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Urban green and open spaces (UGOS) provide essential social, cultural,
environmental, and economic benefits to a city; therefore, monitoring UGOS
is critical for guiding management and strengthening urban resilience. Spatial
analysis of Earth Observation data provides a practical means of evaluating UGOS,
and with the availability of high and very-high spatial resolution (VHR) satellite
imagery (<10 m), UGOS can be accurately characterized across broad spatial and
temporal scales. While VHR satellite imagery (<3 m) can enable more refined
characterizations of land cover (LC), its use may be constrained by high monetary
costs, accessibility barriers, and reduced spatial and temporal coverage. This
study investigates the implications of utilizing imagery sources of varying spatial
resolution (<10 m) and differing classification approaches—pixel-based versus
object-based—on LC characterizations and subsequent UGOS spatial
assessments in two urbanizing cities: Mekelle, Ethiopia and Polokwane, South
Africa in 2020. LC classifications were derived from Sentinel-2 imagery (10 m),
PlanetScope SuperDove imagery (3 m), and Maxar WorldView-3 multispectral
(2 m) and pansharpened (0.5 m) imagery. Mapping accuracy and UGOS
characteristics were evaluated for each city, including the composition of
undeveloped versus developed land, tall vegetation cover, and LC within
selected public spaces. Additionally, the share of streets and open space
under Sustainable Development Goal Indicator 11.7.1 were assessed.
WorldView-3 multispectral (2 m) LC maps consistently achieved the highest
overall classification accuracies, at 92% in Mekelle and 86% in Polokwane,
suggesting that spatial resolution alone does not guarantee higher mapping
accuracy, and that spectral richness is an important characteristic for mapping
complex vegetation. Although VHR imagery enhanced the detection of small and
fragmented landscape features, such as trees, classification performance
depended heavily on context, resolution, method, and image characteristics.
Coarser imagery like Sentinel-2 proved to be practical for broader assessments
(e.g., SDG 11.7.1) but based on our results, still may underrepresent total
undeveloped space and fails to capture fine-scale spatial variation. The results
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revealed clearer spatial patterns and resolution-dependent trends in Mekelle, while
findings in Polokwane were more variable, suggesting that local landscape
structure and urban form may influence classification outcomes and UGOS
metrics. Overall, this study highlights the importance of carefully selecting and
interpreting Earth Observation imagery based on sensor characteristics, spatial and
spectral resolution, classification method, acquisition timing, and local landscape
context, especially when data options are limited.
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1 Introduction

Urban green and open spaces (UGOS) refer to natural vegetated
areas and open spaces utilized by urban residents and wildlife,
including forests, parks, gardens, playgrounds, streets, and
squares (SDG Indicators Metadata repository, 2020). These
spaces offer a range of ecological and social benefits: they
support biodiversity by providing habitat and food sources,
mitigate the negative effects of climate change and urbanization,
and promote human wellbeing by improving air quality, reducing
heat, and fostering opportunities for recreation and social
interaction (Lee and Maheswaran, 2011; Woolley, 2003;
Rakhshandehroo et al, 2017; Zhang and Qian, 2024). While
UGOS are an integral component of high-quality urban systems
(Cilliers, 2015), their effectiveness depends not just on their
presence, but on key spatial characteristics such as composition,
accessibility, size, shape, and spatial distribution (Egerer et al., 2024).
For example, tall vegetation, such as trees, play a critical role in
climate regulation and habitat provisioning (Turner-Skoff and
2019; Maseko 2019),
compositional element that should be prioritized in UGOS
to optimize UGOS
performance include preserving existing spaces, implementing

Cavender, et al, making them a

planning and management. Strategies

multi-faceted urban planning approaches, and consistently
monitoring UGOS accessibility and function (Haaland and van
den Bosch, 2015; Jim, 2013; Chamanara and Kazemeini, 2016;
Fan et al, 2017).

However, cities in the Global South, particularly across Africa
(Rigolon et al., 2018), often face significant constraints in managing
UGOS amid rapid urbanization. In response, the United Nations has
undertaken extensive efforts to promote sustainable urban
development and improve urban living standards in these rapidly
urbanizing regions. In 2015, the United Nations launched the
Sustainable Development Goals (SDG) under the 2030 Agenda
for Sustainable Development (United Nations Transforming Our

World, 2015), with SDG 11 aiming to make cities and human
settlements inclusive, safe, resilient, and sustainable (United
Nations Transforming Our World, 2015), and Target 11.7 aiming
to ensure universal access to adequate public open spaces. To
support consistent monitoring, the United Nations introduced
SDG Indicator 11.7.1, which geospatially assesses the share and
accessibility of public open space in urban areas (Table 1I).
11.7.1 related
dimensions of UGOS can offer critical insights to inform the

Research investigating SDG Indicator and
design, planning, and management of green and open spaces in
developing urban regions.

Geospatial analysis of satellite data is a widely used and effective
approach for evaluating the status of UGOS, including SDG
Indicator 11.7.1, particularly in African cities where official
monitoring data is limited or absent. One critical aspect of these
assessments is the spatial resolution of satellite imagery employed.
The emergence of satellite missions such as Sentinel-2, which offers
multispectral imagery at 10 m spatial resolution with global
coverage, bridges the gap between moderate resolution sensors
such as Landsat at 30 m and very-high spatial resolution (VHR)
imagery (<3 m). In this study, we refer to Sentinel-2 imagery (10 m)
as “high resolution”, in contrast to moderate (20-30 m) and VHR
imagery (<3 m). The Sentinel-2 mission’s balance of spatial
resolution, revisit frequency, open accessibility, and global
coverage has made it a favorable source for carrying out pixel-
based land cover (LC) classifications and subsequent assessments of
UGOS (Ismayilova and Timpf, 2022; Ju et al., 2022; Xiao et al., 2022;
Ludwig et al, 2021). Nevertheless, comparative studies have
that VHR
classification strategies allows for more precise detection of

consistently shown imagery and object-based

fragmented, informal, and, overall, more heterogeneous

landscapes in urban environments (Hu et al, 2024; Momeni
et al.,, 2016). Further research is needed to better understand the
capabilities and limitations of high-resolution datasets like Sentinel-
2 for accurately mapping and evaluating UGOS in such settings.

TABLE 1 Description of sustainable development goal 11, target 11.7and SDG indicator 11.7.1.

Sustainable development goal 11

Make cities and human settlements inclusive, safe, resilient, and sustainable

Target 11.7

By 2030, provide universal access to safe, inclusive and accessible, green and public spaces, in particular for women and children, older persons and persons with disabilities

SDG Indicator 11.7.1

Average share of the built-up area of cities that is open space for public use for all, by sex, age and persons with disabilities
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This study adds to existing literature comparing UGOS mapping
outcomes derived from Earth Observation imagery of varying
resolutions (See Section 2). Specifically, it investigates how object
and pixel-based LC classifications applied to Sentinel-2 (10 m),
PlanetScope SuperDove (3 m), and Maxar WorldView-3 (0.5-2 m)
imagery represent UGOS in two rapidly urbanizing cities: Mekelle,
Ethiopia, and Polokwane, South Africa. The objectives are to: 1)
compare UGOS mapping accuracy across resolution tiers and
classification approaches; 2) analyze landscape-level metrics
including green space composition, tall vegetation coverage, and
open space availability in developed versus undeveloped areas as well
as selected public spaces; and 3) evaluate variation in SDG Indicator
11.7.1 and related metrics across imagery sources.

2 Literature review

that Earth Observation
technologies are essential for mapping and monitoring UGOS,

Recent research underscores
though their effectiveness depends on three interrelated factors:
the spatial resolution of the imagery, the classification approaches
employed, and the urban landscape under analysis. High resolution
sensors such as Sentinel-2, with 10 m spatial resolution, 5-day revisit
cycle, and global coverage, are widely used for regional-scale
vegetation and land cover monitoring (Drusch et al.,, 2012; Le
Saint et al, 2024). However, dense and heterogeneous urban
environments often require VHR imagery (<3 m) from platforms
such as Maxar, Pleiades, or PlanetScope to accurately identify small
greenery like street trees, fragmented parks, and informal vegetation
patches (Georganos et al., 2021; Recanatesi et al., 2025).

