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The fusion of unmanned aerial system (UAS) and satellite imagery has emerged as
a pivotal strategy in advancing precision agriculture. This review explores the
significance of integrating high-resolution UAS and satellite imagery via pixel-
based, feature-based, and decision-based fusionmethods. The study investigates
optimization techniques, spectral synergy, temporal strategies, and challenges in
data fusion, presenting transformative insights such as enhanced biomass
estimation through UAS-satellite synergy, improved nitrogen stress detection
in maize, and refined crop type mapping using multi-temporal fusion. The
combined spectral information from UAS and satellite sources confirms
instrumental in crop monitoring and biomass estimation. Temporal
optimization strategies consider factors such as crop phenology, spatial
resolution, and budget constraints, offering effective and continuous
monitoring solutions. The review systematically addresses challenges in spatial
and temporal resolutions, radiometric calibration, data synchronization, and
processing techniques, providing practical solutions. Integrated UAS and
satellite data impact precision agriculture, contributing to improved resolution,
monitoring capabilities, resource allocation, and crop performance evaluation. A
comparative analysis underscores the superiority of combined data, particularly
for specific crops and scenarios. Researchers exhibit a preference for pixel-based
fusionmethods, aligning fusion goals with specific needs. The findings contribute
to the evolving landscape of precision agriculture, suggesting avenues for future
research and reinforcing the field’s dynamism and relevance. Futureworks should
delve into advanced fusion methodologies, incorporating machine learning
algorithms, and conduct cross-crop application studies to broaden
applicability and tailor insights for specific crops.

KEYWORDS

crop monitoring, satellite imagery, UAS imagery, image fusion, high-throughput
phenotyping

OPEN ACCESS

EDITED BY

Lang Qiao,
University of Minnesota Twin Cities,
United States

REVIEWED BY

Shaohua Lei,
Nanjing Hydraulic Research Institute, China
Xicun Zhu,
Shandong Agricultural University, China
Xuechen Li,
University of Minnesota Twin Cities,
United States

*CORRESPONDENCE

Paulo Flores,
paulo.flores@ndsu.edu

RECEIVED 04 May 2025
ACCEPTED 10 June 2025
PUBLISHED 24 June 2025

CITATION

Bazrafkan A, Igathinathane C, Bandillo N and
Flores P (2025) Optimizing integration
techniques for UAS and satellite image data in
precision agriculture — a review.
Front. Remote Sens. 6:1622884.
doi: 10.3389/frsen.2025.1622884

COPYRIGHT

© 2025 Bazrafkan, Igathinathane, Bandillo and
Flores. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Remote Sensing frontiersin.org01

TYPE Review
PUBLISHED 24 June 2025
DOI 10.3389/frsen.2025.1622884

https://www.frontiersin.org/articles/10.3389/frsen.2025.1622884/full
https://www.frontiersin.org/articles/10.3389/frsen.2025.1622884/full
https://www.frontiersin.org/articles/10.3389/frsen.2025.1622884/full
https://www.frontiersin.org/articles/10.3389/frsen.2025.1622884/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2025.1622884&domain=pdf&date_stamp=2025-06-24
mailto:paulo.flores@ndsu.edu
mailto:paulo.flores@ndsu.edu
https://doi.org/10.3389/frsen.2025.1622884
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2025.1622884


GRAPHICAL ABSTRACT

Highlights

• Integration of UAS and satellite imagery revolutionizes
precision agriculture by optimizing spatial resolution and
spectral synergy.

• Pixel-based, feature-based, and decision-based fusion
methods enhance spatial and spectral resolution for detailed
crop characterization.

• Temporal optimization strategies balance crop phenology,
spatial resolution, and budget constraints for effective and
continuous monitoring.

1 Introduction

Precision agriculture has brought about a revolution in the
agricultural industry that has rarely been seen before in
agriculture’s lengthy history (Sung, 2018). The need for
sustainable resource management and increased productivity is
driving this revolution in farming operations (Patil Shirish and
Bhalerao, 2013). In principle, precision agriculture uses technology
to maximize agricultural yield (Zhang, 2016), reduce resource waste
(Karunathilake et al., 2023), and eventually guarantee food security
for a world population that is growing at an accelerated rate (Waqas
et al., 2023). The use of satellite remote sensing data provides
invaluable insights into the condition of our fields and crops,
serving as a crucial tool in this transition. Satellites act as the
eyes in the sky, capturing data that enables us to monitor and
analyze agricultural landscapes with precision. (Radočaj et al., 2022).

However, while satellites provide essential macroscopic perspectives,
addressing the finer details of modern agricultural challenges often
requires complementary solutions.

Satellites and unmanned aerial systems (UASs) are two
platforms used to acquire remotely sensed data. Both have
particular benefits and drawbacks. From their high altitude in
space, satellites provide a wide, macroscopic picture of our
planet’s surface. They can cover large swaths of land in each
frame of image, making it the tool of choice to monitor large
agricultural fields. On the other hand, their spatial and temporal
resolutions are often too coarse to capture the fine features needed
for detailed cropmonitoring (Saxena et al., 2021). Conversely, UASs,
obtain close-up shots and high-resolution images. However, their
limited flight duration and relatively small coverage area are seen as
the main drawbacks of the technology, especially by large
agricultural enterprises (Zhang et al., 2021). These
complementary strengths and weaknesses have prompted
exploration into how these technologies can work together to
address the demands of modern precision agriculture.

Precision agriculture finds a compelling solution in the
integration of UAS imagery and satellite, realizing the potential
for a mutually beneficial synergy. One can improve the spatial
resolution of satellite imagery and close the gap between
macroscopic and microscopic views by combining the advantages
of both technologies (Chen et al., 2019; Messina et al., 2020). This
integration holds significant potential in enhancing the accuracy of
crop classification and health assessments, enabling farmers and
researchers to better understand and respond to agricultural
challenges. Despite the promising benefits of integrating high-
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resolution imagery for precision agriculture, several challenges
persist. These include differences in data formats between
satellite and UAS platforms, variations in spatial and temporal
resolutions, and the need for proper radiometric and geometric
calibration to ensure data consistency. Additionally, fusing datasets
collected under varying environmental conditions or sensor
specifications can introduce uncertainties that complicate
analysis. Addressing these issues through further research is
essential to fully unlock the benefits of this synergistic approach
to precision agriculture.

The integration of satellite-improved imagery with UAS data
holds significant promise for both researchers and plant breeders,
revolutionizing agricultural practices. By combining these
technologies, plant breeders gain a comprehensive understanding
of crop conditions across larger areas, allowing for targeted
interventions and optimized resource allocation (Sankaran et al.,
2021). Timely monitoring provided by satellites, coupled with the
flexibility of UAS deployments, enables proactive decision-making
and swift issue resolution (Agarwal et al., 2018). Moreover, data
fusion techniques extract valuable insights, accelerating the breeding
process by identifying promising crop varieties efficiently. These
techniques allow researchers to monitor crop growth, assess traits
such as drought tolerance, pest resistance, and yield potential, and
make data-driven decisions with greater accuracy. By combining
detailed local data with large-scale trends, breeders can significantly
reduce the time required for field trials, optimize resource allocation,
and improve the success rate of developing new crop varieties
tailored to specific environmental conditions. This integration
overcomes challenges associated with data collection, enabling
the creation of high-resolution maps within fields to facilitate
site-specific management practices and optimize resource
utilization (Ahmad et al., 2022).

Comprehensive information specifically on this field is either
scarce or the latest information does not exist. Therefore, a
systematic literature review (SLR) was conducted to generate the
latest comprehensive information on the integration of UAS and
satellite for precision agricultural practices. The specific research
questions considered for the SLR are:

• Q1: What are the dominant types of sensors and data sources
used in UAS–satellite integration for precision agriculture?

• Q2: Which fusion methods are most commonly applied, and
how are they categorized?

• Q3: What are the main applications of data fusion in precision
agriculture (e.g., yield prediction, crop classification)?

• Q4:What challenges are reported in implementing data fusion
techniques, and how have they been addressed?

• Q5: What are the research gaps and future directions in
this field?

Each of these questions is systematically addressed in Sections
3.1–3.9 of the manuscript This review contributes uniquely to the
precision agriculture field by providing a systematic synthesis of
recent developments in the fusion of UAS and satellite imagery
specifically for precision agriculture, focusing on three major fusion
levels: pixel-, feature-, and decision-based methods. Unlike previous
reviews which broadly covered remote sensing platforms or sensor
types (Rudd et al., 2017; Alexopoulos et al., 2023), our work delves

into the comparative performance of fusion approaches across key
agricultural tasks such as crop classification, yield prediction, and
nutrient estimation. Furthermore, we highlight implementation
challenges and practical considerations, drawing on recent
empirical studies to offer actionable insights for researchers and
practitioners. This targeted analysis fills a critical gap by linking
fusion methodology with agronomic outcomes, thus providing a
framework to guide future cross-crop and cross-platform data
integration studies.

