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Darlings Lake, located in the Saint John River watershed, Canada, experienced
lake-wide cyanobacteria blooms in the summers of 2021 and 2022. This study
uses high spatial and temporal resolution satellite imagery from Planet Labs
(Planet Labs, Inc., San Francisco, CA, United States of America) to understand the
extent and severity of the blooms with a time series analysis of the normalized
difference vegetation index (NDVI) and the normalized difference chlorophyll
index (NDCI) over the lake using k-means clustering. We distinguish algae blooms
from preexisting aquatic vegetation by creating a baseline map of mean aquatic
vegetation extent, and subtracting this from each image in the time series.
Additionally, results from a principal component analysis conducted on each
year’s imagery corroborate the k-means finding, and align with spatial trends of
bloom events observed in the lake. In this study, normalized difference
chlorophyll index values are observed to be more reliable for estimating the
severity of algal blooms, while NDVI is more sensitive to glare, haze, thin clouds,
and signal over-saturation caused by blooms, aligning with preexisting research
findings. We successfully fit a linear regression between NDCI values and in situ
measurements of phycocyanin concentrations surrounding AlgaeTracker™
buoys (R2:0.893). Furthermore we highlight bloom extent and severity for
2021 and 2022, revealing potential bloom hotspots in the lake. The
methodology in this project can be extended to systematically analyze high-
resolution satellite imagery in freshwater ecosystems to detect harmful algae
blooms.
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1 Introduction

Cyanobacteria, also known as blue-green algae, are a type of
bacteria commonly found in aquatic environments. In recent years,
there has been a growing concern about the increasing frequency
and intensity of cyanobacteria growth in lakes threatening
ecosystems worldwide (Huisman et al., 2018). Given the potential
associated harms, there is a rapidly growing need to monitor the
trends and variable dynamics of algal blooms to provide public
health officials and aquatic managers with the information they need
to mitigate these events (Anderson et al., 2012). Our pilot study
developed a methodology for algae bloom detection and analysis
from a constellation of smallsats (i.e., SuperDove satellite in the
Planetscope Constellation operated by Planet Labs, Inc.) providing
high spatial resolution, reasonable spectral resolution, and near daily
temporal resolution. We present a novel calibrated k-means
clustering approach for transitioning from quantifying the extent
of known past blooms, to identifying the emergence of new blooms
in near real time.

Cyanobacteria growth is linked to excessive nutrient inputs,
particularly phosphorus in freshwater environments, and nitrogen
in marine environments. Excess nutrients are attributed to human
activities such as agriculture, urbanization, and wastewater
treatment (Paerl and Otten, 2013). The overgrowth of
cyanobacteria can lead to the formation of Harmful Algal
Blooms (HABs) causing ecological and human health problems.
Notably, HABs can deplete oxygen levels in the water, and produce
toxins (e.g., cyaonotoxins) that can harm aquatic life, terrestrial
animals (e.g., McCarron et al., 2023), and outcompete beneficial
phytoplankton (Paerl and Huisman, 2008). The frequency and
duration of cyanobacteria blooms in lakes have increased in
recent decades due to the intensification of human activities and
anthropogenic climate change (Huisman et al., 2018). These driving
factors include eutrophication, rising CO2 concentrations, higher
surface temperatures and extreme weather events due to climate
change (Paerl and Huisman, 2009). While in situ monitoring of
algae blooms in lakes give valuable insight to nutrient contents as
well as toxins, they can be limited to specific locations and restricted
by the time available by field personnel and volunteers. Satellite
imagery on the other hand offers regular measurements of the whole
lake, and remote sensing methods are increasingly being integrated
into HAB monitoring regimes.