The choice of classification method further shapes mapping
accuracy. Pixel-based classifiers, such as Random Forest, excel in
terms of ease and reproducibility when applied to high-resolution
imagery (Belgiu and Drégut, 2016; Amani et al., 2020). Though, in
complex urban landscapes, they may struggle to accurately
discriminate between impervious surfaces and small greenery due
to spectral mixing, where individual pixels may contain multiple land
cover types (Myint et al.,, 2024; Weng, 2012). Object-based image
analysis (OBIA) addresses this limitation by segmenting images into
spatially coherent objects based on shape, texture, and contextual
OBIA has
demonstrated higher accuracy in VHR urban applications, as it

information prior to classification. consistently
more effectively captures the complex spatial and contextual
patterns characteristic of heterogeneous urban environments
(Georganos et al, 2021; Blaschke, 2010). That said, OBIA can
introduce

under-segmentation requires  substantial

parameter tuning, and often demands technical expertise and in-

€errors,

depth knowledge of the study area to accurately classify spatial objects,
limitations that may hinder its application in capacity-constrained
settings (Liu and Xia, 2010; Mudau and Mhangara, 2023).

Studies across Sub-Saharan Africa highlight the need for
aligning imagery resolution and methods with the wurban
landscape being analyzed. For instance, long-term monitoring of
Landsat imagery (30 m) in Eldoret, Kenya revealed a steep decline in
vegetation cover from approximately 9.7%-2.7% over 25 years (Ro
et al,, 2022). Similar patterns of green space fragmentation and
decline have been documented in rapidly urbanizing cities such as
Lagos, Accra, and Kigali, where unplanned settlement growth,
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limited land-use regulation, and infrastructure pressures have
significantly altered urban landscapes (Twumasi et al, 2020;
Gilbert and Shi, 2023; Mugiraneza et al, 2020; Puplampu and
Boafo, 2021; Nshimiyimana et al., 2023). While some of these
studies did not explicitly address spatial resolution limitations,
their reliance on moderate-resolution data and pixel-based
classification suggests that fine-scale green features, such as
narrow vegetated corridors, informal open spaces, or fragmented
green patches, may not have been captured accurately due to spectral
mixing and coarse pixel size. This challenge is echoed in other urban
studies; Noelke, (2021) demonstrated that Landsat imagery
substantially underestimated urban tree cover in Bengaluru,
India, missing individual trees and small green clusters due to its
inability to resolve fine-scale vegetation patterns. In such fragmented
and heterogeneous environments, moderate-resolution imagery
may obscure key UGOS elements, underestimate their extent,
and misclassify them as impervious surfaces.

High-resolution Sentinel-2 (10 m) imagery improves granularity
but still faces similar constraints in complex urban settings. Xu,
Heremans and Somers (Xu et al, 2022) found that Sentinel-2’s
spatial resolution often fails to resolve mixed land cover in dense
urban mosaics, leading to blurred classification boundaries and
mislabeling. Similarly, Ludwig et al. (2021) reported that Sentinel-2
alone cannot distinguish fine-grained urban structure due to pixel size
limitations and mixed spectral signals. Together, these findings suggest
that despite its high revisit frequency and open-access nature, Sentinel-
2’s 10 m resolution and pixel-based classification may not be sufficient
for accurately mapping fragmented or informal green and open spaces
in data-constrained African urban environments.

In contrast, object-based classifications applied to VHR imagery
have shown significant improvements in mapping accuracy and spatial
detail. For example, Georganos et al. (2021) employed WorldView-3
imagery (0.3-3.7 m) and OBIA techniques to successfully detect fine-
scale vegetation structures and objects specific to informal settlements in
Nairobi, including waste piles and vehicles. Their approach capitalized
on the spectral detail and spatial richness of VHR data, and the
contextual segmentation of OBIA,
differentiation of features that would likely be missed using coarser

capabilities enabling the
imagery and pixel-based classification.

These findings underscore three key considerations for Earth
Observation-based UGOS mapping: 1) spatial resolution directly
affects the ability to detect and characterize small and fragmented
green patches; 2) the choice of classification method, object-based
versus pixel-based, strongly affects mapping accuracy in complex
urban landscapes; and 3) socio-spatial context, including land
tenure, urban morphology, and governance capacity, must
inform the design of Earth Observation assessment strategies. In
settings where field validation is limited or informal land use
dominates, OBIA applied to VHR imagery can improve the
delineation of green spaces by leveraging spatial context and
detail. these methods
technical expertise, computing resources, and often incur higher

structural However, require greater
data costs. In contrast, while high-resolution, open-access imagery
like Sentinel-2 offers scalable and cost-effective solutions, it may
necessitate advanced processing techniques or ancillary data to
adequately capture UGOS structure in heterogeneous urban
landscapes. Understanding these trade-offs is essential for

selecting Earth Observation strategies that balance precision,
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FIGURE 1
Location and boundaries of study cities Mekelle, Ethiopia and Polokwane, South Africa in 2020.

feasibility, and local capacity, particularly in rapidly urbanizing
regions where green space preservation is critical, but resources
are limited.

In light of these trade-offs, this study presents a comparative analysis
of pixel and object-based classification methods applied to Sentinel-2
(10 m), PlanetScope SuperDove (3 m), and Maxar WorldView-3
(0.5-2 m) imagery. We focus on the rapidly urbanizing urban
landscapes of Mekelle, Ethiopia, and Polokwane, South Africa for
evaluating classification accuracy and UGOS representation across
varying spatial resolutions and classification approaches. While
similar comparisons have been conducted in other global contexts,
few studies have compared such multi-resolution, multi-method
analyses in African cities, where remote sensing tools are often most
needed due to rapid urban growth, limited field data, and institutional
constraints. This research aims to inform more context-sensitive and
resource-appropriate strategies for Earth Observation-based monitoring,
with implications for both scientific research and urban green space
planning in data-limited settings.

3 Materials and methods
3.1 Study areas

The study areas selected for analysis include two rapidly
urbanizing cities, Mekelle, Ethiopia and Polokwane, South Africa.
Mekelle is located in northern Ethiopia and is the capital of the Tigray

region (Figure 1). Current official population statistics are unavailable
for Mekelle, but estimates agree that the population almost doubled
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from approximately 283,000 in 2010 to 524,000 in 2020 (Author
Anonymous, 2025a; Author Anonymous, 2025b). Mekelle’s climate is
classified as a dry-winter subtropical highland climate, with an annual
average rainfall of 914 mm, however, the area is drought prone
(Climate Data, 2025; Aberra, 2004; Araya and Stroosnijder, 2011).
Open and green spaces in Mekelle consist of streets, parks, arable
fields, home gardens, urban forests, church compound vegetation, and
various other vegetated features (Wilson, 2020). Mekelle’s increasing
urban population is driving urban land use and land cover change
(Weldegebriel and Yeshitela, 2021; Cardenas-Ritzert et al., 2024; Fenta
etal, 2017), leading to a loss of functioning agricultural land, reducing
local food production, and, overall, hindering the supply of ecosystem
services (Hadush and Gebrekiros, 2024; Kiros). Furthermore,
Mekelle’s urban dwellers face inadequate water supply (Asgedom,
2014; Oyedotun, 2017), poor waste management and a lack of physical
addresses, which hinders social interaction and benefits received by
mail (Njoh et al., 2020). In 2013, Mekelle was selected as a pilot city to
participate in the Ethiopian Urban Expansion Initiative. Over the last
10 years, the city has realized successes in its urban plan, including
constructing over 120 km of asphalt roads and developing expansion
areas, improving housing availability and basic services. As Mekelle
continues to face challenges from urbanization, long term, pro-active
planning is needed to guide sustainable urban development (https://
Www.Citiesalliance.Org/Newsroom/News/Results/Mekelle-Regional -
Commitment-Urban-Expansion-Planning).

