visualize and
compare the performance of each model across these metrics for
both phases, providing clear insight into learning effectiveness and
generalization capability.

Overall, TabNet and TabTransformer exhibited superior and
consistent performance, attaining high scores across all evaluation
metrics during the testing phase. AdaBoost and CatBoost also
demonstrated competitive results, whereas MLP displayed
moderate performance, reflecting limited generalization capacity.

Figure 10 presents the confusion matrices for each model on the
test dataset. TabNet and TabTransformer achieved the most
balanced predictions across the three groundwater potential
(GWP) classes, misclassifying only a small number of samples.
CatBoost also performed reasonably well but showed minor
misclassification between Class 2 and Class 3. MLP and
especially AdaBoost displayed noticeable confusion, particularly
with Class 2 instances being predicted as Class 3.

Receiver operating characteristic
(ROC) analysis

To assess the discriminative power of the classifiers beyond
accuracy-based metrics, we conducted a ROC analysis using the
micro-average AUC approach, suitable for multi-class classification
scenarios. Figure 11 presents the ROC curves for all models on both
training and testing datasets.

The ensemble-based and DL models (TabNet, TabTransformer,
and CatBoost) achieved near-perfect AUC values of 0.99 on both
training and testing phases, reflecting excellent separability among
the GWP classes. MLP and AdaBoost exhibited slightly lower AUC
scores, with values of 0.96 and 0.97 on the test set, respectively. These
results corroborate earlier observations from confusionmatrices and
classification metrics, indicating that TabNet and TabTransformer
not only classify accurately but also maintain strong discriminatory
performance across all classes.

Feature influence and model sensitivity

The correlation matrix and mutual information analysis (not
shown here) provided insights into the relationships and relevance
of input features. These analyses highlighted that factors such as
elevation, slope, and soil permeability have a strong influence on
GWP classification. Feature importance scores obtained from each
model (Figure 12) further confirmed these findings, with elevation
consistently ranked as the most influential variable.

Groundwater class distribution and
spatial mapping

The distribution of predicted groundwater classes across models
is visualized in Figure 13. Most models exhibited relatively balanced
classifications among the three GWP categories. However, AdaBoost
disproportionately predicted Class 3 (42.2%), indicating bias toward
higher groundwater potential zones.

The spatial predictions generated by eachmodel are presented in
Figures 13, 14, 15. Models such as TabNet, TabTransformer, and
CatBoost produced coherent and geographically consistent patterns
that aligned well with known hydrogeological and topographic
features of the study area. These models accurately delineated
high-potential groundwater zones typically located in low-lying
alluvial plains, valley corridors, and areas characterized by high
soil permeability and vegetation density features often associated
with groundwater accumulation. The spatial transitions between
different GWP classes were smooth and well-localized, reflecting
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each model’s capacity to learn complex spatial and geophysical
relationships from the input data.

From a technical standpoint, these models exhibited stronger
generalization capabilities, benefiting from deep representation
learning (TabNet), ensemble-based robustness (TabTransformer),
and gradient-boosted refinement (CatBoost). In contrast, MLP and
AdaBoost produced noisier and more fragmented spatial outputs.
These inconsistencies were particularly evident in transition zones,
such as the interfaces between moderate and high GWP areas, where
these models often failed to capture subtle environmental gradients.
AdaBoost tended to overpredict Class 3 (high potential), generating
spatial overestimation and reducing practical utility for
hydrogeological planning. These results emphasize the necessity
of selecting models that are not only accurate in classification
metrics but also capable of preserving spatial coherence and
geographic relevance in the context of groundwater
potential mapping.

Statistical comparison and model ranking

Two robust evaluation methods were applied to provide a
statistically grounded comparison of model performance: the
Friedman test and the TOPSIS ranking method. The Friedman
test (Figure 16, left) showed statistically significant differences
among models (χ2 � 30.0; p< 0.001), with TabNet achieving the
best average rank (1.00), followed by CatBoost (3.00),
TabTransformer (4.00), and MLPr (5.00). AdaBoost ranked the
lowest (6.00), confirming its underperformance.

To complement this analysis, the TOPSIS method was employed
to evaluate the closeness of eachmodel to the ideal solution across all
metrics. The results (Figure 16, right) aligned with the Friedman
rankings. TabNet scored highest (1.0000), indicating optimal
performance, followed closely by CatBoost (0.8935) and
TabTransformer (0.80). MLP and AdaBoost were assigned
significantly lower scores, reinforcing their inferior metric
consistency.

The aggregated evaluation from both tests is summarized in
Table 5, where models were qualitatively categorized based on their
combined scores.

Table 5 summarizes the integrated ranking of models based on
statistical (Friedman) and multi-criteria (TOPSIS) evaluations.
TabNet achieved the best overall performance, while AdaBoost
was ranked lowest in both methods.

Discussion

This study systematically evaluated five advanced machine
learning and DL models, TabNet, TabTransformer, MLP,
CatBoost, and AdaBoost, for predicting groundwater potential
zones in the Feija Basin. Among these, TabNet demonstrated
superior predictive capabilities. Specifically, it achieved a test
accuracy of 97.8%, a recall of 97.8%, and a kappa coefficient of
0.97. TabNet’s sparse attention mechanism enabled selective
prioritization of relevant features from heterogeneous tabular
datasets, thereby enhancing both interpretability and performance
(Arik and Pfister, 2021; Shah et al., 2022).