Cyanobacteria is a photosynthetic organism that exhibits a
spectral signature along the spectrum of light similar to that of
vegetation, phytoplankton and diatom blooms. The pigment
responsible for photosynthesis, chlorophyll-a (chl-a), is widely
used to estimate phytoplankton biomass in the ocean (Geider,
1987; IOCCG, 2008). Chl-a primarily absorbs electromagnetic
radiation (EMR) at two distinct wavelengths: 372 nm (ultraviolet)
and 642 nm (visible red) (Milne et al., 2015). As a result, fluorescent
light during photosynthesis is especially pronounced in the red-edge
(~700 nm), near infrared and green bands (e.g., Shen et al., 2012;
Bramich et al., 2021). Due to this distinct spectral absorption
characteristic, chl-a can be detected using multispectral imaging
from drones, aircrafts, and satellites. Kislik et al. (2022) compared
spectral indices for Sentinel−2 MultiSpectral Imager (MSI) data to
detect freshwater algal blooms and found the Normalized Difference
Chlorophyll Index (NDCI, Mishra and Mishra, 2012) especially

effective for quantifying algal bloom spatio−temporal distributions
in small freshwater reservoirs. Moreover, cyanobacteria contain
phycocyanin which cause an absorption peak at around 620 nm
and a fluorescence peak at 650 nm (e.g., Kutser, 2009) allowing for a
direct relation between NDCI and phycocyanin concentrations.

Mishra and Mishra (2012) point out a threshold chlorophyll
concentration of at least 8−10 mg m-3 necessary to be detected by
remote sensing instruments. Additionally, Metsamaa et al. (2006)
conclude that a spectral resolution of 10 nm and signal-to-noise-
ratio of 1000:1 is required, posing a challenge for many common
multispectral sensors when compared to hyperspectral imagery.
Conversely, hyperspectral data tends to exhibit more noise, which
is compensated for with a coarser spatial resolution (Rasti et al.,
2018). Finding an appropriate balance between accurate noise-to-
signal ratios, rapid return time, and reasonably fine spatial
resolution are top considerations when deciding which type of
satellite to use. Other recent methods address these
considerations through examining the frequency of vegetation
signal over time, such as Song et al. (2024), who introduce the
Vegetation Frequency Index (VFI) to distinguish aquatic vegetation
from algal blooms for Sentinel 2 imagery. The VFI is the ratio
between the sum of vegetation (algae or aquatic vegetation
respectively) pixels and the sum of the vegetation and water
pixels on any day. The authors quantitatively assessed every day
based on classification results and categorized individual pixels as
bloom, water, or aquatic vegetation to calculate annual average areas
and relate them to in situ measurements.

Using satellite remote sensing to detect blooms has become
relatively well established (e.g., Khan et al., 2021) given the rapid
expansion of openly available data and commercial data. Of
particular note is a study by Beaulne and Fotopoulos (2024) who
developed a web application for openly available data. In this
research the authors highlight the importance of increasing the
temporal and spatial resolution, and spatial extent for HAB
monitoring using remote sensing satellite data. For that purpose
they integrate data from different missions such as from the Ocean
and Land Colour Instrument (OLCI) carried on Sentinel-3, the MSI
carried on Sentinel-2 (highest spatial resolution of 10–20 m and 5-
day return time), the Operational Land Imager (OLI) and OLI-2
carried on Landsat 8 and 9 respectively (30 m spatial resolution and
16-day return time), MODIS (> 250 m resolution at a 2–3 days
return time), and MEdium Resolution Imaging Spectrometer
(MERIS) (300 m resolution at 3 days return time), as well as
synthetic aperture radar data for cloudy days. Combining
Landsat-8/9 and Sentinel-2 A/B images reduced the median
revisit period to 8.6 days. The authors point out additional
limitations related to spectral resolution depending on the centre
band wavelength, the bandwidth, availability of specific bands
relevant for algal bloom applications, as well as challenges for
medium resolution imagery when lakes are irregularly shaped or
when blooms are primarily along shorelines and in bays. In this
paper, we present a partial analysis for HAB detection using
commercial satellite data with higher temporal and spatial
resolution than typically applied in literature monitoring a lake
that is about half the size of the one examined by Beaulne and
Fotopoulos (2024). Monitoring dynamic changes in spatial scales of
3–10 m is an emerging focus in the field of remote sensing, with
recent studies highlighting the relative success of commercial Planet
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Labs imagery as a complementary tool to open-source Sentinel-2
(e.g., for chlorophyll monitoring in coastal environments using the
NDCI band ratio, Uhl et al., 2022).