Polokwane is the capital city of the Limpopo province in South
Africa and is the largest city north of Gauteng (Figure 1). Polokwane
mirrors several of the characteristics of urban growth and management
observed in Mekelle. The population is estimated to have almost

frontiersin.org
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TABLE 2 Characteristics of satellite imagery sources employed in this study. Sentinel-2 imagery was collected through Google Earth Engine. Commercial
imagery was acquired at no cost through the NASA Commercial SmallSat Data Acquisition Program as a funded NASA research project. Additional
information about this program can be found at the following webpage: https://www.earthdata.nasa.gov/about/csda.

References Spatial Temporal Bands Coverage Access Collection dates
image resolution resolution
Sentinel-2 10 m 5 days 4 (RGB and NIR) Global Freely available Time series across 2020 in
Ethiopia and South Africa
PlanetScope SuperDove 3m Daily 8 (RGB, NIR, Red Edge, Global Freely available for Mekelle: 2020/12/19
Green I, Coastal Blue, academia with a limited Polokwane: 2020/04/06
and Yellow) quota
Maxar WorldView-3 2m Daily 8 (RGB, NIR-1, NIR-2, Global Commercial Mekelle: 2020/11/23-2020/
Multispectral Red Edge, Coastal, and 12/19
Yellow) Polokwane: 2020/04/
20-2020/04/25
Maxar WorldView-3 0.5 m Daily 4 (RGB, NIR-1) Global Commercial Mekelle: 2020/11/23-2020/
Pansharpened 12/19
Polokwane: 2020/04/
20-2020/04/25

doubled from 244,000 in 2010 to 426,000 in 2020 (a). Polokwane’s
climate is also classified as a dry-winter subtropical highland climate,
with slightly less annual average rainfall than Mekelle at 661 m but is
drought prone. The city is projected to see increasing temperatures and
drought over time as a result of climate change and currently suffers
from water supply shortages due to operational challenges (https://
Www.Sabcnews.Com/Sabcnews/Polokwane-Water-Crisis/). In
response, the local government has discouraged the planting of trees
and lawns (Mokoele, 2023). Polokwane faces many challenges from
urbanization, and initiatives have been taken to address losses in green
LC and optimize urban cover composition and spatial arrangement. In
2010, Polokwane was a host city for the World Cup and agreed to fulfill
greening programmes and projects required for all host cities, which the
city achieved to some extent (Nicci Polokwane Local Municipality).
More recently, the city of Polokwane proposed a new planning
instrument, the Integrated Development Plan, which spans 2021 to
2026 and includes objectives related to sustainable urban development
and greening (City of Polokwane, 2025). Developing resources of
current land cover composition and distribution could aid such
planning initiatives.

3.2 Earth observation data

Four reference image sources at varying spatial resolutions were
designated for comparison in this study. Imagery sources included
Sentinel-2 at 10 m, PlanetScope SuperDove at 3 m, Maxar WorldView-
3 multispectral at 2 m, and Maxar WorldView-3 pansharpened at 0.5 m
(Table 2). For brevity, these are hereafter referred to as Sentinel-2,
SuperDove, WorldView-3  multispectral, and WorldView-3
pansharpened, respectively. An initial quality assessment was
conducted, focusing on image sharpness, radiometric consistency,
and cloud contamination prior to classification. For WorldView-3
and SuperDove imagery, cloud-free, high-quality scenes were not
available at the height of the growing season, thus the most
appropriate scenes were selected within the listed collection dates for
2020 (Table 2). We selected cloud-free imagery from periods that best
represented peak green vegetation cover in each city. Due to their
locations in different hemispheres, the optimal months for capturing
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vegetation varied across the study sites. Pan sharpening of the
WorldView-3 multispectral and panchromatic imagery was
completed using the Gram-Schmidt method (Maurer, 2013) to
create 0.5 m multispectral images. The Gram-Schmidt method
produced the best overall output compared to the other available
algorithms explored in preliminary analyses, and pan-sharpened
images were selected based on visual inspections of the outputs.

3.3 Land cover classification

Pre-processed high-resolution and VHR satellite imagery were
used to generate pixel-based and object-based LC classification
products, respectively. Sentinel-2 (10 m) imagery was classified in
a recent national-scale urban mapping effort by Shah Heydari et al.
(2024) using a pixel-based approach. Their methodology employed
a time-series methodology, incorporating various spectral indices
and auxiliary information (e.g., topography, Sentinel-1, night-time
light data), to train random forest models that predicted LC at the
pixel level across urban areas in Ethiopia, Nigeria, and South Africa
from 2016 to 2020. While these models included multiple
supporting predictors, Sentinel-2 imagery remained the primary
data input. Aligned with the VHR LC products generated in this
study, the Sentinel-2 LC maps contained seven classes: barren, short
vegetation, tall vegetation, water, wetland, and impervious. Though,
it did not include a shadow class, which was incorporated only in the
VHR classifications. The resulting Sentienl-2 LC maps were clipped
to each study city for use in this analysis. The reported overall
accuracies of the Sentinel-2 LC maps for 2020 were 78.3% for
Ethiopia and 62.8% for South Africa (Shah Heydari et al., 2024).

In contrast, VHR LC classification was performed directly in this
study using an OBIA approach. Input imagery included SuperDove
(3 m), WorldView-3 multispectral (2 m), and WorldView-3
pansharpened (0.5 m) (Table 2). Initial segmentation was
conducted using the LargeScaleMeanShift algorithm in the Orfeo
Toolbox (Grizonnet et al., 2017) within QGIS. Three parameters,
Spatial Radius, Range Radius, and Minimum Segment Size were
optimized to balance over-segmentation and under-segmentation.
The Minimum Segment Size was set first based on the smallest
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features of interest, with the other parameters adjusted iteratively.
For both cities, SuperDove segmentation used a Spatial Radius of 25,
Range Radius of 75, and Minimum Segment Size of 10. These
settings were also applied to all WorldView-3 imagery for
Mekelle, while for Polokwane, reducing the Range Radius to
50 improved segmentation results.

We calculated per-band summary statistics for each polygon,
including the number of pixels, mean, median, minimum,
maximum, majority, minority, variety, and variance. Land cover
labels were assigned through manual image interpretation using
natural color, false color, and NDVI visualizations. Validation data
were randomly selected first, approximately 300-500 polygons per
city and sensor combination, followed by the selection of training
data from the remaining polygons. Initial training samples focused
on visually clear and confidently labeled polygons. Although we did
not explicitly test for spatial autocorrelation, samples were
independent and spatially dispersed. The training dataset was
incrementally expanded over multiple iterations through both
random and manual selection wuntil classifier performance
stabilized, and no further improvements were observed (Lv et al.,
2020). The final number of training samples was constrained by
available time and personnel, ranging from 1,000 to 1,500 for
SuperDove imagery and 1,500-3,000 for WorldView-3 imagery.

Reference labels were generated using SuperDove and WorldView-
3 imagery, supplemented by historical VHR imagery available through
Google Earth Pro. Although the resolution of Google Earth imagery
varies and typically does not exceed that of pansharpened Maxar data, it
valuable contextual information to
Labels
interpretation, drawing on historical imagery and expert judgment
to ensure the most accurate classification possible under the
label
assignment, particularly near object boundaries, but given the

provided support  visual

interpretation. were assigned through careful human

circumstances. We acknowledge some uncertainty in
absence of ground truth data from 2020, this approach represented
the most practical and feasible solution (Olofsson et al., 2014).
Classification was performed using the Random Forest algorithm
in the Orfeo Toolbox’s TrainVectorClassifier. Classifier parameters,
including number of trees, maximum depth, and minimum leaf size,
were tuned over multiple runs. The final configuration used 100 trees,
a depth of 14, and a minimum of three samples per leaf. Feature
selection was iterative with forward adding of variables, beginning
with mean and variance of each predictor variable, and expanding to
include additional statistics. Highly correlated features were excluded
using dendrogram-based grouping. Each feature set was tested over
32 runs using randomized training splits, and mean accuracy and
variance were used to determine the optimal configuration. All
accuracy metrics for tuning and feature selection were computed
on an independent validation set but not the final validation set. The
final models were trained using all available reference data and applied
using VectorClassifier in QGIS to generate the final LC maps
(Figure 2). Al VHR LC products generated in this study are
publicly available via the ORNL DAAC (Cardenas-ritzert et al., 2020).