The methodological framework was comprehensive and data-
driven. A structured dataset was constructed using field sampling
and remote sensing-derived features and was subjected to rigorous
preprocessing and stratification. Feature relevance and
independence were ensured using both linear (Pearson
correlation) and nonlinear (mutual information) techniques. DL
models were fine-tuned via grid search, while classical models were
optimized using PSO. This dual optimization strategy mitigated
overfitting while preserving computational efficiency (Wu
et al., 2025).

TabNet’s strong performance underscores the promise of
tabular DL architectures in environmental modeling (Li et al.,
2025). Compared to MLP, which lacks embedded attention and
feature selection capabilities, TabNet effectively captured complex
interactions within structured environmental data. While
TabTransformer and CatBoost also performed well, their outputs
lacked the spatial consistency observed in TabNet.

In terms of interpretability, this study also provides insights into
both global and local model behavior. Globally, feature importance
scores and mutual information analysis revealed that elevation,
slope, and soil permeability were consistently influential across all
models. At the local level, models such as TabNet and
TabTransformer demonstrated stable and context-aware
predictions in transition zones between moderate and high
groundwater potential areas. These models were able to respond
adaptively to subtle variations in input features, resulting in
smoother spatial transitions. This highlights their suitability not
only for overall prediction accuracy but also for context-specific
decision-making in spatially heterogeneous environments.

Previous groundwater studies in the Feija region, such as those
by Moumane et al. (2024), primarily employed GIS-based and
multi-criteria decision analysis (MCDA) approaches. While
effective for integrating thematic layers and expert judgment,
these methods generally lack the dynamic learning capacity and
predictive accuracy of data-driven models. Additionally, they are
inherently static and less responsive to evolving climatic or land use
conditions.

This study represents a methodological advance by integrating
tabular deep learning with rigorous model evaluation. To date, few
studies have simultaneously combined spatial validation and holistic
evaluation frameworks (e.g., Friedman and TOPSIS) in a
hydrogeologically vulnerable, data-scarce environment like the
Feija Basin.

Beyond its methodological contributions, this work addresses a
critical issue in the Feija Basin: the sustainable management of
rainwater and groundwater resources. By accurately identifying
recharge-prone zones, the models offer actionable tools for
policymakers and engineers to optimize the allocation and
capture of scarce hydrological inputs. Targeting these high-
potential zones for the implementation of artificial recharge
basins, percolation tanks, subsurface dams, or rainwater
harvesting ponds would allow for the strategic retention of
stormwater that would otherwise be lost through runoff or deep
infiltration. Even partial capture could substantially augment aquifer
recharge (Kebede et al., 2024), particularly in geomorphological
zones with favorable permeability characteristics.

From an economic standpoint, improved groundwater recharge
would increase irrigation reliability for high-value crops such as
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watermelon, reduce dependence on costly deep-well pumping, and
safeguard yields during drought periods. Additionally, increased
groundwater availability would alleviate pressure on potable water
systems in rural communities (Gebreslassie et al., 2025),
contributing to economic resilience. This strategy also helps
mitigate land degradation, supports ecosystem services, and
contributes to the long-term hydrological balance of the basin
(Howard et al., 2023; Woldearegay et al., 2024). Moreover, the
modeling approach enhances institutional capacity by delivering
a replicable and interpretable framework that can inform similar
groundwater planning efforts across other arid, semi-arid, and
drought-prone regions.

Despite its contributions, this study has a few limitations. First,
the sparse availability of in situ monitoring wells constrains the
capacity for comprehensive validation. Second, class imbalance
within the training dataset may have impacted model stability,
particularly for MLP and AdaBoost.

Conclusion

This study presents a robust GeoAI-based framework for
groundwater recharge zone mapping in the Feija Basin, a
climate-vulnerable and agriculturally stressed region in
southeastern Morocco. By integrating multi-source geospatial
data with advanced ML and DL algorithms, the framework
achieved high predictive accuracy and spatial consistency.
Among the five evaluated models, TabNet exhibited superior
performance, accurately delineating recharge-prone zones that
closely aligned with known hydrogeological features. The
methodology incorporated in situ borehole validation, feature
importance analysis, and comprehensive evaluation metrics
(e.g., accuracy, AUC-ROC, and Cohen’s kappa), confirming
both the reliability and interpretability of the modeling outputs.
The results particularly highlight the strength of tabular DL
models, especially TabNet, in capturing complex environmental
interactions within structured datasets. The resulting high-
resolution recharge potential maps provide actionable insights
for groundwater managers and decision-makers, supporting the
strategic planning of artificial recharge structures, rainwater
harvesting systems, and sustainable land use practices. These
tools are especially timely in light of the unusually high rainfall
recorded during the 2024–2025 hydrological year, offering a
critical opportunity to increase aquifer replenishment and
improve long-term water resilience.

Looking ahead, future work should incorporate temporal
groundwater monitoring, including piezometric time series, to
enable dynamic and predictive modeling. The inclusion of socio-
economic factors, land use changes, and climate change projections
would further improve model realism and policy relevance.
Moreover, hybridizing data-driven models with physically based
hydrological simulations may enhance interpretability and facilitate
scenario-based planning. Collaborating with local stakeholders such
as farmers, water authorities, and development agencies will be key
to translating technical insights into practical, adaptive groundwater
governance. Ultimately, this study contributes to the growing body
of evidence supporting the integration of artificial intelligence in

groundwater resource assessment, particularly in arid and data-
scarce environments.
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