Monitoring the occurrence and severity of algal blooms with
frequent image capture rates can provide public health officials and
aquatic managers with the information they need to mitigate
potentially harmful events (Anderson et al., 2012). The
environmental monitoring sector is increasingly applying
machine learning (ML) approaches in satellite remote sensing for
algal bloom detection given the increasing volume of available data.
Wasehun et al. (2025), for example, compare 5 ML approaches,
linear regression, least absolute shrinkage and selection operator
(LASSO), extreme gradient boosting (XGBoost), random forest, and
support vector regression, to analyse their prediction capacity for
chl-a concentrations in inland waters and compare their advantages
and disadvantages dependent on the training data available. Sagan
et al. (2020) have demonstrated the advantages of using deep
learning algorithms for phycocyanin, chl−a, and turbidity
estimation among other parameters when large training data sets
exist. Focusing on a comparison of aerial to satellite sensors for
different band ratios and spectral slopes they concluded the best
results occurred when including red, red-edge and NIR regions as
well as primary high spectral and secondary high spatial resolution.
In another study of note, Colkesen et al. (2024) compared several
spectral indices for Sentinel-2 imagery and pixel vs. object-basedML
algorithms. Pixel-based classification with classes water and HAB
was concluded to be more successful for difficult-to-differentiate
low-density algal blooms, with highest accuracy when using the
Floating Algae Index (Hu, 2009). Yao et al. (2024) showed that using
deep learning algorithms such as U-NET with PlanetScope data
improves the detectability and size estimation of surface HAB scums
in small (<10 km2) water bodies such as canals, which required
about 200 annotated images for training.

This paper addresses a key issue in environmental monitoring
and research: using machine learning approaches can efficiently
summarize regional environmental health, but there is a limit to
available data and time to develop and train models. Our approach
of calibrating very-high-resolution satellite imagery during the
processing stage streamlines the differentiation of HABs and
aquatic vegetation and gives the ability to compare a time series
of images to a mean baseline. A robust k-means clustering algorithm
is used to classify imagery. Combining the two methodologies
provides an innovative method to detect HAB activity through
baseline-subtracted k-means clustering.

Furthermore, this project operates on the a priori hypothesis
that a large cyanobacteria bloom can be classified within a similar
magnitude as other existing egetation within a lake. If true, the
bloom signals could be detected using a time-series analysis of a
spectral index derived from multispectral satellite imagery. The
time-series of spectral index values is classified using the k-means
algorithm. Each k-means class represents signal strength of
chlorophyll based on the pixel’s proximity to the nearest of a
predetermined number of centroids (MacQueen, 1967). The
advantage of the method is that it does not require an annotated
data set to learn from, compared to some of the methods introduced
above. We validate our approach by comparing the classification
results of selected bloom days to manually annotated values, as well
as the annual bloom extend to results from a principal component

analysis (PCA), an independent methodology that does not require
annotated data beforehand.

PCA is a well established method for change detection in remote
sensing data. It reduces the number of potentially correlated spectral
components in fewer, independent principal components (PC).
When used in multitemporal studies, where two or more images
of the same area at different times are available, the PCs relate to the
main differences between the images (e.g., Richards et al., 2022;
SINGH, 1989). Applying PCA to multispectral data can reduce
redundant information in the spectral bands and enable to focus on
the independent characteristics in an image and reveal the bands’
relationships. Fung and LeDrew (1987) point out how standardized
and non-standardized PCs can show different results, however,
when comparing visual and infrared bands they often relate
mainly to brightness (all bands are positively correlated) and
greenness (where visual and infrared bands are negatively
correlated). Similar to Lasaponara (2006) we apply PCA to a
temporal series of vegetation index data instead of the spectral
bands. We choose NDCI for the spring/summer season for its
suitability to detect HAB and therefore comparability to the
k-means classification approach.