Overall, this study aims to evaluate the extent to which precision
agricultural practices can benefit from the combined use of UAS and
satellite data, providing insights into its impact on decision-making
processes for farmers, plant breeders, researchers, and other
stakeholders. It is expected from this SLR, through a comparative
analysis, to determine whether the integration of UAS and satellite
imagery yields more insight compared to using each source
independently, with a focus on specific situations and crop types
where this integration proves most effective.

2 Materials and methods

Literature from scholarly sources for this review was chosen
using the SLR approach. To gain a thorough grasp of the potential
technology of combining the UAS and satellite images for crop
monitoring, the SLR guidelines were used to choose and examine
academic publications. The process started with a thorough
preliminary search phase that involved searching a wide range of
scholarly resources based on different keywords related to the
research questions. The number of records based on a selected
combination of keywords related to the field of study are presented
in Figure 1.

The initial search yielded 260 publications from Google Scholar,
165 from Web of Science, and 57 from Scopus (Figure 2). After an
initial screening, 205 of them were identified as duplicates and
subsequently removed. A thorough assessment was conducted
throughout the eligibility phase to make sure every article
complied with the established study goals. At the end of the
screening phase, an additional 175 papers were eliminated, and
only 56 relevant articles were ultimately selected. These selected
publications would act as the basis of a thorough assessment and
provide the framework for a detailed examination of the
combination of imagery from UAS and satellites for crop
monitoring.

3 Result and discussion

3.1 Overview and classification of remote
sensing data and fusion strategies

3.1.1 Overview of reviewed studies
Between the years 2014 and 2024, there was an increasing trend

in the number of research projects related to the combined use of
UAS and satellite imagery for precision agricultur. The highest
number of studies in the review scope was observed in 2020
(Figure 3). The upward trend in the number of publications from
2014 to 2024 reflects the growing recognition of the value of image
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fusion techniques in precision agriculture. Notably, a marked
increase is observed after 2018, which may be attributed to
several factors. First, the wider availability and affordability of
UAS platforms and high-resolution satellite data during this

period made multi-source data integration more accessible.
Second, advancements in machine learning and deep learning
algorithms enhanced the ability to process and interpret large,
heterogeneous datasets, encouraging researchers to explore

FIGURE 1
Numbers of papers retrieved from scholarly sources for each combination of keywords.

FIGURE 2
Systematic literature review methodology for the combination of UAS and satellite–based imagery for precision agriculture.
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fusion-based approaches. Third, the growing concerns over climate
variability and sustainable resource management likely prompted a
surge in research efforts focused on improving crop monitoring and
decision-making capabilities. In addition, the growing trend in using
UAS and satellite imagery for precision agriculture can be attributed
to significant technological advancements, economic accessibility,
and a pressing need for sustainable agricultural solutions. Advances
in remote sensing technology, including high-resolution imagery
and hyperspectral sensors, provided precise data for applications like
crop monitoring and soil analysis, addressing the complexity of
agricultural challenges (Sishodia et al., 2020). UAS emerged as cost-
effective and flexible tools, offering higher spatial and temporal
resolution than traditional satellite methods, making them suitable
for localized observations and integration with satellite data for
broader coverage (Rudd et al., 2017). Furthermore, the integration of
machine learning and artificial intelligence enabled the processing of
complex datasets to optimize yield prediction and resource
management (Wang D. et al., 2022). This shift is also driven by
increasing global food demand and the need for sustainable practices
to address climate and resource constraints (Farhad et al., 2024).

An overview of the diverse research goals in the field of precision
agriculture and the corresponding UAS and satellite sensors
employed for each objective has been presented in Table 1.
Researchers have utilized a wide range of sensor capabilities to
address specific agricultural challenges. When examining UAS-
mounted sensors, a spectral range spanning from 400 nm to
1,000 nm was employed to capture diverse aspects of crop
information and offered flexibility. In terms of spatial resolution,
the range extends from a fine 3 mm to a broader 1.86 m,
accommodating the need for both minute and large-scale data
collection. On the other hand, satellite sensors display a similarly
extensive spectral range from 396 nm to 2,122 nm, facilitating the
monitoring of a broad spectrum of crop characteristics. In the spatial
domain, satellite imagery offers spatial resolutions ranging from
31 cm to 60 m, allowing researchers to balance fine-grained detail

with broader landscape context. This wealth of sensor options
enables tailored solutions for various research objectives and
underscores the adaptability of remote sensing technology in
precision agriculture.

3.1.2 Fusion approaches by methodological level
In the literature, we find a convergence of research goals and the

sensors used, reflecting the ability of both UAS and satellite
technologies to adapt to a range of agricultural challenges. The
selection of a sensor is contingent upon the specific requirements of
the research objectives (Table 1). For example, in crop growth
monitoring, researchers have employed a variety of sensors, from
RGB to hyperspectral, to capture the intricate dynamics of plant
development. Similarly, for nitrogen estimation, researchers have
taken advantage of RGB and multispectral sensors, indicating the
adaptability of these technologies to this specific application. The
adaptability of sensors in crop growth monitoring and nitrogen
estimation is due to their diverse spectral capabilities, enabling
detection of plant traits across the electromagnetic spectrum, and
their scalability across applications, with RGB sensors being cost-
effective and hyperspectral sensors offering precision for nutrient
analysis. These sensors correlate well with biophysical parameters
like chlorophyll content and can be deployed on varied platforms,
ensuring flexibility in spatial and temporal resolutions. Additionally,
advancements in sensor fusion enhance their utility by combining
strengths of multiple sensor types (Ruihong and Ying, 2019). This
flexibility extends to goals such as aboveground biomass prediction
and yield estimation, crop distribution mapping, crop stress
detection, soil fertility and salinity estimation, plant density
prediction, and crop type mapping. Overall, the diversity of
research goals and sensor choices highlights the versatile and
comprehensive nature of UAS and satellite imagery in addressing
the multifaceted requirements of crop monitoring in precision
agriculture. Generally, UAS and satellite image synergy have been
predominantly employed in crop growth monitoring and biomass/

FIGURE 3
The frequency of the relevant literature over the past 10 years from 2024.
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yield estimation, constituting 40% and 29% of the total studies,
respectively. For example, combining UAS-derived canopy structure
with satellite-based spectral information improves the accuracy of
biomass estimation by reducing soil effects and addressing
saturation issues in vegetation indices (Maimaitijiang et al., 2020;
Shamaoma et al., 2024). Additionally, hyperspectral and
multispectral sensors on UAS platforms have been shown to
enhance the estimation of aboveground biomass through refined
vegetation indices and canopy metrics (Yue et al., 2017). Integrating
multi-temporal UAV-derived crop type with satellite data has
further enabled robust modeling of plant growth and crop type
mapping in heterogeneous field conditions (Zabala, 2017). These
integrated approaches demonstrate the potential for accurate
monitoring and improved yield predictions, particularly when
combining spectral and structural data from both platforms
(Poley and McDermid, 2020).

3.1.3 Classification of remote sensing platforms
In the majority of studies, fixed-wing UASs were the most

commonly employed drones, representing 40% of the cases
(Figure 4a). Interestingly, the existing literature does not provide
substantial evidence to support the idea that the choice of UAS type
significantly affects the accuracy of precision agriculture when
integrating UAS and satellite data. This suggests that, while
drone selection may be driven by specific operational needs, its
impact on the overall precision of crop monitoring remains largely
inconclusive within the scope of the research reviewed. RGB and
multispectral sensors emerge as the predominant choices for UAS-
based data collection, reflecting their prevalence in the field
(Figure 4b). This preference can be attributed to their capacity to
fulfill both spectral and spatial requisites for plant analysis in smaller
agricultural areas. For example, RGB sensors have been successfully
employed in studies like Maimaitijiang et al. (2020), where they were

TABLE 1 Classification of research goals that use a combination of UAS and satellite remote sensing.

Goal Sensor UAS Satellite Reference

Spectral
resolution
(nm)

Spatial
resolution
(m)

Type Spectral
resolution
(nm)

Spatial
resolution
(m)

Crop growth
monitoring

RGB,
Hyperspectral

400–1,000 0.04–1.86 Sentinel2, Gaofen,
Formosat, Landsat,
PlanetScope, SPOT,
Modis

444–2,122 0.8–250 Messina et al. (2020), Li
et al. (2022b), Wu et al.
(2023), Jain and Pandey
(2021), Gevaert et al.
(2014), Zhang et al. (2019),
Furlanetto et al. (2023),
Khaliq et al. (2019b), Schut
et al. (2018), Bollas et al.
(2021), Abbas et al. (2020),
Rasmussen et al. (2021),
Ahmad et al. (2022), Di
Gennaro et al. (2019)

Nitrogen
estimation

RGB 450–750 0.04–0.05 Sentinel2,
PlanetScope

444–2,122 3–60 Yu et al. (2021), Li et al.
(2022a), Sozzi et al. (2021),
Jiang et al. (2022),
Stolarski et al. (2022),
Furlanetto et al. (2023)

Biomass and
yield
prediction

RGB,
Multispectral,
Hyperspectral

400–1,000 0.02–0.05 WorldView,
GeoEye, Landsat,
Sentinel, Formosat,
PlanetScope,
Gaofen