3.4 Urban delineation
An automated approach developed by Cardenas-Ritzert et al.

(Cardenas-Ritzert et al., 2024) was used to delineate the urban extent
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of Mekelle and Polokwane in 2020. The approach combines various
spatial datasets, tools, and techniques to identify individual urban
agglomerations across entire countries. Urban delineation is achieved
using spatial analysis techniques, population thresholds, geographic data
from OpenStreetMap (Wiki, 2025), and transportation analyses from
the openrouteservice API (Openrouteservice, 2025). The order of
analytical identifying
differentiating urban clusters into classes, assessing connectivity
between cluster classes, and, finally, classifying the urban
agglomerations (Cardenas-Ritzert et al., 2024). Urban delineation was
carried out by applying this process to national scale LU maps produced
by Vogeler and Shah Heydari (Shah Heydari and Vogeler, 2024) and the
WorldPop data described in Section 2.2 with associated Python scripts
provided by Cardenas-Ritzert et al. (2024) on GitHub: (https:/github.
com/VogelerLab/SDG-11.3.1-Automated-Urban-Delineation-Code).
WorldPop population count data was used to carry out urban
delineation following the methods of Cardenas-Ritzert et al. (2024).
WorldPop’s 100 m resolution population count datasets were

operations  includes urban  clusters,

downloaded from the WorldPop website: www.worldpop.org/
(accessed on 18 July 2024) for Ethiopia and South Africa in 2020.
WorldPop’s top-down unconstrained population datasets are
developed by extracting the count of people per administrative
unit from census data, combining said data with ancillary data (e.
g., land cover), and employing them in a Random Forest model. The
result is a grid with an estimate of the total number of people in each
100 m x 100 m cell for a specified year (WorldPop). It is important to
acknowledge that WorldPop is constrained by the data which it is
modeled on, including census and remotely sensed data. While it has
known limitations, including under and over estimations in certain
contexts, it generally proves to be accurate and reliable (Ma et al.,
2021; Lang-Ritter et al., 2025; Bai et al., 2018; Thomson et al., 2022).
WorldPop is consistently used in a variety of GIS applications,
including modeling disease incidence, urban heat island impacts by
demographics, and projecting future population values (Rakuasa and
Lasaiba, 2024; Palanisamy et al., 2024; Nethery et al., 2021).

To assess alignment with local context, we compared the resulting
urban extents with previously mapped boundaries. This included
relating our urban extents with administrative units and Africapolis
2020 urban boundaries (Heinrigs, 2020) for Mekelle and Polokwane, as
well as conducting visual verification using recent high-resolution
basemaps (e.g, high-resolution Google imagery). The delineated
boundaries closely matched built-up development patterns visible in
the imagery, though very minor discrepancies occurred at the urban
fringes, particularly in peri-urban areas with rapidly changing land use.
Additionally, we acknowledge the limitations of relying on WorldPop
data, particularly in regions with outdated census baselines, and
recognize how this may affect delineation accuracy (Cardenas-Ritzert
et al,, 2024). Nonetheless, the method provides a consistent delineation
framework for comparing UGOS metrics across the two cities.

3.5 Landscape metrics

To evaluate how image resolution and classification schemes
influence urban landscape characterization, we calculated a suite of
landscape metrics across each LC product. This analysis focused on
four core components. First, we examined the differences between
grouped developed and undeveloped land cover classes, allowing for
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FIGURE 2

Land cover classification in study area insets (2020). The study area and inset locations are shown on the left side of the figure. The right side of the
figure shows land cover within the inset area for each image source. S2 is Sentinel-2 10 m, Planet is SuperDove 3 m, WV3 is WorldView-3 multispectral at

2 m, and WV3 Pan is WorldView-3 panchromatic at 0.5 m.

a direct comparison of broad land cover composition and spatial
variation across imagery. Second, we assessed variation in tall
vegetation to better understand how well different products
capture vegetated structure. Third, we applied the same metrics
to individual public spaces in Mekelle and Polokwane to explore
affects  the composition and
configuration of green space at the local scale. Lastly, we

how resolution measured
investigated elements of SDG Indicator 11.7.1, including the
share of open space and space allocated to streets. Together,
these steps provide insight into the implications of using
varying LC products for urban ecological, planning, and
monitoring assessments.

To examine differences specifically across the developed versus
undeveloped LC classes from the LC products, the original LC
classes required merging. Each reference image was reclassified
into a binary raster with an undeveloped and developed class. The
undeveloped class consisted of barren, short vegetation, tall
vegetation and water/wetland and the developed class consisted
of impervious surface cover. For the SuperDove and WorldView-3
products, the shadow class was assigned to the undeveloped or
developed class based on the classification of the lower resolution
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LC image. For instance, the shadow class from the SuperDove LC
image was overlaid onto the Sentinel-2 LC image, which did not
have a shadow class. The shadow class from the SuperDove LC
image was then assigned to the developed or undeveloped class
based on the classification of the Sentinel-2 LC image using the
Join by Location tool in QGIS. This process was repeated for the
shadow class of the WorldView-3 multispectral and WorldView-3
pansharpened LC images, with WorldView-3 multispectral using
the binary classified SuperDove image as a reference and
WorldView-3
WorldView-3 multispectral as a reference. The original tall

pansharpened wusing the binary classified
vegetation class from each individual data product was used for
the tall vegetation comparison.

Once the undeveloped versus developed and tall vegetation
rasters were created, landscape metrics were calculated using
Fragstats 4.2.681 (McGarigal, 2015). The following landscape
metrics were calculated for each raster: Percentage of the
Landscape (PLAND), Class Area (CA), Number of Patches (NP),
Largest Patch Index (LPI), Mean Patch Area (AREA_MN), Patch
Density (PD), and Mean Euclidean Nearest Neighbor (ENN_
MN) (Table 3).
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TABLE 3 Landscape metrics calculated using Fragstats software for the city scale analyses of the undeveloped versus developed classes and the tall

vegetation class.

Metric Description Purpose Metric interpretation
PLAND Percentage of the landscape belonging Examine changes in class proportions between Approaches PLAND = 0 when the proportional class area is
to class i developed and undeveloped space across LC decreasing. Equals PLAND = 100 when only one patch is
products present
CA Sum of patch area for class i Examine changes in class area between developed, = Approaches CA > 0 as the patch areas of class i become small.
undeveloped space, and tall vegetation across LC | Increases, without limit, as the patch areas of class i become
product large
NP Number of patches across the landscape = Examine changes in fragmentation of undeveloped, =~ Equals NP = 1 when only one patch is present and increases,
developed, and tall vegetation patches across LC without limit, as the number of patches increases
products
LPI Percentage of the landscape covered by =~ Examine changes in largest patch of undeveloped = Approaches LPI = 0 when the largest patch is becoming small
the largest patch in the landscape and developed space and tall vegetation across LC and equals LPI = 100 when only one patch is present
products
AREA_MN Mean area of all patches on the Examine changes in the mean area of undeveloped = Approaches AREA_MN = 0 if all patches are small. Increases,
landscape and developed space patches across LC products without limit, as the patch areas increase
PD Density of patches across the landscape = Measure aggregation of undeveloped and developed Increases as the landscape gets patchier
space patches across LC products
ENN_MN Mean distance to the nearest Measure changes in patch aggregation of tall Approaches ENN_MN = 0 as the distance to the nearest
neighboring patch of the same class i vegetation patches (trees) neighbour decreases

TABLE 4 Additional metric calculated for sample public space analysis.

Metric

Description

Purpose

Metric interpretation

Number of tall vegetation
patches per km?

Tall vegetation patch
density

3.6 Configurations of sample public spaces

We calculated landscape metrics for individual public spaces in
Mekelle and Polokwane to examine finer differences in land cover
composition and tall vegetation detection across image resolutions.
One public space in each Mekelle and Polokwane were identified
using OSM labels and confirmed via imagery on Google Earth Pro. A
shared boundary was digitized around each public space to maintain
consistency in the analysis area; the land cover products were then
clipped to the extent of the digitized boundary. For each public
space, the landscape metrics we calculated included two previously
declared metrics, PLAND and NP (Table 3). An additional metric
was included, the number of tall vegetation patches per km* of the
sample public space (Table 4). The objective was to examine the
composition of land cover classes covering each public space and tall
vegetation distribution within them.