This paper demonstrates a robust processing routine
highlighting surface blooms in freshwater bodies. Many lakes that
experience HAB events are not consistently being monitored and
depend on resources of local environmental groups. Highlighting
fluctuating chl-a concentrations through the use of high-temporal
resolution satellite imagery will enable large scale monitoring of
potential HAB events in freshwater bodies independent of their
location and vicinity to human activities. We test our methods at
Darlings Lake located in southwestern New Brunswick,
Canada (Figure 1).

Darlings Lake is a small freshwater lake that provides excellent
empirical context for our study because it is monitored in real time
for chl-a and phycocyanin concentrations using in situ
AlgaeTracker™ buoys. Satellite-derived spectral indices can
therefore be compared directly compared to the in situ
monitoring program at the lake. The real-time monitoring of the
lake was initiated after the occurrence of extensive cyanobacteria
blooms in the summer of 2021 (Sutherland, 2021).

Darlings Lake is approximately 2.5 km long and 1.5 km wide,
with a maximum depth nearing 10 m. It is popular for recreational
uses such as swimming, fishing, and boating, and surrounded by
residential homes and cottages, agricultural land, and forested hills.
The lake is part of the Kennebecasis River Watershed, a sub-
watershed of the Wolastoq/Saint John River Watershed. The
primary inlet to Darlings Lake is the Kennebecasis river, and it
drains into the Hammond River from the south-west. The watershed
area is regularly monitored due to concerns about water
temperature, phosphorus, nitrogen, and E. coli. Land within the
Kennebecasis River watershed contains about 15% agricultural land
and about 78% forest (Whalen and Strang, 2017).

This paper is structured (following the workflow diagram in
Figure 2) to first introduce our processing methodology (Section 2.3)
preparing a time series of imagery to highlight changes in NDCI and
the Normalized Difference Vegetation Index (NDVI) over time
(Section 2.4), hence comparing the suitability of the two indices
for HAB monitoring. Baseline imagery is created from an average of
days without a reported algal bloom (Section 2.5) and is compared to
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days with a potential for algal blooms by subtracting the baseline
image from the time series. The index rasters are classified using
robust k-means clustering (Section 2.6). Calibrated rasters are used
to interpret HAB occurrences, extent, and annual patterns. In
parallel, annual trends of index rasters are compiled with PCA
(Section 2.9) to validate. Additionally, we estimate a linear
relationship between local index values against in situ
measurements of phycocyanin to enable remote estimates of
phycocyanin concentration. Our discussion reviews weather
events and trends in HAB behaviour in Darlings Lake (Section
4.3), and compares satellite imagery to in situ data and field
observations. We outline current understandings of HAB
dynamics related to the blooms in Darlings Lake, and give an
overview of current capabilities and limitations of high-resolution
satellite imagery for future research considerations. This paper offers
a series of methodologies using high spatial and temporal resolution
satellite imagery that can bemodified according to monitoring needs
and replicated without the creation of large training datasets or
computing power, reducing barriers for researchers and water
monitoring groups.

2 Methods

2.1 In situ data

Darlings Lake is actively monitored by the Hammond River
Angling Association (HRAA) - a community-based non-profit
organization that conducts water quality monitoring programs
and habitat restoration products for local aquatic species,
including Atlantic Salmon. The HRAA began monitoring
Darlings Lake water quality upon the first large-scale HAB event
in 2021. Each month the HRAA collects water quality samples to be
analyzed for a suite of parameters including general chemistry,
bacterial analysis, light and temperature data collection,
cyanotoxin testing (microcystin and anatoxin-a), while also
collecting in situ water chemistry readings with a multiprobe to
determine dissolved oxygen, salinity, conductivity, total dissolved
solids, turbidity, and pH.