396–1,043 0.46–60 Tattaris et al. (2016), Schut
et al. (2018), Ballesteros
et al. (2021), Sankaran
et al. (2021), Marzougui
et al. (2023), Zhu et al.
(2020), Agarwal et al.
(2018), Maimaitijiang
et al. (2020), Gevaert et al.
(2015), Huang et al. (2023)

Crop
distribution
mapping

RGB 450–750 0.04–1.86 Sentinel2 444–2,122 10–60 Zhao et al. (2019),
Rasmussen et al. (2021)

Crop stress
detection

Multispectral,
Thermal

530–810 0.05 WorldView–3 396–1,043 0.31–7.5 Sagan et al. (2019)

Soil fertility
and Salinity
Estimation

Multispectral 550–790 0.02 Sentinel2 444–2,122 10–60 Zhu et al. (2021)

Plant density
prediction

RGB 450–750 0.002 PlanetScope 455–860 3 Habibi et al. (2021)

Crop type
mapping

Multispectral 520–900 0.02–0.5 Sentinel2 444–2,122 10–60 Pastonchi et al. (2020),
Prins and Van Niekerk
(2021)
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used to assess canopy coverage and crop growth stages in soybean
fields, demonstrating high accuracy and ease of deployment.
Similarly, multispectral sensors have been used for canopy
nitrogen weight in wheat, as highlighted by Yu et al. (2021), due
to their capability to capture critical vegetation indices like NDVI
and NDRE efficiently. Moreover, their extensive acceptance is
further justified by their cost-effectiveness and user-friendly
attributes in comparison to hyperspectral and thermal sensors.
This underscores the practicality and efficiency of employing
RGB and multispectral sensors, aligning them as the favored
options for researchers in the precision agriculture domain.
Thermal sensors and hyperspectral sensors are less used, likely
due to higher costs or specific application requirements (e.g.,
water stress or advanced vegetation analysis).

Sentinel 2 stands out as the most prevalent choice for satellite
imagery (Figure 4c). This prominence can be attributed to two
key factors: (i) it offers a well–balanced combination of spectral
(444 nm–2,122 nm) and spatial (10 m–60 m) resolutions,
effectively addressing the requirements of plant studies on
medium and large scales; and (ii) being entirely cost-free for
downloading and usage. Worldview, PlanetScope, and Gaofen
satellites are the main alternatives to Sentinel-2, although
nominal fees may apply for their usage. However, these
satellites are distinguished by their high spatial resolution,
ranging from 0.31 to 3 m, which renders them suitable for
direct comparison with UAS-derived images. Satellites like
MODIS, SPOT 6, Formosat-2, Pleiades, and Google Earth
occupy smaller proportions (6.2% each) because their spatial,
spectral, or temporal resolutions are not as optimal for

agricultural applications compared to Sentinel-2 or Landsat.
For example, MODIS has a lower spatial resolution, making it
less effective for fine-grained, field-level analyses. SPOT 6 and
Pleiades provide high-resolution imagery but are often expensive,
limiting widespread adoption in cost-sensitive agricultural
applications. Overall, Sentinel 2’s cost-effectiveness, combined
with its spectral and spatial capabilities, makes it a standout
choice, while Worldview, PlanetScope, and Gaofen satellites offer
compelling alternatives for synergistic use in conjunction with
UAS imagery for precision agriculture studies. A detailed
specification of these satellites can be found in Zhang
et al. (2020).

3.2 Integration techniques

Combining the high-resolution information from UAS
images to improve the spatial resolution of satellite images
leads to a more detailed perspective of crop conditions
(Ahmad et al., 2022; Ballesteros et al., 2021; Jain and Pandey,
2021; Stolarski et al., 2022; Mancini et al., 2019) and finer-scale
variations in the crop canopy (Furlanetto et al., 2023). UAS
imagery refined satellite-derived vegetation indices like NDVI
and NDRE, enabling accurate nitrogen stress assessments during
maize’s critical growth stages (Maimaitijiang et al., 2020). The
optimization of UAS and satellite image integration can enhance
the spatial resolution of satellite images for effective crop
monitoring, and this can be achieved by following the steps
described subsequently:

FIGURE 4
Prevalence of UAS types (a), UAS sensors (b), and satellite platforms (c) in reviewed studies in precision agriculture.
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3.2.1 Plan coordinated data acquisition
Coordinating the timing of image acquisitions is imperative to

ensure coverage of the same area of interest (Messina et al., 2020; Li
Y. et al., 2022) and to capture crops at similar growth stages,
enhancing data compatibility (Marzougui et al., 2023). For
instance, UAS imagery proves valuable during pivotal moments
in the crop growth cycle when detailed insights are required, while
satellite images offer broader field overviews and are available at
regular intervals (Messina et al., 2020). It is vital to account for
environmental conditions that affect the relationship between UAS
and satellite data, including differences in spatial resolution between
the two sources and the spatial diversity of observed objects (Zhu
et al., 2021). Such considerations are important to ensure the
accuracy of estimations while combining UAS and satellite data.
For instance, integrating UAV-derived canopy structure with
Worldview-2/3 spectral data improves soybean biomass and
nitrogen estimation, addressing issues like soil effects and
vegetation index saturation (Maimaitijiang et al., 2020). Similarly,
UAS imagery aids WorldView-3 and RapidEye based classification,
achieving accuracy comparable to field surveys in wetland
monitoring (Gray et al., 2018). In vineyards, this integration
improves temporal and spatial resolution, critical for managing
high-value crops (Brook et al., 2020). Additionally, UAV-satellite
synergy effectively detects yield and fertilizer variability in
smallholder farms, supporting targeted interventions (Schut
et al., 2018).

3.2.2 Calibrate and validate UAS and
satellite imagery

Radiometric and geometric calibration for both UAS and
satellite images are essential as calibration is pivotal in achieving
consistency and accuracy (Mancini et al., 2019; Pastonchi et al.,
2020; Li Y. et al., 2022). Radiometric calibration ensures that sensor
responses are normalized for atmospheric effects and variations in
illumination, allowing accurate comparisons of spectral data across
time and platforms (Bollas et al., 2021; Lacerda et al., 2022). This step
is critical for applications such as vegetation monitoring, where
indices like NDVI depend on precise spectral reflectance values
(Manivasagam et al., 2021) Validation of the acquired data through
“ground truth” and comparison with field measurements further
enhances the reliability of the integrated data (Bollas et al., 2021;
Lacerda et al., 2022). Validation through ground truth
measurements further strengthens the reliability of remote
sensing outputs by aligning modeled data with real-world
conditions. For instance, validating crop health or LAI estimates
with field data helps refine algorithms and improve prediction
accuracy in wheat (Waldner et al., 2019). Geometric calibration,
on the other hand, corrects spatial distortions caused by sensor
motion, lens distortions, or topographic variations, ensuring spatial
accuracy for analyses like field alignment and multi-source data
integration (Maimaitijiang et al., 2020). Geometric calibration can
be achieved through the use of ground control points (GCPs) or
image matching techniques including nearest neighbor (NN) and
brute force (BF) matching (Abbas et al., 2020), which enable the
images to be aligned pixel by pixel (Pastonchi et al., 2020). The UAS
images are then processed to remove any distortions, artifacts, or
outlier (Abbas et al., 2020; Huang et al., 2023) and create
orthomosaics or digital surface models (DSMs) of the crop area

(Chen et al., 2019). A moving window approach (Wu et al., 2023),
which adapts to the dimensions of the UAS image, effectively tackles
the challenge of mutual matching in images. By dynamically
adjusting the window size based on the characteristics of the
UAS image, accurate alignment and comparison with other
images, regardless of their spatial resolutions was achieved.

3.2.3 Use image fusion techniques
The fusion process of UAS and satellite images can be realized

through pixel-based or feature-based fusion methods, both of which
contribute to enhancing the spatial resolution of the satellite imagery
(Messina et al., 2020; Tattaris et al., 2016; Jain and Pandey, 2021).
This integration significantly enhances the understanding of within-
field variability by combining the high spatial resolution of UAS data
with the broad temporal and spectral coverage of satellite imagery
(Schut et al., 2018). This synergy provides a more comprehensive
view of crop conditions and enables precision agriculture practices
to address intra–field heterogeneity effectively. Studies highlight
how this integration improves temporal monitoring capabilities.
For example, during maize’s critical growth stages, UAS data refined
satellite-derived vegetation indices such as NDVI and NDRE,
resulting in precise nitrogen stress assessments (Maimaitijiang
et al., 2020). Another study focused on yield prediction
demonstrated how combining UAS-derived structural features
with satellite spectral data improved correlations between
vegetation indices and crop yield, leading to more accurate
harvest forecasts (Marzougui et al., 2023). Pixel-based integration
involves combining the pixel values of corresponding locations in
the images, while object-based integration involves segmenting the
images into meaningful objects and then integrating the information
at the object level (Pastonchi et al., 2020; Khaliq et al., 2019a; Abbas
et al., 2020). Pixel-based fusion techniques discussed include spatial
and temporal adaptive reflectance fusion model (STARFM)
(Gevaert et al., 2014), Spectral harmonization (Nurmukhametov
et al., 2022), Unmixing-based data fusion (Gevaert et al., 2014;
Gevaert et al., 2015), Pan-sharpening (Gevaert et al., 2014; Khaliq
et al., 2019a; Sozzi et al., 2021), and Model base harmonization
techniques like machine learning (ML) (Bollas et al., 2021;
Maimaitijiang et al., 2020; Prins and Van Niekerk, 2021), and
deep learning (DL) techniques (Mazzia et al., 2020; Khaliq et al.,
2019b). ML algorithms can be trained using the combined UAS and
satellite data to improve the spatial resolution of satellite images.
These algorithms can learn the relationship between the low-
resolution satellite images and the corresponding high-resolution
UAS images, and then generate enhanced versions of the satellite
images (Sankaran et al., 2021).