3.7 SDG Indicator 11.7.1

Calculating SDG Indicator 11.7.1 metrics requires delineating
the urban extent, street space, and public open spaces. The urban
extent was delineated using the approach developed by Cardenas-
Ritzert et al. (Cardenas-Ritzert et al., 2024) as described in the earlier
section. For each LC product and given the urban extent in 2020, the
total built-up area was computed.

Street width data was not available in the study cities.
OpenStreetMap (OSM) data was used to delineate street space.
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Examine changes in tall vegetation patch (i.e., tree)
density across sample public spaces

Increased number of patches per km* indicates a higher
number of trees in the public space

Related OSM street types were aggregated into street groups
(Table 5). To calculate the total street area, 100 random points
were generated on the lines of each street group and manual
measurements were made of sample streets in each group using
high resolution imagery on Google Earth Pro. We calculated an
average width value for each street group, which was used to buffer
each street group line. The buffered street groups were now polygons
with a total area calculated for each, which we then summed to
acquire the total land area allocated to streets.

To obtain public open spaces, we utilized the undeveloped class
from each LC product and data from OSM. The undeveloped class
was initially used to represent potential public open spaces. OSM
data offers the possibility to identify public and non-public spaces
with various tags. Upon examination of the data that could be used
to identify public areas, we found that the public space data was
inadequate for this purpose. The data for areas that were likely non-
public were more complete. As an alternative, the selected non-
public polygons (Table 6) were clipped to the undeveloped space
extent and their total area was subtracted from the total undeveloped
space area to identify the more probable public open spaces.

Three metrics were calculated under SDG Indicator 11.7.1: the
amount of undeveloped space allocated to streets (USATS), the land
allocated to public open spaces (LAPOS), and the share of the built-
up area of the city that is open space in public use (Share of open
space) (SDG Indicators Metadata repository, 2020), using the
following equations:

LAPOS = Total sur faceof public open space *100

Total sur faceo f the urban extent
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TABLE 5 OSM street types extracted for calculating street width.

Street group OSM original street type

Path Path, Footway, Steps, Cycleway
Pedestrian Pedestrian
Motorway Motorway, Motorway_link

Primary Primary, Primary _link
Secondary Secondary, Secondary._link
Tertiary Tertiary, Tertiary_link

Residential Residential
Unclassified Unclassified

TABLE 6 OSM keys and tags used to identify non-public space land uses.

OSM Tag

Military
Industrial
Construction
Landfill
Quarry
Farmland
Farmyard
Meadow

Orchard

Plant Nursery

Railway

Vineyard

Total sur face of street space

USATS = Total sur face o f undeveloped space
Share of open space (%)

_ Total sur face of public open space+Total sur faceof street space 4 100
- Total sur faceof the urban extent

*100

4 Results
4.1 Land cover classification

Map validation results, including overall map accuracy
(OA) and F1 score, are presented for the VHR land cover
products generated for Mekelle and Polokwane in 2020
(Table 7). We restricted the calculation of OA and F1 scores
to the VHR maps only as the high-resolution Sentinel-2 LC map
was not directly produced for each study city within this study
and was meant to be used as an alternative product for
comparison within subsequent steps of the analyses. The
WorldView-3 multispectral LC maps had the highest OA
obtained in both Mekelle and Polokwane at 92.3% and
86.1%, respectively. In Mekelle, the SuperDove LC map had
the lowest OA at 75.8%, and, in Polokwane, the WorldView-3
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pansharpened LC map had the lowest OA at 67.5%, respectively.
The average F1 score for all maps remained above 58%.
Additionally, the individual class F1 scores are provided for
the 2020 land cover maps generated for Polokwane and Mekelle
(Tables 8-10).

4.2 Developed versus undeveloped space

In Mekelle, the PLAND metric quantifying the proportion of
developed and undeveloped space remained relatively unaffected
across the classified image products. The proportions of developed
versus undeveloped space only shifted by approximately one to two
Sentinel-2,
multispectral, and

percent  between the classified SuperDove,
MaxarWorldView-3 WorldView-3
pansharpened products. The greatest difference in PLAND of
developed and undeveloped space was between the coarsest
resolution map, Sentinel-2, and finest resolution map,
WorldView-3 pansharpened. According to the assessment,
undeveloped space comprised 74%-77% of Mekelle’s landscape
in 2020, while developed space accounted for the remaining
23%-26% (Figure 3).

Conversely, in Polokwane, a greater shift in the proportion of
developed and undeveloped areas of the landscape was observed
across the imagery sources. From Sentinel-2 to SuperDove, the
proportion of developed and undeveloped space varied by
approximately 11%, with the increase concentrated in the
undeveloped class (Figure 4). Between SuperDove, WorldView-3
multispectral and WorldView-3 pansharpened, the difference in
proportions was less than 3%. According to the WorldView-3
multispectral product, which exhibited the highest accuracy in
Polokwane, undeveloped land accounted for approximately 70%
of Polokwane’s landscape in 2020 and developed land accounted for
the remaining 30%.

Patch metrics for developed and undeveloped land differed
between Mekelle and Polokwane and varied across image
sources. In Mekelle, both developed and undeveloped mean
patch areas (AREA_MN) decreased as
(Table 11). Under
imagery, the average patch area for both classes was less than 7%
of the corresponding mean patch areas derived from Sentinel-2.
Similarly, the largest patch index (LPI) tended to decline with

increasing spatial resolution for both classes. For example, the

spatial resolution

increased WorldView-3  pansharpened

largest undeveloped patch in the Sentinel-2 image accounted for
58% of the landscape, but this dropped sharply to 28% in the
WorldView-3 pansharpened product (Table 11). Patch density
(PD) followed the opposite trend, increasing with finer
resolution. It rose only slightly from Sentinel-2 to SuperDove but
increased substantially under WorldView-3 multispectral and
pansharpened imagery.

In Polokwane, patch characteristics also varied with image
resolution. Mean patch area generally decreased with finer
resolution for both classes, except for an increase in undeveloped
patch area at the 3 m resolution (Table 12). Unlike in Mekelle, the
LPI values in Polokwane did not follow a consistent trend,
fluctuating across image sources for both developed and
undeveloped classes, suggesting that factors beyond spatial
resolution may be influencing these patterns. Patch density in
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TABLE 7 Map validation results for SuperDove, WorldView-3 multispectral, and WorldView-3 pansharpened LC products in Mekelle and Polokwane for
2020. WV3 is WorldView-3.

Study city Land cover product Overall map accuracy Average F1 score
Mekelle SuperDove 3 m 0.758 0.726
WV32m 0.923 0.884
WV3 Pan 0.5 m 0.866 0.762
Polokwane SuperDove 3 m 0.753 0.692
WV32m 0.861 0.861
WV3 Pan 0.5 m 0.641 0.653

TABLE 8 Map validation results by class for the SuperDove land cover products in Mekelle and Polokwane for 2020.

Mekelle Polokwane

Precision Recall Precision Recall
Barren 0.746 0.897 0.815 0.786 0.602 0.681
Short Vegetation 0.904 0.481 0.628 0.783 0.850 0.815
Tall Vegetation 0.686 0.643 0.664 0.717 0.475 0.572

Water 0 0 0 0 0 0
Shadow 0.704 0.743 0.723 0.476 0.817 0.601
Impervious 0.735 0.880 0.801 0.731 0.867 0.793
Map OA Average F1 Map OA Average F1
0.758 0.726 0.753 0.692

TABLE 9 Map validation results by class for the WorldView-3 multispectral land cover products in Mekelle and Polokwane for 2020.