Each season the HRAA secures a permit under the Canadian
Navigable Waters Act for designated scientific equipment to launch
two monitoring systems (AlgaeTracker™) into Darlings Lake. The

FIGURE 1
True color satellite image of Darlings Lake and surrounding region in New Brunswick. The inlay shows the location of the lake in Eastern Canada.
Blue overlay separates the land fromwater. Yellowmarkers indicate locations of twomonitoring devices for real-time water quality measurements in the
summer of 2022. Sentinel 2 (SentinelHub) image courtesy of the ESA.
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AlgaeTracker™ monitor and broadcast live water quality
measurements for local real-time monitoring. The buoys measure
chl-a, water temperature, phycocyanin, and turbidity, among other
parameters, every 30 min. AlgaeTrackers™ are placed into the lake
with 20 lb anchors and 15-cm-wide and 30-cm-high buoys with
reflective cautionary material and HRAA identification tags. Water
quality samples are collected at each of the AlgaeTrackers™ once per
month. Additional water quality samples are also collected monthly
in four tributaries that feed into Darlings Lake, with additional
samples collected after heavy rainfall events (>25 mm).

2.2 Satellite data overview

Planet Labs is a commercial satellite company managing several
satellite constellations including a series of smallsats called
SuperDove as a part of the PlanetScope Mission. While the

earlier Dove satellites were restricted to four band VIS-NIR,
Planet Labs improved the design and begin to expand the
constellation with SuperDove smallsats in 2021. SuperDoves
increased spectral resolution from four band to eight band VIS-
NIR. Of note is the inclusion of a red-edge band, the narrow spectral
range that captures the transition from absorption to reflection for
chl-a and particularly useful for blooms of photosynthetic algae. The
red-edge band provides radiometric corrections, top- and bottom-
of-atmosphere corrections, and orthorectification to remove
distortions (e.g., UK, 2024). Liu et al. (2022) studied the ability of
different band ratios for Landsat 8, Sentinel 2, and 4-band
PlanetScope data to predicted cell density of cyanobacteria in a
water reservoir and concluded that the spectral resolution is more
important than spatial resolution. Therefore, this study focuses on
the 8-band PlanetScope data. Multispectral image data from Planet
Labs’ PlanetScope SuperDove Earth-imaging constellations includes
wavelengths 431–452 nm (coastal blue), 465–515 nm (blue),

FIGURE 2
Workflow of the methodology divided in three sections: Input data (top, light cyan), analysis (centre), and interpretation (bottom, light orange). The
derived remote sensing products are highlighted in yellow. The index raster is referred to as NDCI. However, we also run the workflow with NDVI rasters
for comparison.
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513–549 nm (green I), 547–583 nm (green), 600–620 nm (yellow),
650–680 nm (red), 697–713 nm (red-edge), 845–885 nm (near-
infrared). All but green I and yellow are comparable to Sentinel-2
bands (Kington and Collison, 2022). Given the relevant spectral
bands, a spatial resolution of 3 m, and a close-to-daily temporal
resolution, means the PlanetScope constellation meets most criteria
for monitoring cyanobacteria intensity and extent in a small
freshwater reservoir.

Optical multispectral satellite imagery is downloaded through a
research license with Planet Labs (https://www.planet.com/). Planet

Labs’ SuperDove satellites have been in orbit since 2018, with near-
daily global coverage of 3-m resolution 8-band VIS-NIR imagery
beginning in 2020 at 3-m spatial resolution (Kim et al., 2021). Given
the small areal footprint of Darlings Lake, acquired images are
required to be nearly entirely cloud free to exclude masking of
potential bloom activity in the water. This selection criteria resulted
in median intervals of 2 days and mean intervals of 4.5 days between
images. In total, 60 images were downloaded between the months of
May and October between 2020 and 2022 (Table 1).

A vector polygon (shapefile format) to outline Darlings Lake’s
extent is obtained from Statistics Canada’s 2011 Lakes and Rivers
Census (Statistics Canada, 2011). The Darlings Lake object is
extracted from the census polygon as an independent vector. The
2011 shapefile was overlaid with a 2022 Superdove image to ensure
that it still accurately outlined the shores of the lake. No differences
could be observed using both true-color and the Normalized
Difference Water Index to highlight the water-shoreline interface.