3.2.4 Utilize image classification and analysis
Image classification algorithms and analysis techniques to the

fused images can be used to extract relevant information about crop
health, pests and/or diseases detection, monitoring growth stages,
assessing yield potential, and assessing crop response (Tattaris et al.,
2016; Chen et al., 2019; Wu et al., 2023; Schut et al., 2018; Peter et al.,
2020). This can include ML algorithms to classify different crop
types or detect specific features. ML algorithms can be trained, using
ground truth data, to classify and map different crop types or detect
specific crop conditions (e.g., disease or nutrient deficiency). The
fused image, along with the extracted features, can be used as input
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to these algorithms for accurate classification and monitoring
(Khaliq et al., 2019a), identifying patterns, detecting anomalies,
and extracting valuable information for crop monitoring (Bollas
et al., 2021).

3.2.5 Time series analysis
In addition to spatial resolution, the temporal resolution of the

UAS and satellite images should be considered for comprehensive
analysis (Bollas et al., 2021). By collecting UAS and satellite images
at different time points throughout the growing season, a time series
analysis can be performed (Zhu et al., 2020). This allows for the
monitoring of crop growth and development over time (Bollas et al.,
2021; Sankaran et al., 2021; Prins and Van Niekerk, 2021). The
integration of both data sources provides a more complete picture of
crop health and can help identify patterns and trends that may not
be apparent from a single image (Li M. et al., 2022; Zhao et al., 2019;
Sagan et al., 2019). Studies highlighed the importance of temporal
resolution in UAS and Satellite imagery integration. For instance,
combining UAS and Sentinel-2 data for vineyards enabled
time–series analysis of vegetation indices, capturing plant
responses to environmental changes throughout the growing
season (Brook et al., 2020). In estuarine environments, UAS data
supplemented satellite imagery to dynamically monitor vegetation
after disturbances, showcasing the importance of high temporal
resolution (Gray et al., 2018).

3.3 Spectral synergy

The spectral attributes of UAS and satellite images complement
one another through their inherent strengths (Tattaris et al., 2016; Li
Y. et al., 2022). To illustrate the practical value of spectral synergy in
precision agriculture, recent studies have demonstrated how the
integration of UAS and satellite imagery can enhance biophysical
estimations. For instance, (Puliti et al., 2017), successfully combined
UAS-derived photogrammetric point clouds with Sentinel-2
imagery and limited field data to estimate growing stock volume
across large forested areas in Norway, achieving a cost-effective
solution for regional forest resource assessment. Similarly, (Wang
et al., 2019), utilized UAS-LiDAR data in conjunction with Sentinel-
2 imagery to estimate aboveground biomass in mangrove in
China, showing improved accuracy over traditional field-based
approaches.

UAS imagery provides high-resolution data at the plot level,
allowing for a more detailed analysis of crop health and
classification, while satellite imagery gives low-resolution but
covers larger areas (Figure 5a). UASs offer flexibility in terms of
flight planning and sensor configuration, allowing for targeted data
collection based on specific crop management needs (Schut et al.,
2018; Khaliq et al., 2019a; Bollas et al., 2021). This means that UASs
can be made to provide more frequent updates on crop health and
changes over time (Li M. et al., 2022). Even though impacted by
weather conditions, UASs can capture images even in partially
cloudy conditions allowing for reliable data acquisition,
continuous crop health monitoring, and accurate classification
analysis, unlike satellites which may be hindered by complete
cloud cover (Tattaris et al., 2016; Ballesteros et al., 2021;
Rasmussen et al., 2021).

UASs can be custom-made to carry multiple sensors, including
thermal and multispectral sensors; while satellites have a variety of
multispectral sensors the users cannot customize them (Figure 5b).
Integrating these sensors a broader range of vegetation indices and
spectral signatures can be derived for monitoring crop health and
physiology (Tattaris et al., 2016; Pastonchi et al., 2020); classifying
crop types, identifying stress factors, and estimating crop leaf area
index and chlorophyll content (Chen et al., 2019; Jiang et al., 2022).
The high-resolution data from UASs can serve as ground truth for
validating and calibrating satellite data (Sozzi et al., 2021). The
application of such validation includes crop classification, crop
health assessment, and satellite-derived indices and model
development (Tattaris et al., 2016; Jain and Pandey, 2021). UAS
and satellite imagery capture different parts of the electromagnetic
spectrum, providing complementary spectral information (Lacerda
et al., 2022). UASs often capture imagery in the visible, near-
infrared, and thermal infrared bands, while satellites typically
capture imagery in the visible, near-infrared, and shortwave
infrared bands (Wu et al., 2023). However, the spectral range of
satellites encloses the UAS (Figure 5b) while the difference mostly
lies in the image resolution (Figure 5A). Fusion of these spectral
records from both sources will provide a more comprehensive
understanding for various agricultural applications (Li Y. et al.,
2022; Chen et al., 2019).

3.4 Temporal optimization

Understanding the growth stages and phenological changes of
the crop is essential as different crops have different growth patterns
and critical stages that require monitoring. For example, during the
early stages, frequent monitoring may be required to detect
emergence and assess establishment, while during the
reproductive stage, monitoring may focus on yield estimation
(Messina et al., 2020; Ballesteros et al., 2021). The timing of
image acquisition should align with critical stages of crop
development and management activities (Jain and Pandey, 2021;
Jiang et al., 2022). Key stages include planting, emergence, vegetative
growth, flowering, fruiting, and senescence. It is important to
capture images before and after important management practices
such as fertilization, irrigation, and pest control (Schut et al., 2018).
The temporal resolution of the imagery should align with the rate of
change in the crop. Rapidly changing crops may require more
frequent image acquisition, while slower-growing crops may
require less frequent monitoring. It is important to strike a
balance between capturing dynamic changes and avoiding
unnecessary data collection.

The spatial resolution of the imagery should be appropriate for
capturing the desired level of detail. Higher spatial resolution is
beneficial for detecting small-scale variations within the field, such
as disease hotspots or nutrient deficiencies. However, higher
resolution imagery often comes at a higher cost and may require
more processing time (Marzougui et al., 2023). Weather conditions
can impact the quality of the imagery and the ability to capture
meaningful information. Cloud cover, for example, can obstruct
satellite imagery, while strong winds or rain may limit UAS flights.
Monitoring weather forecasts and selecting suitable time windows
for image acquisition is important (Mazzia et al., 2020). The
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frequency and timing of image acquisition should also consider
budget constraints and available resources. UAS flights require
equipment, personnel, and time, while satellite imagery may
involve subscription costs. Therefore, to optimize the frequency
and timing of acquiring UAS and satellite images for precision
agriculture, crop phenology, temporal resolution, spatial resolution,
weather conditions, resources, and budgets’ costs and benefits of

different approaches need to be considered (Messina et al., 2020; Li
Y. et al., 2022; Wu et al., 2023; Ballesteros et al., 2021; Di Gennaro
et al., 2019).

Varying satellite revisit times and weather conditions can lead to
missed opportunities for capturing critical growth stages due to cloud
cover or longer intervals between image acquisitions. Careful
consideration of satellite revisit frequency and weather conditions is

FIGURE 5
Differences between UAS and satellite images in terms of spatial (a) and spectral (b) resolution.
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crucial for data collection planning. Selecting a satellite imagery
provider with a shorter revisit period may be beneficial for timely
and frequent monitoring. Integrating UAS imaging alongside satellite
data provides more detailed and frequent monitoring at specific growth
stages. Despite weather-related constraints, the combination approach
is better than either of the individual methods, hence needs
optimization strategies (Sankaran et al., 2021).

3.5 Data fusion methods

Fusion refers to the process of combining different types of
imagery or data to create a more comprehensive and detailed picture
of an object (Nurmukhametov et al., 2022). Fusion techniques aim to
enhance the spatial and spectral resolution of the data, allowing for
more accurate and precise analysis of plant traits (Tattaris et al.,

FIGURE 6
Image data fusion workflows: (a) Spatial-temporal; (b) Unmixing-based; (c) Spectral harmonization; (d) Pan-sharpening. The solid blue arrows

represent the UAS dataset, while the solid red arrows represent the satellite dataset.
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2016). This process involves merging different imagery with low-
and high-resolution to create a single high-resolution image by
combining the detailed spatial information with spectral data.
(Gevaert et al., 2014). To systematically analyze data fusion
approaches, we adopted the widely accepted classification into
pixel-level, feature-level, and decision-level fusion. This
taxonomy, rooted in remote sensing literature (Pohl and Van
Genderen, 1998), reflects the stage at which data from multiple
sensors are integrated within the processing pipeline. Pixel-based
fusion operates at the data level, feature-based fusion occurs after
feature extraction, and decision-based fusion combines the outputs
of independent models. This structure allows for a comparative
understanding of methodological complexity, performance, and
suitability for different agricultural applications.