Mekelle Polokwane

Precision Recall Precision Recall
Barren 0.513 0.849 0.639 0.866 0.711 0.781
Short Vegetation 0.996 0.984 0.990 0.815 0.919 0.864
Tall Vegetation 1.000 0.945 0.972 0.927 0913 0.920

Water 1.000 1.000 1.000 0 0 0
Shadow 0.904 0.984 0.942 0.899 0.786 0.839
Impervious 0.923 0.645 0.759 0.872 0.934 0.901
Map OA Average F1 Map OA Average F1
0.923 0.884 0.861 0.861

Polokwane, however, showed a more consistent increase with higher
resolution imagery as expected.

4.3 Tall vegetation class comparison

The tall vegetation class comparison across imagery yielded
comparable results between Mekelle and Polokwane. The area of tall
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vegetation (CA) and number of individual tall vegetation patches
(NP) detected increased noticeably with the increase in spatial
resolution. In Mekelle, the area of tall vegetation increased more
than ten-fold from Sentinel-2 10 m to the VHR image products
(Table 13). In Polokwane, the area nearly doubled from Sentinel-2
10 m to the SuperDove 3 m and WorldView-3 2 m, and it nearly
tripled to the WorldView-3 Pan product. The largest patch of tall
vegetation (LPI) comprising each city landscape changed across
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TABLE 10 Map validation results by class for the WorldView-3 pansharpened land cover products in Mekelle and Polokwane for 2020.

Mekelle Polokwane
Precision Recall Precision Recall
Barren 0.914 0.938 0.926 0.564 0.862 0.682
Short Vegetation 0.563 0312 0.402 0.825 0.428 0.564
Tall Vegetation 0.759 0.790 0.775 0.682 0.532 0.598
Water 0 0 0 0 0 0
Shadow 0.819 0.874 0.845 0.906 0.646 0.755
Impervious 0.883 0.842 0.862 0.642 0.694 0.667
Map OA Average F1 Map OA Average F1
0.866 0.762 0.641 0.653
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FIGURE 3

PLAND values for developed (green bars) and undeveloped (red bars) space across image sources in Mekelle in 2020. PLAND is the percentage of a
landscape comprised by a specific class.
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FIGURE 4
PLAND values for developed (green bars) and undeveloped (red bars) space across image sources in Polokwane in 2020. PLAND is the percentage of

a landscape comprised by a specific class.
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TABLE 11 Patch characteristics of developed and undeveloped classes across image sources for Mekelle (2020). AREA_MN is the mean patch area in
hectares, LPI is the Largest Patch Index, and PD is Patch Density. WV3 is WorldView-3.

Mekelle (total mapped area ~10,500 ha)

Metric Sentinel-2 10 m SuperDove 3 m

AREA_MN (ha) Developed 0.51 0.41 0.13 0.03
Undeveloped 2.76 1.89 0.53 0.19

LPI Developed 15 14 13 9
Undeveloped 58 37 27 28
PD Developed 51 61 197 696
Undeveloped 27 40 142 413

TABLE 12 Patch characteristics of developed and undeveloped classes across image sources for Polokwane (2020). AREA_MN is the mean patch area in
hectares, LPI is the Largest Patch Index, and PD is Patch Density. WV3 is WorldView-3.

Polokwane (total mapped area ~12,500 ha)

Sentinel-2 10 m SuperDove 3 m
AREA_MN (ha) Developed 0.84 0.33 0.12 0.03
Undeveloped 1.08 1.08 0.48 0.11
LPI Developed 23 12 13 15
Undeveloped 16 40 28 15
PD Developed 52 99 259 904
Undeveloped 52 45 145 644

image resolutions but with no consistent trends. The mean patch ~ WorldView-3 pansharpened. Similar to Mekelle, the tall
area of tall vegetation (AREA_MN) generally decreased in size asthe ~ vegetation patches were also more aggregated under VHR
spatial resolution increased, but the mean patch area under  imagery in Polokwane’s case study public space.
SuperDove 3 m was greater than Sentinel-2 10 m in both
Mekelle and Polokwane (Table 14). Lastly, the average distance
(ENN_MN) between neighboring tall vegetation patches decreased ~ 4.5 SDG Indicator 11.7.1
as the spatial resolution increased.
SDG Indicator 11.7.1 metrics were applied to investigate the
land of undeveloped space dedicated to streets (USATS), the land
4.4 Case stu dy public space analyses allocated to presumable public open spaces (LAPOS), and the share
of the built-up area of the city that is open space presumably in
The two identified case study public spaces included Hewalti ~ public use (Share of open space). Both cities were similar in their
Semaetat and Martyr’s Memorial Monument in Mekelle, and Tom  share of spaces related to SDG Indicator 11.7.1 across all LC
Naude Park and Nooderland High School in Polokwane (Figure 5).  products, including those derived from Sentinel-2. Across image
The initial metric considered to best explain LC in the sample public ~ resolutions, Mekelle did not change drastically, varying by less than
spaces was the percentage of the landscape comprised by each class  one percent for USATS, seven percent for LAPOS, and seven percent
(PLAND). PLAND in Mekelle’s sample public space was primarily ~ for Share of open space. The change across image resolutions was
made up of barren land and tall vegetation under the WorldView-3  greater for Polokwane, with a maximum difference of around 5% for
pan product but shifted to being made up of short vegetation, =~ USATS, 19% for LAPOS, and 19% for Share of open
barren, and impervious surface across the other image products  space (Table 17).
(Table 15). The number of tall vegetation patches (ie., trees)
generally increased with image resolution, where WorldView-3
pansharpened exhibited the highest density of tall vegetation 5 Discussion
patches. When comparing the cities, Mekelle’s case study public
open space had a greater density of tall vegetation patches per km? This study highlights the opportunities and challenges
compared to Polokwane, regardless of imagery source (Table 16).  associated with mapping and analyzing UGOS using commonly
PLAND in Polokwane’s case study public space was dominated by ~ accessible Earth Observation datasets that differ in spatial and
short vegetation under Sentinel-2, SuperDove, and WorldView-3  spectral resolutions. Through comparative analysis of Sentinel-2
multispectral, but was spread across classes more evenly under (10 m), SuperDove (3 m), and WorldView-3 (0.5-2 m) imagery in
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TABLE 13 Tall vegetation patch characteristics across image sources for Mekelle (2020). CA is Class Area in hectares, NP is number of patches, LPI is largest
patch index, AREA_MN is the mean patch area in hectares, and ENN_MN is the average Euclidean distance between patches in meters. WV3 is WorldView-3.

Metric Sentinel-2 SuperDove 3 m
10 m
CA (ha) 75 991 886 908
NP 934 6,970 32,654 87,971
LPI 38 38 1.0 1.4
AREA_MN (ha) 0.08 0.14 0.03 0.01
ENN_MN (m) 64 24 11 6

TABLE 14 Tall vegetation patch characteristics across image sources for Polokwane (2020). CA is Class Area in hectares, NP is number of patches, LPI is
largest patch index, AREA_MN is the mean patch area in hectares, and ENN_MN is the average Euclidean distance between patches in meters. WV3 is

WorldView-3.
Metric Sentinel-2 SuperDove 3 m
10 m
CA (ha) 556 1,038 1,181 1,441
NP 5,308 6,249 46,197 135,751
LPI 2.0 113 22 13
AREA_MN (ha) 0.10 0.17 0.03 0.01
ENN_MN (m) 38 28 13 6

the contrasting urban environments of Mekelle and Polokwane, we
found that image characteristics, classification method, and land
cover heterogeneity influenced UGOS representation, landscape
metrics, and SDG Indicator 11.7.1 estimates.

5.1 VHR classification accuracy and
image selection

Among the tested imagery sources, WorldView-3 multispectral data
consistently achieved the highest classification accuracy in both cities,
with overall map accuracies exceeding 86% and average F1 scores above
0.86. Conversely, WorldView-3 pansharpened imagery, despite its finer
spatial resolution (0.5 m), yielded lower classification performance,
especially in Polokwane, indicating that increased spatial resolution
does not necessarily translate into improved accuracy. SuperDove
imagery (3 m) showed intermediate performance, with average
F1 scores around 0.72 in Mekelle and 0.69 in Polokwane,
demonstrating its potential for mapping impervious surfaces but
more limited reliability in mapping diverse vegetation features.