Surface reflectance was used for each image of the time series,
mitigating seasonal and temporal atmospheric changes through
Planet Labs’ pre-applied relative atmospheric correction coefficient
and calculated through their use of the 6SV2.1 Radiative Transfer
Model, accounting for effects from atmospheric scattering and solar
zenith angles (Kington and Collison, 2022; Collison and Curdoglo,
2025). Surface reflectance is recommended for use during time series
of the same region to improve estimates of on-the-ground reflectance
of surface features without the aforementioned atmospheric effects
(Xiao et al., 2015). Planet Labs imagery can be downloaded with
surface reflectance corrections already applied as a Level 2 product. It
is possible to download imagery through Planet’s graphical interface
on their website, using either predefined shapefile coordinates or by
manually outlining a defined study area. Users can also download
imagery with predefined requirements via an API. Bothmethods were
used throughout the project length.

2.3 Image preparation

Downloaded geospatial data from different sources can have
differing spatial reference systems (SRS). To ensure spatial
registration between the raster imagery and a vector polygon of
Darlings Lake, both the raster and the polygon’s SRS were
reprojected to UTM WGS84 Zone 19 N, the same system used in
this paper’s graphs. This allows for a standard geospatial framework
between both datasets and accurate alignment between the vector
features and raster data. The uniform SRS system reduced errors
through misalignment of data and mitigated distortion, allowing for
reliable spatial analysis and interpretation.

Due to water’s low reflectance, the reflectance signal over the lake
are much lower than the surrounding land. To emphasize variation
within the lake, pixels overlying land are removed from the analysis.
Satellite images are subset to the extent of Darlings Lake. Imagery was
processed using python’s Rasterio, NumPy, and scikit-learn packages.

2.4 Detecting chlorophyll

Cyanobacteria are photosynthetic, and reflect EMR in a similar
manner to vegetation. The presence of this pigment can be

TABLE 1 Dates for 8-band satellite imagery downloaded from Planet Labs
over Darlings Lake, NB, 2020-2022. Starred dates (*) were used in creating a
mean vegetation distribution raster. Crossed dates (†) indicate
cyanobacteria presence confirmed with in situ data.

2020 2021 2022

2020/06/16* 2021/05/28* 2022/06/01

2020/06/19 2021/06/05 2022/06/02*

2020/09/12 2021/06/08 2022/06/12

2021/06/13 2022/06/15

2021/06/14 2022/06/16

2021/06/18 2022/06/23

2021/06/20 2022/06/25

2021/06/21 2022/06/26*

2021/06/23 2022/07/05

2021/07/11† 2022/07/07

2021/07/23 2022/07/10

2021/07/24 2022/07/11

2021/07/28 2022/07/18 †

2021/08/01 2022/07/20

2021/08/04 2022/07/27 †

2021/08/14 † 2022/07/28

2021/08/15 † 2022/07/30

2021/08/16 † 2022/07/31 †

2021/08/22 2022/08/07 †

2021/08/25 2022/09/01

2021/08/31 2022/09/02

2021/09/11 2022/09/03

2021/09/13 2022/09/04

2021/09/14 2022/09/07*

2021/09/17* 2022/09/17*

2021/09/20 2022/09/25

2021/09/21 2022/09/27

2021/09/23

2021/09/28

2021/12/15
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highlighted in water by using band indices that focus on the
absorption and reflection ranges of chlorophyll. Two such indices
are the normalized difference vegetation index (NDVI) and the
normalized difference chlorophyll index (NDCI) (Mishra and
Mishra, 2012; Weier and Herring, 2000). The former uses a
combination of the corrected reflectance (ρ) for the visible red
and near-infrared bands (Equation 1), while the latter uses a
combination of red-edge (705 nm) and visible red bands
(Equation 2) (Mishra and Mishra, 2012; Kington and Collison,
2022). Taking the spectral band differences and normalizing
them by the sum of their reflectance eliminates any uncertainties
in the estimation of ρ, seasonal solar azimuth differences, and
atmospheric contributions at those wavelengths (Mishra and
Mishra, 2012).