3.5.1 Spatial-temporal method
Pixel-based fusion combines the pixel values from

corresponding locations in UAS and satellite images to create a
single fused image. This method enhances the spatial resolution of
the satellite imagery by incorporating high-resolution details from
the UAS images. Major examples of this method include spatio-
temporal fusion (STF), unmixing-based data fusion, spectral
harmonization, pan-sharpening, spatial-spectral, and spectral-
temporal. STF that combines medium-resolution satellite and
high-resolution UAS imagery is often used to merge
multispectral satellite imagery with hyperspectral UAS imagery
(Gevaert et al., 2014). The STF framework consists of several
steps, including registration, radiometric normalization,
preliminary fusion, and reflectance reconstruction (Figure 6a). By
combining the benefits of both platforms, the framework aims to
generate continuous imagery with high spatial and temporal
resolution (Li Y. et al., 2022).

3.5.2 Unmixing-based method
Unmixing-based data fusion is a concept that involves

combining data from multiple sensors with different spectral
characteristics to create a more complete and accurate
representation of the observed scene (Gevaert et al., 2015). This
method eliminates the requirement for corresponding spectral
bands between the sensors and allows for the downscaling of
additional spectral bands from medium spatial resolution sensors.
The unmixing process involves decomposing themixed pixel spectra
into their constituent end-members and their corresponding
fractional abundances (Figure 6b). This method is also used to
fuse multispectral satellite imagery with high-resolution datasets
(Gevaert et al., 2014).

3.5.3 Spectral harmonization method
Spectral harmonization refers to the process of aligning the

spectral characteristics of data acquired from different platforms to
ensure consistency and comparability (Nurmukhametov et al.,
2022). Suitable methods for spectral harmonization can include
empirical ones like principal component (PC), root-polynomial
correction (RPC); or physical methods like model-based spectral
harmonization (MBSH) (Zhao et al., 2019). These models are
trained using reference data and can be used to predict the
response of one sensor based on the response of another one.
Training the model involves determining the weights or

coefficients for the transformation matrix. This matrix maps the
spectral responses from the source sensor to the spectral responses
of the destination sensor. Finally, the transformation matrix applies
to the spectral data from the source sensor (Figure 6c) to obtain the
harmonized spectral data for the destination one (Nurmukhametov
et al., 2022).

3.5.4 Pan sharpening method
Pan sharpening is another method that involves fusing high-

resolution panchromatic (UAS) imagery with low-resolution
multispectral imagery (satellite) (Tattaris et al., 2016). The
process begins by acquiring both the panchromatic and
multispectral images of the same area. The panchromatic image
provides high spatial resolution images but lacks spectral
information. On the other hand, the multispectral image provides
spectral information but has lower spatial resolution (Zhu et al.,
2020). Component substitution and multi-resolution analysis are
the main algorithms used for pan sharpening. Component
substitution involves converting the bands of the low-resolution
multispectral imagery to intensity-hue-saturation (IHS)
components using a wavelet transform. The panchromatic band
then replaces the intensity component after histogram matching. In
the multi-resolution analysis, the low-spatial resolution image is
decomposed into scale levels, while injecting the panchromatic band
matched by each decomposed layer (Figure 6d). An inverse
transformation is then applied to enhance the imagery spatial
resolution (Marzougui et al., 2023).

3.5.5 Spatial-spectral method
The spatial-spectral fusion technique uses Gram-Schmidt (GS)

transformation to combine the UAS high spatial but low spectral
resolution mages with satellite high spectral resolution images to
create a fused image. The GS transformation calculates the mean and
standard deviation of the panchromatic band (UAS-PAN) and the
first band (GS1) of the imagery obtained by the GS transform. The
UAS panchromatic band is then stretched so that its mean and
standard deviation match the mean and standard deviation of the
first GS band. The stretched high-resolution panchromatic band is
swapped for the first GS band, and the data is transformed back into
the original multispectral band space (Figure 7a), resulting in
higher-resolution multispectral bands (Zhao et al., 2019).

3.5.6 Spectral-temporal method
The spectral-temporal works based on using Bayesian inference to

combine different sources of data. In this approach, a vector of true
spectral reflectance factors is inferred from several noisy observations.
The mathematical formulation sets up a linear Gaussian system,
where the observations are represented as a product of a matrix
and the true reflectance factors, plus a noise term. The matrix is used
to select the available images, and the noise is assumed to have a
normal Gaussian distribution. The Bayesian approach considers the
uncertainties of each measurement and allows for the quantification
of these uncertainties (Figure 7b). It also utilizes prior information,
such as the covariance between spectral bands of similar signatures, to
impute multispectral reflectance spectra to hyperspectral intervals.
This helps retain the physical features characteristic of vegetation
spectra when combining multispectral and hyperspectral images
(Gevaert et al., 2015).
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3.5.7 Feature-based method
A feature-based fusion method is a technique used in image

registration to combine and integrate information from multiple
feature points in order to accurately align and match images (Abbas
et al., 2020). The first step of the feature-based fusion is to detect
feature points in each image. Feature points are distinctive locations
or regions in an image that can be easily identified and matched with

corresponding points in another image. Once the feature points are
detected, their descriptors are computed. Descriptors are numerical
representations that capture the unique characteristics of each
feature point, such as its location, scale, and orientation. The
next step is to match the feature point descriptors between the
two images. This is done by comparing the descriptors of each
feature point in one image with the descriptors of all feature points

FIGURE 7
Image data fusion workflows: (a) Spatial-spectral; (b) Spectral-temporal; (c) Feature-based; (d) Decision-level. The solid blue arrows represent
the UAS dataset, while the solid red arrows represent the satellite dataset.
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in the other image. The goal is to find the best matches based on
similarity measures. In the feature-based fusion method, the
matches obtained from the descriptor matching step are
combined and fused to generate a final set of accurate matches
(Figure 7c). This fusion process involves considering various factors
such as the quality of matches, geometric constraints, and statistical
measures. Once the accurate matches are obtained, the images can
be aligned and registered based on the correspondences between the
feature points. This alignment process involves estimating the
transformation parameters, such as translation, rotation, and
scaling, that best align the images (Abbas et al., 2020).

The main method used in feature-based fusion in precision
agriculture is the nearest neighbor-brute force (NN-BF) method.
This method combines the strength of NN and the BF descriptor
matching strategies to register images. It involves identifying
corresponding feature point descriptor matches between the
images of the training set with overlap error (Abbas et al., 2020).
These matches are then further matched with the descriptors of the
test set using the NN and BF strategies. Finally, the matches obtained
are processed with random sample consensus (RANSAC) to remove
outliers and estimate a homography for image registration. The NN-
BF method has shown improved performance compared to other
feature points such as scale-invariant feature transform (SIFT),
speeded-up robust features (SURF), and oriented FAST and
rotated BRIEF (ORB) in remote sensing image registration.

3.5.8 Decision-level method
Decision-level fusion involves making decisions based on

information from both UAS and satellite images. It often
incorporates ML, DL or statistical techniques to make informed
decisions. Advanced computing techniques, such as deep neural
networks (DNN) and convolutional neural networks (CNN),
random forest (RF), and support vector machine (SVM) can be
employed to fuse information from multiple sources and improve
the quality of moderate-resolution platforms (Mazzia et al., 2020; Yu
et al., 2021). The decision-based fusion approach aims to refine
satellite images by UAS imagery (Figure 7d). TheML and DLmodels
are trained to learn the mapping function between the satellite
images and the ground truth instances extracted from the UAS
images. By optimizing the model parameters using the loss function,
these models can generate a non–linear mapping function that
improves the coherence between the predicted satellite pixels and
the UAS pixels (Yu et al., 2021; Khaliq et al., 2019b). By leveraging
the benefits of both UAS and satellite imagery, decision fusion
enables the monitoring of vegetation with improved spatial and
temporal resolution. (Khaliq et al., 2019b; Mazzia et al., 2020).
Table 2 presents the advantages and disadvantages of various
image fusion techniques.

Regarding the fusion of UAS and satellite images for precision
agriculture, researchers have primarily favored pixel-based fusion
methods in 70% of cases, followed by decision-based fusion methods
at 23%, with only 7% opting for feature-based fusion approaches.
Intriguingly, there’s no clear consensus on which fusion method is
the most accurate, mainly due to the absence of comprehensive
comparative studies. This gap in the literature points to a promising
area for future research. The key factors in selecting a fusion method
revolve around the intrinsic traits of the data sources, such as spatial
resolution, spectral range, and temporal resolution. The choice of a

fusion method should align with the specific goals, whether they
involve enhancing spatial detail, preserving spectral information, or
integrating various data sources (Sozzi et al., 2021). Furthermore, it
is essential to consider computational complexity, especially when
dealing with large datasets, to ensure that the method is both
efficient and scalable (Zhu et al., 2020). Ultimately, making an
informed decision about the fusion method depends on a
thorough assessment of these factors, all tailored to the specific
data and objectives of your application (Mancini et al., 2019).