Class-specific variations in accuracy offer further insights.
Impervious surfaces were classified with high precision and recall
across most sources, especially using WorldView-3 multispectral.
Water was consistently misclassified across all imagery products,
likely due to the absence of substantial water bodies in our study
areas or confusion with shadow and impervious surfaces. Vegetation
classes presented additional challenges: short vegetation in Mekelle and
tall vegetation in Polokwane showed notably lower F1 scores under
SuperDove and pansharpened WV3, reflecting spectral confusion with
barren or impervious areas and emphasizing the probable sensitivity of
vegetation detection to seasonal timing and contextual factors.
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Previous studies have shown that increasing spatial resolution
through pansharpening resulted in higher overall accuracies when
detecting tree species in mixed forest stands (Deur et al,, 2021). Other
research has shown that higher-band WorldView-3 datasets yield
better performance in stratified vegetation classification when used
with OBIA, due to improved spectral differentiation (Panda et al.,
2024; Varin et al.,, 2020). Furthermore, urban heterogeneity is well
documented as a challenge for land cover mapping, especially for
intermediate vegetation types (Georganos et al,, 2021). Our findings
suggest that balancing high spatial resolution with spectrally rich
information enhances object-based classification of urban land cover,
particularly for UGOS mapping in data-limited settings. This is
especially relevant when attempting to improve class separability
and mapping accuracy for important UGOS elements such as trees.

Practitioners should therefore carefully consider sensor
characteristics, spatial and spectral resolution, classification
method, acquisition timing (e.g., seasonality, cloud cover, time of
day), and local landscape context when selecting imagery for urban
land cover mapping. When imagery options are limited, it is
essential to acknowledge these constraints and interpret results in
light of accuracy metrics and class-specific uncertainties.

5.2 UGOS metrics and the impact of
resolution

Estimates of undeveloped and developed space varied across
imagery sources for both Mekelle and Polokwane. In Mekelle, the
proportion of developed versus undeveloped land (PLAND) was
relatively insensitive to changes in image resolution, likely due to a
more distinct spatial separation between land cover types. In

frontiersin.org


https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1625373

Cardenas-Ritzert et al.

10.3389/frsen.2025.1625373

Legend
[J Study Area
Sample Public Space

Land Cover

¥ Barren

W Short Vegetation
M Tall Vegetation
W Water

W Wetland

W Shadow

W Impervious

FIGURE 5

Figure showing sample public space locations in Mekelle and Polokwane, and 2020 land cover composition within each across imagery. STL is
Sentinel-2, PLAN is SuperDove (3 m), WV3 is WorldView-3 multispectral (2 m), and WV3 Pan is WorldView-3 pansharpened (0.5 m).

contrast, slightly larger variation was observed in Polokwane,
particularly between Sentinel-2 and SuperDove. This insinuates
that finer spatial resolution and other aspects of mapping may be
more critical for accurately capturing broader landscape
composition in heterogeneous environments. Nonetheless, the
PLAND metric remained relatively stable overall, indicating that
Sentinel-2 may still be suitable for broader-scale UGOS analyses.
For patch-based metrics, pronounced differences were observed
between Sentinel-2 and VHR products, where mean patch size
(AREA_MN), largest patch index (LPI), and patch density (PD)
generally decreased with increasing spatial resolution (Tables 9,
10). This pattern indicates that coarser-resolution imagery tends to
generalize fine-scale green and open spaces into fewer, larger patches,
which can mask landscape fragmentation. In contrast, finer-
resolution imagery revealed more detailed patterns, capturing small
and spatially dispersed features (e.g., isolated tree clusters and
interstitial open spaces). Consistent with prior research (Hu et al,
2024), this generalization can misrepresent ecological complexity and

reduce the reliability of detailed land cover assessments.
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Additionally, the mapped extent and number of patches of tall
vegetation increased markedly with spatial resolution in both cities,
supporting previous findings that tree crowns are often too small to
be resolved in 10 m imagery (Xu et al, 2022). For example, in
Mekelle, the class area of tall vegetation increased more than tenfold
between the Sentinel-2 and VHR LC maps (Table 13). Given the
critical role that trees play in supporting urban vitality (Turner-Skoff
and Cavender, 2019; Wood and Esaian, 2020), accurately assessing
their distribution and abundance is important for guiding urban
planning and management (Morabito et al., 2021; Endreny et al.,
2020). These results underscore the value of VHR imagery in
fragmented and highly heterogeneous urban environments,
particularly for quantifying tree-based UGOS. Higher spatial
resolution enables for more precise detection of small,
heterogeneous, and intermixed landscape elements that can be
overlooked or misclassified in coarser-resolution datasets.

However, unlike in Mekelle, the expected pattern of decreasing
patch size with higher resolution did not hold for Polokwane. For

example, the percentage of the landscape occupied by the largest
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TABLE 15 Land cover composition across image resolutions for Hewalti Semaetat and Martyr’s Memorial Monument in Mekelle and Polokwane. PLAND is
the percentage of a landscape comprised by a specific class. WV3 is WorldView-3.

Study city Land cover Sentinel-2 SuperDove
Class 10 m 3m
PLAND
Mekelle Barren 11.59 23.82 34.54 59.91
Short Vegetation 68.91 50.79 28.29 4.07
Tall Vegetation 0.71 14.26 13.14 12.52
Water 0.19 0 0 0
Wetland 0 0 0 0
Impervious 18.61 8.59 16.25 11.90
Shadow 0 2.54 7.78 11.61
Polokwane Barren 10.85 8.78 20.47 23.90
Short Vegetation 40.68 42.71 37.19 19.21
Tall Vegetation 14.61 18.80 16.34 25.14
Water 1.98 0.06 0 0.0009
Wetland 0.30 0 0 0
Impervious 31.58 21.25 18.26 19.74
Shadow 0 8.27 7.74 11.99

TABLE 16 Configuration metric for tall vegetation across image resolutions for Tom Naude Park and Nooderland High School in Mekelle and Polokwane. NP
is number of patches. WV3 is WorldView-3.

Study city Metric Sentinel-2 SuperDove WV3 WV3 pan
10 m 3m 2m 0.5m

Tall Vegetation Class

Mekelle NP 13 125 367 1059

Number of patches per km? in the sample public space 17 195 577 1698

Polokwane NP 33 39 147 281
Number of patches per km” in the sample public space 1.29E-02 7.80E-03 2.12E-03 1.18E-03

undeveloped patch (LPI) followed a non-linear trend, rising from 5.3 Street and open space
16 at 10 m to 40 at 3 m, then declining to 28 at 2 m and 15 at 0.5 m
(Table 10). This deviation may be partly attributed to the shift in SDG Indicator 11.7.1 metrics reveal that both Polokwane and
classification method: Sentinel-2 (10 m) was classified using a pixel- ~ Mekelle are made up of largely open space (Table 17) but allocate
based approach, while higher-resolution imagery used object-based  significantly less urban land to streets than the 30%-35%
image analysis (OBIA). At 3 m, the use of OBIA may have recommended by the United Nations (UN-Habitat, 2018), with
overestimated undeveloped and tall vegetation by merging nearby  estimates of just 8% and 14%, respectively (Table 17). This shortfall
features or misclassifying elements like shadows or roadside  aligns with patterns observed in other cities such as Beijing (11.5%)
vegetation. Such issues align with previous findings that OBIA  (Dong et al, 2023) and Athens (13.1%) (Verde et al, 2022),
can misclassify mixed-use or ambiguous areas in complex urban  reflecting a broader global trend where many urban areas fall
environments (Moskal et al., 2011). below international benchmarks (UN-HABITAT, 2013; Xin and
Classification accuracy for SuperDove in Polokwane supports  Realities, 2024). Rather than indicating planning failure, these low
this interpretation, with relatively high precision (0.717) but low  ratios likely stem from historical development patterns and informal
recall (0.475) for tall vegetation, indicating that while identified  settlement growth (UN-Habitat GLOBAL PUBLIC SPACE
patches were mostly correct, many actual tree patches were missed. =~ PROGRAMME Annual Report, 2022, 2022). Nevertheless, limited
At finer resolutions (2 m and 0.5 m), the greater spatial detail of  street coverage can constrain mobility and opportunities for social
WorldView-3 helped distinguish mixed land types more interaction, especially in rapidly urbanizing cities with
effectively, breaking up large patches and reducing LPI. In infrastructural deficits (Lopez-Lambas et al, 2021). These
contrast, Mekelle exhibited a steady decline in LPI with findings stress the need not only to expand street infrastructure
increasing resolution, suggesting a more fragmented landscape =~ where feasible but also to enhance the quality, accessibility, and
is less prone to overestimation. These findings reinforce that  functionality of existing street networks.
resolution effects are highly context-dependent, shaped not only In the context of the Global South, these findings take on added
by classification strategy but also by local landscape structure, and  significance. Cities like Polokwane and Mekelle face structural and
possibly, image quality, acquisition conditions, and seasonal institutional challenges that constrain formal street development,
variability. including colonial spatial legacies, widespread informal growth, and
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TABLE 17 USATS, LAPOS, and Share of open space calculations across image resolutions for Mekelle and Polokwane in 2020. USATS is the share of
undeveloped space allocated to streets, LAPOS is the land allocated to potentially public open spaces, and SOOS is the share of the built-up area of the city
that is open space in public use. WV3 is WorldView-3.