NDVI � ρNIR − ρRED
ρNIR + ρRED

(1)

NDCI � ρRED-EDGE − ρRED
ρRED-EDGE + ρRED

(2)

Both indices have a range of normalized values from −1 to 1,
and while not a direct measure, provide a good proxy for
photosynthetic activity. Chlorophyll absorbs red light and
reflects red-edge and NIR wavelengths. A high positive value
therefore relates to high biomass as reflected photosynthetic
indicators are greater than red signal readings. (Mishra and
Mishra, 2012; Weier and Herring, 2000). Water reflects visible
red and absorbs NIR, creating a negative numerator in the index
where NIR readings are less than red (Mishra and Mishra, 2012;
Weier and Herring, 2000) and creating challenges for the detection
of algal blooms.

Before performing unsupervised classifications, NDCI and
NDVI values are scaled so that water pixel values fall between
0 and 10,000 (Equation 3). Pixels falling outside of the polygon
representing water or through high normalized NDVI/NDCI values
are separated from the water pixels by assigning them a value
of −2 first. They are hence negative. The scaling is performed using:

X + 1
2

× 10, 000, (3)

in which X represents the target normalized index of NDCI or
NDVI. High positive values indicate higher chl-a reflectance, while
negative values indicated the opposite.

2.5 Creating a baseline raster for time-series
calibration

While normalized indices can be used to highlight algae blooms
due to their chlorophyll reflectance strength, other biotic factors in
the lake will also exhibit a high spectral signal. Marshy areas exhibit
higher positive NDCI and NDVI values than clear, deep water
(Mishra and Mishra, 2012). In our case study, marshlands in the
southwest corner of Darlings Lake return a high positive value
whether there was an algae bloom occurring or not (see Figure 3),
and not accounting for existing vegetation and other environmental
factors could return a false positive signal. Aquatic vegetation would
also grow in shallow water along the shoreline through warmer
months, demonstrating similar spectral magnitude to a bloom.

Therefore, the first step to monitor changes in spectral
reflectance over Darlings Lake is to quantify and remove the
average vegetation distribution.

Background noise from variations in atmospheric conditions or
minute differences in satellite specifics are addressed through
calibrating the series of NDCI images. We create a baseline
image as an average of 7 images when no bloom was reported in
Darlings Lake (based on in situ sampling and visual observations; see
dates marked with an asterisk in Table 1) to identify existing
vegetation and avoid false positives of HAB activity in vegetated
areas. Non-bloom days are selected through a combined approach of
visually inspecting each image and verifying that there is no
detectable algal bloom present through ground-truth from site
inspections and field data collection surrounding the time of
image capture.

The time series is calibrated by subtracting the baseline image
from individual NDCI rasters, to remove the contribution from
permanent aquatic vegetation (e.g., marshy areas). Calibrated NDCI
values are also more effective at helping reduce coastline signal from
changes in water height or coastal vegetation. The calibrated NDCI
time series was then analysed with the k-means clustering approach
described below.

2.6 Classifying blooms: k-means clustering

K-means clustering is an unsupervised shallow machine
learning technique (MacQueen, 1967), that we apply twice to
separate analyses classifying scaled NDVI and NDCI time-series
values. Land mass and erroneous pixel values from the image
beyond the outline of the lake are assigned a value of 0. The
remaining five clusters classified NDVI and NDCI signal strength
such that vegetation reflectance strength increases with class
number. High positive class differences are interpreted as HAB
occurrences in the lake (Figure 4). Six classes are chosen through
an empirical comparison of k-means classifications of calibrated
NDCI rasters. While the elbow method outputs only three classes
(no data, clear water, general vegetation), imagery with medium
and severe HABs as well as days with turbidity in the water,
require additional classes to reliably differentiate between them.
The use of six classes allows for aquatic vegetation and severe algal
blooms to be differentiated, and a difference between clear and
turbid water - a byproduct of either wind or potential HABs -
to be made.