To strengthen the comparative analysis of fusion method
performance, we synthesized results from the 56 reviewed studies
to evaluate how each method performs across key precision
agriculture tasks. As shown in Table 3, pixel-based fusion
methods achieved the highest average classification accuracy
(90%) and were consistently preferred in tasks such as crop type
mapping, stress detection, and yield prediction. This preference is
not solely due to performance; pixel-based methods are generally
easier to implement and require fewer computational resources
compared to feature- or decision-based approaches. While
feature-based methods provided enhanced structural detail,
especially in vegetation segmentation tasks, they involved higher
computational complexity and longer processing times. Decision-
based fusion methods showed robust generalization across multi-
sensor sources but often lacked the spatial precision needed for fine-
grained agricultural assessments. These findings illustrate that the
choice of fusion strategy is context-dependent, influenced not only
by accuracy but also by operational efficiency, sensor characteristics,
and end-use application.

3.6 Data fusion challenges and solutions

The challenges associated with integrating UAS and satellite
images for precision agriculture pose significant hurdles that impact
the reliability and effectiveness of the combined data. One primary
challenge is the disparity in spatial and temporal resolutions between
UASs and satellites (Li Y. et al., 2022; Jiang et al., 2022). This
incongruity can lead to difficulties in achieving a seamless
integration of data (Pastonchi et al., 2020). Coordinated data
collection schedules and enhanced fusion techniques, however,
provide a viable solution by ensuring synchronized acquisition of
data from both platforms (Tattaris et al., 2016; Wu et al., 2023). This
not only addresses the spatial and temporal misalignments but also
fosters a more cohesive integration of UAS and satellite data (Jain
and Pandey, 2021; Lacerda et al., 2022). Comparatively, other studies
emphasize the need for coordinated data collection schedules and
advanced fusion techniques to mitigate these issues. For instance,
synchronized data acquisition methods have demonstrated the
ability to minimize spatial and temporal misalignments, enabling
the effective blending of UAS and satellite datasets (Lu and Shi,
2024). Similarly, innovative fusion frameworks, such as the high-
resolution spatiotemporal image fusion (HISTIF) method, have
shown promise in enhancing the coherence of integrated data,
allowing daily monitoring with high spatial detail (Jiang et al.,
2020). However, these techniques are not without drawbacks.
Advanced fusion processes require computational resources and
expertise, posing a barrier to widespread adoption, especially in
resource-constrained settings. Moreover, errors in radiometric and
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geometric calibration can exacerbate the integration challenges,
affecting the overall accuracy of the combined outputs (Collings
et al., 2011; Bansod et al., 2017). Recent advancements highlight the
potential of Spatio-Temporal-Spectral (STS) fusion frameworks for
addressing these challenges. For instance, the use of Spatial and
Temporal Adaptive Reflectance Fusion Model (STARFM) coupled
with Consistent Adjustment of the Climatology to Actual
Observations (CACAO) has demonstrated superior performance
in combining spatial, temporal, and spectral data from UAV and
Sentinel-2 images (Zhang and Li, 2024). This method achieves
precise downscaling of Sentinel-2 images, yielding results that are
both spectrally and spatially consistent with high-resolution UAV
observations. By integrating the strengths of multiple sensors, such
frameworks enhance the reliability of fused datasets, particularly in
resolving spatial mismatches and temporal inconsistencies.
Furthermore, the Spatio-Spectral fusion component of the STS
framework has shown the ability to predict absent spectral bands,
such as Red-Edge and NIR, critical for agricultural monitoring. This
approach not only bridges the spectral gaps but also mitigates the
impact of geographic registration errors at large spatial scales, a
common issue when fusing data from UAVs and satellites (Zhang
and Li, 2024). However, these advanced fusion frameworks are not
without limitations. The computational intensity of STS methods

and the need for precise calibration of input data remain significant
barriers. As noted in recent studies, the integration of CACAO in
Spatio-Spectral fusion ensures pixel-level reflectance accuracy but
requires further refinement to minimize errors in downscaled
spectral bands, especially in complex agricultural landscapes.
Despite these challenges, the potential benefits of improved crop
monitoring, yield prediction, and resource optimization justify
continued investment in refining these methodologies.
Optimizing these fusion frameworks through scalable and cost-
effective approaches, including AI-driven algorithms for super-
resolution and automated spectral calibration, could further
enhance their applicability. This findings align with the results of
Zhang and Li (2024) mentioning future research should explore the
integration of deep learning models with STS fusion methods to
improve spatial and spectral detail recovery while addressing the
accessibility and scalability challenges associated with
computational resources.

Radiometric calibration discrepancies between UAS and satellite
sensors pose a significant challenge in integrating data for precision
agriculture, as they introduce variations in measured values and lead
to inconsistencies in indices like NDVI and LAI (Lacerda et al., 2022;
Maimaitijiang et al., 2020). Addressing these discrepancies requires
the development of standardized calibration procedures and

TABLE 2 Advantages and disadvantages of different image fusion methods.

Fusion
method

Sub method Advantages Disadvantages Reference

Pixel-based Spectral-temporal Uncertainty quantification Sensor compatibility Gevaert et al. (2015)

Unmixing Flexibility, spatial and spectral
preservation, downscaling capability

sensitivity to temporal changes, limited
applicability, complexity

Gevaert et al. (2014)

Spatial and temporal Enhanced spatial resolution, improved
temporal resolution

Data compatibility and processing challenges,
cost and resource limitations

Gevaert et al. (2014), Li et al. (2022b),
Zhang and Li (2024)

Spectral
harmonization

Consistent use, wide applicability, no
retraining required

Moderate results, complexity, synthetic
dataset requirement

Nurmukhametov et al. (2022)

Pan sharpening Retention of spectral information,
better feature identification, enhanced
spatial resolution

Increased computational complexity,
potential loss of spectral information,
sensitivity to misregistration

Tattaris et al. (2016), Zhu et al. (2020)

Spatial-spectral Fast and easy to implement, high
integration quality, maintains
information distribution

Limited information redistribution, lack of
flexibility, sensitivity to input data quality

Zhao et al. (2019)

Feature-based Nearest neighbor-
brute force

Robustness to differences,
Combination of strengths, outlier
removal

Dependency on feature point detectors,
complexity, decreased performance with
increasing overlap error

Abbas et al. (2020)

Decision-based Machine learning
and deep learning

Robustness, diversity, flexibility Complexity, increased computational
requirements, overfitting

Mazzia et al. (2020), Khaliq et al.
(2019b), Yu et al. (2021), Yang et al.
(2023), Ferraz et al. (2024)

TABLE 3 Comparison of fusion methods in precision agriculture.

Fusion
method

Accuracy
(Avg.)

Implementation
complexity

Computational
cost

Scalability Typical use cases

Pixel-based 0.90 Low Medium Medium Yield prediction, Stress detection

Feature-based 0.85 High High Low Registration, 3D structural mapping

Decision-based 0.88 Medium Low High Crop type classification, Decision
support systems
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harmonized algorithms to ensure compatibility and comparability
of datasets across platforms. Studies have shown that standardized
protocols not only improve data accuracy but also facilitate seamless
integration of high-resolution UAS imagery with the broader
temporal coverage of satellite data (Prins and Van Niekerk, 2021;
Stolarski et al., 2022). In addition, advanced fusion frameworks, such
as HISTIF, have demonstrated the ability to mitigate radiometric
mismatches and geometric distortions, enhancing the reliability of
integrated datasets (Jiang et al., 2020). While resource-intensive,
these solutions offer significant benefits for precision agriculture,
including improved crop monitoring, better yield predictions, and
optimized resource use, making the investment in calibration
advancements worthwhile. Future research should focus on
scalable, cost-effective calibration methodologies to make these
benefits accessible to resource-constrained settings, ensuring a
broader application of integrated remote sensing technologies in
agriculture.