Study city Land cover product USATS (%) LAPOS (%) Share of open space (%)
Mekelle Sentinel-2 10 m 8.72 67.17 73.63
SuperDove 3 m 8.40 70.32 76.78
WV32m 8.28 71.43 77.89
WYV3 Pan 0.5 m 7.96 74.11 80.57
Polokwane Sentinel-2 10 m 19.22 55.75 66.52
SuperDove 3 m 15.76 67.95 78.72
WV32m 15.32 69.74 80.50
WYV3 Pan 0.5 m 14.37 74.32 85.09

limited planning capacity (Angel, 2023). Much of their urban
expansion occurs without coordination, resulting in fragmented
or undersized street networks. At the same time, municipal
governments often operate under resource and governance
constraints that hinder efforts to improve street quality and
function (Adelina et al., 2020; Jones et al., 2014). While UN
benchmarks can be useful targets, planning in these contexts
must be adaptive, focusing on incremental improvements,
community participation, and multifunctional space use.

5.4 OSM data limitations

Due to the absence of official datasets, this study relied on
OpenStreetMap (OSM) to identify streets and infer the extent of
public open space. While OSM provides a valuable resource in data-
scarce environments like Sub-Saharan Africa, it is known to have
limitations related to completeness, positional accuracy, and
contributor bias, especially in cities with limited mapping activity
(Nemec and Raudsepp-Hearne, 2013; Troy and Wilson, 2006;
Lotfata, 2021). As a
underrepresented, due to the exclusion of informal or unmapped
streets. Additionally, this study focused on the inverse of non-public

result, street networks may be

spaces, rather than an inventory of formal public open spaces, due to
the lack of comprehensive municipal data and mapped public spaces
in OSM. Although previous research has found OSM to be generally
reliable for urban analysis (Forghani and Delavar, 2014; T6rnros
et al,, 2015; Demetriou et al., 2016), its gaps may affect the accuracy
of street coverage and public space assessments, potentially over or
under-estimating the SDG Indicator 11.7.1 metrics. Where feasible,
future efforts should incorporate locally validated datasets, very
high-resolution maps, or field-based assessments to better capture
the diversity of street, and public and informal open spaces common
in rapidly urbanizing African cities.

5.5 Limitations and potential of Sentinel-2
for UGOS mapping

This study highlights the trade-offs involved in selecting satellite
imagery for UGOS assessments, particularly when comparing high-
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resolution data like Sentinel-2 to VHR imagery. Although Sentinel-2
has spatial limitations that affect its ability to capture fine-scale
heterogeneity, its global coverage, open access, and high temporal
frequency make it a valuable resource for urban land cover
monitoring.

Numerous studies have successfully applied Sentinel-2 to track
land cover change and urban green space dynamics (Sharma et al.,
2024; Nuthammachot and Ali, 2025; Fayaz et al., 2025), including
for indicators such as SDG 11.7.1 (Verde et al., 2022). In this study,
Sentinel-2 imagery was particularly useful for identifying broad
patterns of developed versus undeveloped land and metrics
supporting SDG 11.7, which showed relatively minor differences
across imagery sources in Mekelle (Table 17). However, metrics did
differ up to 20% in Polokwane, and its 10 m spatial resolution
restricts its ability to accurately delineate small or fragmented
UGOS features.

It is important to note that the Sentinel-2 maps used in this
study were produced using a country-level classification model.
As such, we did not include their accuracy statistics alongside
those of the VHR classifications, which were generated using
classifiers trained on scene-specific data for each urban area.
Tailoring these models to individual cities could potentially
yield higher accuracy, particularly for distinguishing between
developed and undeveloped land. However, even with locally
trained models, the reliable identification of small, vegetated
features, such as individual trees, would likely still require
VHR data (<3 m).

While VHR imagery offers improved spatial detail, it is often less
accessible and more costly, which can limit its utility for long-term
monitoring. As such, Sentinel-2 remains a practical and scalable
option for broader scale analyses, though its limitations should be
carefully considered when interpreting fine UGOS patterns and
informing local planning decisions.

5.6 Additional considerations

Understanding the broader context of urbanization and the
external factors influencing the management of urban open
spaces is critical for strengthening UGOS assessment frameworks
and guiding future planning and policy. In Mekelle, for instance, the
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Tigray War has significantly impacted the urban environment and is
likely to accelerate changes in urban green and open spaces in the
years ahead (Hadush and Gebrekiros, 2024; Global Conflict
Tracker Conflict in). While geospatial assessments are effective
for capturing the spatial and physical dimensions of landscape
change, they are limited in their ability to reflect the underlying
social dynamics that shape urban management and public space
vitality (Laituri et al, 2025). Many dimensions of UGOS
assessment warrant deeper investigation. Future research should
prioritize evaluating the accuracy and reliability of open-source
spatial datasets, exploring novel data fusion and modeling
techniques, and integrating local knowledge or community-
based data to enrich spatial analyses.

6 Conclusion

Urban land cover mapping and UGOS assessments offer
valuable insights for local planning and monitoring progress
toward global development goals. Hence, understanding the
of these
assessments is essential. The presented work compared land

methodological and data-driven limitations
cover classification and UGOS analyses across high-resolution
(Sentinel-2)

WorldView-3) satellite imagery in two rapidly urbanizing

and very high-resolution (SuperDove and
cities: Mekelle, Ethiopia, and Polokwane, South Africa. Our
findings show that spatial resolution, classification strategy,
and landscape complexity all significantly influence UGOS
representation and associated metrics, including those relevant
to SDG Indicator 11.7.1.

Sentinel-2 proved valuable for broad-scale UGOS evaluations
bearing in mind its accessibility and coverage. Yet, it tended to
underestimate fragmented or fine-scale features like tree cover,
capturing less than 10% of the area captured by VHR imagery in
Mekelle and ~50% of the area captured in Polokwane. Additionally,
open space estimates from Sentinel-2 were up to 20% lower than
those derived from VHR imagery. These discrepancies suggest that
the choice of imagery can substantially affect conclusions about
urban green and open space status and progress toward
sustainability benchmarks. Lastly, data quality issues, such as
limited resolution, seasonal variation, and gaps in reference
datasets like OpenStreetMap, can further influence results.

For urban planners and policymakers, this highlights the
importance of using the highest feasible resolution, while also
considering spectral detail, when developing local land use strategies,
particularly in heterogeneous areas. Trade-offs between image quality,
accessibility, and cost must be carefully considered when selecting EO
data for UGOS assessment, especially in data-scarce regions.

While the methods applied here are replicable, applying them in
other rapidly urbanizing cities will require local tuning and
validation. Future assessments should explore approaches such as
data fusion, context-specific classifiers, and the integration of
community-based or field validation data to enhance accuracy.
scalable,
assessments are essential for supporting equitable, resilient, and

Ultimately, transparent, and context-aware UGOS

sustainable urban development.
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