Data synchronization, both in terms of acquisition time and
location, introduces complexities arising from the short-duration,
small-area coverage of UAS data compared to the single, wide-swath
image captured by satellites (Furlanetto et al., 2023; Jiang et al.,
2022). For instance, UAS-based vegetation indices collected in a
specific field often require higher temporal resolution for
phenological studies, whereas satellite imagery provides broader
coverage but at coarser spatial resolution. A comparative study by
Amankulova et al. (2024) demonstrated that fusion of PlanetScope
and Sentinel–2 data improved the accuracy of crop yield predictions,
highlighting the value of coordinated data collection and
interpolation techniques. Coordinated data collection schedules,
interpolation, and fusion techniques play crucial roles in
overcoming these challenges. For example, temporal interpolation
methods such as linear and spline interpolation have been employed
successfully to align UAS data with satellite revisit times. A case
study by Jenerowicz et al. (2017) on UAS and Landsat data
integration showed that the integration of UAS and Landsat data,
using methods such as pansharpening, effectively bridges spatial and
spectral resolution gaps by fusing high-spatial-resolution RGB
imagery from UAV platforms with multispectral satellite data,
enhancing both spatial and spectral accuracies. Additionally,
georeferencing and coregistration techniques ensure the accurate
alignment of spatial locations between UAS and satellite data,
resolving issues related to their disparate acquisition
characteristics (Jain and Pandey, 2021). For example, the use of
ground control points (GCPs) and automated image registration
algorithms enabled the seamless integration of high-resolution UAS
images for urban mapping (Salas López et al., 2022). In comparison
to other results, studies such as Wang (Wang P. et al., 2022) have
reported similar challenges but emphasized that advanced AI-driven
methods, like deep learning-based super-resolution techniques, can
further improve data fusion outcomes by enhancing the spatial
resolution of satellite imagery to match UAS data. Such
advancements suggest potential pathways for enhancing
synchronization and integration efforts.

The divergence in processing techniques and algorithms
required for UAS and satellite data poses a notable challenge in
the integration process (Jain and Pandey, 2021; Pastonchi et al.,
2020). For example, UAS imagery typically involves
high–resolution, small–scale data processed using specialized

software such as Pix4D or Agisoft Metashape, while satellite data
often requires large–scale, multi–spectral analysis using tools like
Google Earth Engine or ENVI. This discrepancy can lead to
inefficiencies when trying to integrate the two data types for
applications such as precision agriculture. Standardizing
workflows emerges as a key solution, enhancing not only the
compatibility of data but also streamlining the processing
pipeline (Stolarski et al., 2022). For example, the development of
a unified platform like the end-to-end deep convolutional neural
network proposed by Tsai et al. (2017) has shown success in
harmonizing datasets, leading to improved output accuracy and
reduced processing time. Compared to traditional approaches,
where integration often involved significant manual intervention,
this standardization reduces the potential for errors, making the
integration process more efficient and ensuring consistent and
reliable results (Marzougui et al., 2023; Habibi et al., 2021).
Studies by Pakdil and Çelik (2022) have demonstrated similar
results, confirming that standardized processing workflows not
only enhance integration efficiency but also enable better
scalability of geospatial projects. However, the cost and
accessibility issues associated with UAS platforms and satellite
data introduce financial and operational constraints (Marzougui
et al., 2023; Sankaran et al., 2021; Pastonchi et al., 2020). For
example, while UAS platforms provide greater flexibility in data
acquisition, their operational costs can be prohibitive for small–scale
users. In contrast, satellite data, while often more accessible, may
lack the spatial resolution required for certain applications. The
integrating the two technologies through cost-sharing models and
open-access satellite platforms like Sentinel-2 might partially
mitigate these constraints. These findings align with the results of
(Politi et al., 2019) underscoring the importance of innovation and
collaboration in overcoming these obstacles.

Optimizing UAS data collection strategies (Li M. et al., 2022)
and considering the use of open-source or freely available satellite
imagery (Mazzia et al., 2020) can represent strategic measures to
enhance cost-effectiveness. However, relying solely on free satellite
data may limit flexibility regarding the timing of data collection and
available options for imagery processing. Therefore, a balanced
approach that incorporates both UAS and satellite data sources,
while also considering the potential limitations of freely available
satellite imagery, is recommended for maximizing cost-effectiveness
and flexibility in data acquisition and processing. Collaboration with
industry stakeholders and research institutions further addresses
accessibility challenges by providing valuable resources and shared
data, ultimately making UAS platforms and satellite data more
accessible and cost-effective (Marzougui et al., 2023).

Finally, to address the challenges of data heterogeneity, one
practical approach involves the development of preprocessing
pipelines that standardize spatial resolution and radiometric
properties across UAS and satellite datasets. For example, pan-
sharpening techniques can be applied to coarsely resolved
satellite imagery to improve alignment with UAS imagery. For
temporal alignment, interpolation or data assimilation methods
can be used to reconcile differences in acquisition dates. To
tackle computational load, cloud-based platforms such as Google
Earth Engine and Amazon Web Services (AWS) allow scalable
processing of fused datasets. Additionally, implementing machine
learning frameworks, such as decision-level fusion using ensemble
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models (Bazrafkan et al., 2024b), can improve robustness by
leveraging diverse input sources without needing complete
harmonization. These strategies offer practical paths for
overcoming fusion-related barriers in precision agriculture
applications.

3.7 Impact on precision agriculture

The integration of UAS and satellite data in precision agriculture
significantly enhances the decision-making process for farmers and
plant breeders. For instance, a study demonstrated how UAS
imagery enabled real-time monitoring of nitrogen deficiencies
within cornfields, while satellite data provided insights into
regional growth patterns and drought stress over a season (Yu
et al., 2021). This dual-level monitoring allowed for the precise
application of nitrogen fertilizers, reducing costs and improving
yields. The integration of UAS and Sentinel-2 imagery using the
proposed spatio-temporal fusion (STF) framework by (Li Y. et al.,
2022) led to significant quantitative improvements in monitoring
crop growth. The framework reduced the spatial texture error
(measured by local binary pattern) by more than 0.10 and the
edge error (Robert’s edge) by over 0.25 compared to traditional
STARFM methods. Furthermore, the correlation coefficient (r)
between predicted and observed reflectance exceeded 0.95 for the
blue, green, and red bands. These enhancements translated to more
accurate and temporally continuous NDVI and EVI2 estimates,
allowing for better characterization of seasonal dynamics in winter
wheat growth. A comparative study conducted in northern Greece
demonstrated the unique strengths of each technique. Using UAS
and Sentinel-2 satellite data to compute NDVI values for targeted
points and polygons, it was observed that UAS imagery, with its
higher spatial resolution, provided more accurate NDVI values for
localized areas. Conversely, Sentinel-2 satellite imagery excelled in
monitoring larger–scale trends due to its broader coverage, despite a
slightly lower resolution (Bollas et al., 2021). The correlation
between the two techniques ranged from 83.5% to 98.26%,
highlighting their complementary roles in precision agriculture.
By addressing spatial and temporal resolution challenges, UASs
provide high-resolution imagery for detailed monitoring within
specific fields, complemented by satellite data offering broader
coverage (Zhao et al., 2019). This synergistic approach empowers
informed decision-making at both fine-grained and large-scale levels
(Di Gennaro et al., 2019; Ghimire et al., 2020). The combined
monitoring capabilities of UASs and satellites detect localized
conditions and general trends, enabling targeted interventions
like precise applications of pesticides and fertilizers (Zhang et al.,
2019). For example, the integration of UAS and satellite data has
been shown to effectively monitor chlorophyll content during
critical growth stages in winter wheat (Li Y. et al., 2022).
Comparatively, (Katsigiannis et al., 2016), found that relying
solely on satellite data in similar settings led to overgeneralized
recommendations, reinforcing the value of combining both
technologies. Additionally, this integration optimizes resource
allocation, strategically managing fertilizers, pesticides, and water
to minimize costs and environmental impact (Schut et al., 2018).
Moreover, it contributes to improved crop performance and
variability assessment, optimizing irrigation and fertilization

practices for enhanced yields, resource efficiency, and profitability
(Zhang et al., 2019; Schut et al., 2018). A case study demonstrated
how UAS data detected zones of water stress, while satellite imagery
provided long-term trends, enabling precise irrigation management
(Masina et al., 2020). Such outcomes align with findings from Li Y.
et al. (2022), who emphasized improved crop performance and
resource efficiency as pivotal advantages of this technology. In
conclusion, these real-world applications and comparisons
illustrate that the integrated use of UAS and satellite data is a
potent tool in precision agriculture. It not only provides
actionable insights for immediate interventions but also supports
long-term strategic planning, offering substantial economic,
environmental, and agronomic benefits. By bridging spatial and
temporal resolution gaps, this approach enhances management
strategies and contributes to sustainable agricultural practices.

3.8 Comparative analysis

In specific scenarios and for particular crop types, the synergistic
use of UAS and satellite images surpasses the individual utility of
each source, providing enhanced insights. Notably, crops in row
configurations (e.g., vineyards, orchards) (Mazzia et al., 2020;
Nurmukhametov et al., 2022; Mancini et al., 2019; Huang et al.,
2023; Khaliq et al., 2019b), crops with larger field sizes or
homogeneous canopy structures (e.g., wheat, rice, cotton,
chickpea, potato) (Tattaris et al., 2016; Ahmad et al., 2022;
Habibi et al., 2021), and crops with complex canopy structures or
high spatial variability (e.g., maize, soybean, dry pea) (Marzougui
et al., 2023; Jiang et al., 2022) would benefit from this integration.

Recent research emphasizes that within precision agriculture,
cover-crop spectra can offer valuable insights beyond their historical
perception as noise. For instance, studies on vineyards have shown
that cover-crop spectral data, acquired through UASs andmoderate-
resolution satellite imagery like Sentinel-2, significantly influence
the accuracy of predicting grape yield and quality (Williams et al.,
2024). This finding challenges the traditional focus solely on vine
spectra and underscores the potential of using cover-crop spectral
variation to enhance predictive models. Cover crops, when
combined with spectral data from both UASs and satellites,
provide a mechanism for indirect yet meaningful insights into
crop quality and yield variability. Moreover, integrating high-
resolution UAS imagery with moderate-resolution satellite data
can mitigate the limitations of mixed pixels in moderate-
resolution data, such as those acquired by Sentinel-2. For
example, vineyard monitoring studies have demonstrated that
despite spatial blending, Sentinel-2 data robustly describe
variations in grape quality parameters, as cover-crop spectra
dominate the mixed-pixel signal over vine spectra. This insight
aligns with the broader scope of leveraging both technologies to
achieve cost-effective, scalable monitoring solutions for precision
agriculture (Williams et al., 2024).

Notably, while existing research demonstrates the benefits of this
integration for various crop types, there remains a gap in
understanding the optimal integration methods and techniques to
maximize insights across different agricultural contexts. Future
research endeavors should focus on addressing these gaps by
exploring innovative approaches, such as multi-temporal
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monitoring during key phenological stages (e.g., veraison) and
optimizing data acquisition timing to reduce spectral variability
caused by environmental factors (Williams et al., 2024). By
advancing methodologies tailored to specific crop characteristics
and environmental conditions, the synergistic use of UAS and
satellite imagery can further revolutionize precision agriculture.

3.9 Research gaps identified for future works

The SLR reveals only a limited number of studies combining
UASs and satellite imagery for precision agriculture compared to the
individual remote sensing platforms. This disparity may arise from
technological challenges, economics, or limitations in data
integration. The limited research in this area indicates a potential
gap in understanding or the research is at an early stage in exploring
synergies between UASs and satellite images for precision
agriculture, despite the various advantages. One significant gap
pertains to the limited studies regarding the performance of the
same data fusion model when integrating data from both UAS-
mounted and satellite sensors across a variety of crops. Different
crops exhibit unique characteristics, growth patterns, and nutrient
requirements. Evaluating the fusion approach on various crops not
only ensures its generalizability and robustness but also provides
insights into the specific challenges and opportunities associated
with each crop. This allows for the refinement and optimization of
the fusion approach tailored to specific crop types, enhancing its
applicability across a broad spectrum of agricultural contexts (Prins
and Van Niekerk, 2021; Sozzi et al., 2021; Furlanetto et al., 2023).

While the integration of UAS and satellite imagery in fusion
offers promising potential, practical applications face significant
challenges. One of the primary obstacles is the variability in
sensor configurations and data acquisition conditions, which can
lead to inconsistencies in spectral and spatial resolutions,
particularly in large-scale agricultural applications (Zhang and Li,
2024). These inconsistencies necessitate advanced preprocessing
techniques, such as image registration and normalization, to
mitigate discrepancies between UAS and satellite data.
Furthermore, adapting this fusion technology to diverse
agricultural scenarios requires addressing site-specific factors like
crop heterogeneity, spectral variability, and dynamic growth
conditions. For example, while CA-STARFM has demonstrated
its effectiveness in reducing errors across spectral and spatial
dimensions, its performance may vary depending on the
vegetation type and the presence of mixed land covers, such as
bare soil and water, commonly found in agricultural landscapes
(Zhang and Li, 2024). This highlights the need for further
refinement in modeling techniques and the incorporation of
adaptive algorithms capable of contextual adjustments to cater to
diverse agricultural practices and climatic conditions. Another
critical research gap involves the improvement of segmentation
algorithms, as accurate segmentation is pivotal for separating
vegetation from the background in UAS and satellite imagery.
Image fusion, combining information from satellite imagery and
UAS data, relies on effective segmentation to enhance the accuracy
of vegetation monitoring. Improving segmentation algorithms
enables more precise isolation and extraction of vegetation
information from diverse data sources. Enhancing segmentation

algorithms, therefore, holds the potential to improve the overall
performance and reliability of image fusion for vegetation
monitoring.

In addition, enhancing radiometric calibration is imperative for
the accuracy and reliability of UAS and satellite image fusion in
future works. Several challenges, including shifting light conditions
during UAS image capture, insufficient calibration methods,
variability in radiometric calibration, and reproducibility issues,
need attention. Shifting light conditions pose challenges for
accurate radiometric calibration, potentially introducing errors
that impact the fused image accuracy (Rasmussen et al., 2021).
Current calibration methods for UAS and satellite images may prove
insufficient, and the approximation nature of radiometric
calibration algorithms in UAS imagery raises concerns about
their accuracy (Svensgaard et al., 2019). The calibration process,
converting a sensor radiance into reflectance, is influenced by factors
such as camera characteristics and spectral differences between
sensors, affecting the accuracy of this conversion. Reproducibility
issues in UAS imagery, compared to satellite imagery, further impact
the absolute values of vegetation indices derived from UAS images.
Factors such as cloud cover and camera types can influence the
consistency and reliability of the fused images (Rasmussen et al.,
2021; Rasmussen et al., 216). Addressing these radiometric
calibration challenges is essential for advancing the accuracy and
reliability of UAS and satellite image fusion for various precision
agriculture applications.

To enable robust cross-crop applications of data fusion models,
future studies should design comparative experiments that evaluate
the same fusion algorithm across multiple crop types. For instance,
integrating UAS and satellite data can be tested on structurally and
phenologically distinct crops such as maize, wheat, and chickpeas.
Such studies should employ standardized preprocessing pipelines,
consistent feature sets (e.g., vegetation indices, canopy metrics), and
uniform evaluation metrics (e.g., RMSE, R2). Model generalizability
can then be assessed through transfer learning techniques or cross-
validation where a model trained on one crop is tested on another.
This approach allows for identification of crop-specific limitations
and opportunities, thereby enhancing the adaptability and
robustness of fusion frameworks across diverse agricultural
systems. Future studies should assess fusion model performance
across diverse crop types, accounting for variations in canopy
architecture, growth stage reflectance dynamics, and background
soil conditions. Such designs could involve testing models trained on
one crop (e.g., wheat) and applying them to morphologically
different crops (e.g., soybean) to evaluate generalizability. To
address segmentation challenges in heterogeneous fields,
advanced deep learning architectures such as U-Net,
DeepLabv3+, or Mask R-CNN could be adopted. These models
have shown high precision in extracting crop boundaries from high-
resolution imagery (Bazrafkan et al., 2024a) and can be trained with
annotated datasets using transfer learning approaches. Radiometric
calibration can be improved through standardized use of calibration
panels (Wang and Myint, 2015), and atmospheric correction tools
such as Sen2Cor (Main-Knorn et al., 2017) for satellite imagery or
empirical line calibration for UAS data. Future research could also
explore harmonization strategies using Bidirectional Reflectance
Distribution Function (BRDF) (Marschner et al., 2000) models to
compensate for view angle differences and lighting variability.
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4 Conclusion

This systematic literature review highlights the transformative
potential of integrating UAS and satellite imagery in precision
agriculture. By focusing on optimizing spatial resolution, leveraging
spectral synergies, and employing temporal strategies, the review
identifies pixel-based, feature-based, and decision-based fusion
methods as pivotal in enhancing the spatial and spectral resolution
required for detailed crop monitoring and assessment. The
complementary spectral features of UAS and satellite data prove
particularly valuable for applications such as crop growth
monitoring, nitrogen estimation, biomass prediction, and yield
forecasting. Temporal optimization strategies underscore the
necessity of aligning data collection with crop phenology while
balancing spatial resolution and budget constraints. The review
systematically addresses challenges in spatial and temporal
resolution, radiometric calibration, data synchronization, and
processing disparities. Solutions such as coordinated data
collection, advanced fusion techniques, and standardized workflows
demonstrate significant improvements in integration efficiency and
accuracy. The integration of UAS and satellite data enhances precision
agriculture by improving spatial and temporal monitoring
capabilities, optimizing resource allocation, and enabling more
precise crop performance assessments. Comparative analyses reveal
the advantages of combining UAS and satellite data for specific crops
and scenarios, particularly where high spatial resolution and broader
coverage are required. Pixel-based fusion methods are frequently
preferred due to their ability to preserve spatial detail, though
considerations around computational complexity remain critical.
Future research should focus on advancing machine learning (ML)
and deep learning (DL) algorithms for data fusion, which promise to
improve precision and scalability. Cross-crop applications should also
be prioritized to generalize findings and provide tailored solutions for
diverse agricultural contexts. Additionally, the integration of UAS
RGB sensors with multispectral satellite imagery, such as Sentinel-2,
has emerged as a widely adopted approach, proving effective for crop
type mapping, nitrogen estimation, and yield prediction. Continued
exploration of ML and DL-driven fusion frameworks will further
refine the integration process, offering robust, cost-effective, and
scalable solutions for the evolving needs of precision agriculture.
By addressing these opportunities and challenges, this integrated
approach has the potential to revolutionize agricultural practices,
fostering sustainable, efficient, and precise farming systems.
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