Imagery is separated manually into a training set, and a test set,
in order to ensure that there is representation of an extensive bloom
day while defining the k-means clusters. Pixels in the training set are
clustered, with the cluster centroids saved. The test set acts as a time
series, in which each cell’s value would be assigned to the most
similar predefined cluster (see example in Table 2).

2.7 Accuracy assessment of methodology
using kappa

To ensure that the above methodology of processing, classifying,
and estimating HAB occurrences from calibrated rasters is
statistically viable and can be applied as an automated time-series
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FIGURE 3
Series of images highlighting the distribution of aquatic vegetation across Darlings Lake on 18 June 2021, a day with no algae blooms. Left Image:
True colour surface reflectance of Darlings Lake. Center: NDCI map of Darlings Lake. Right: NDVI map of the lake. Elevated NDCI and NDVI highlight
marshlands along the shoreline, especially in the southwest and northeast portions of the lake. Image © 2021 Planet Labs PBC.

FIGURE 4
Comparison between the baseline image and a day with a HAB event classified by k-means. (A) Classified baseline map representing the mean
distribution of vegetation across Darlings Lake. (B) Classified image that has not undergone calibration covering a severe bloom on 15 August 2021.
Aquatic vegetation andHAB are highlighted across the lake. (C)Calibrated and classified image highlights HAB occurrencewhile aquatic vegetation signal
in the south east and along the shoreline is muted. Image ©2021 Planet Labs PBC.

TABLE 2 Calibrated NDVI and NDCI cluster centroids over Darlings Lake in two separate k-means analyses. Higher classes indicate higher values of NDVI/
NDCI within each normalized and scaled band compared to the baseline, and are more likely caused by dynamic HAB occurrences.

Class no. Calibrated NDVI centroid
(Analysis 1)

Calibrated NDCI centroid
(Analysis 2)

0 −4992.01 −4992.55

1 4852.37 4781.74

2 5668.21 5266.31

3 6331.49 5903.14

4 7343.75 6448.27

5 8590.99 7320.6
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analysis of imagery, we evaluate the accuracy of the classification
using ArcGIS Pro’s Accuracy assessment tool. The kappa score κ is
calculated comparing producer and user accuracy - demonstrating
how well the classification method agreed with the user’s
expectations - with a confusion matrix.

Three days were selected for the analysis. All 3 days had
blooms with varying levels of severity to test classification
accuracy under different circumstances. As with highlighting
chlorophyll, we took calibrated classified k-means clusters of
three dates in our time series. Pixels were reclassified using
ArcGIS Pro’s Reclassification tool with values ≤1 as water
(reclassified to 1), 2-4 as bloom (reclassified as 2), and 4-5 as
severe bloom or high dynamic aquatic vegetation (reclassified as
3). Two non-bloom pixel classifications are needed to ensure that
open water with various levels of turbulence and large changes in
seasonal vegetation signal are accounted for. From each image
150 stratified random points are selected across the lake and
manually evaluated.

2.8 Visualizing annual HAB extent

To visualize HAB activity through Darlings Lake, we sum up all
k-means calibrated rasters for days when a bloom occurred. We
exclude areas for classes smaller than a threshold of 3 (out of
6 classes), thereby only summing pixels indicative of potential
HAB activity, making the results more sensitive to even rare
bloom occurrences. The result is an image illustrating the
intensity over area normalised by the number of bloom days
included (presented in Section 3.1).

2.9 Alternative analysis of HAB extent: PCA

Principal component analysis (PCA) has been used to
understand land cover change in remote sensing imagery for
decades (e.g., Byrne et al., 1980). The PCA method allows for
complex image series over time to be reduced dimensionally,
demonstrating each pixel’s relative variance to the rest of the
image over a study area (Fung and LeDrew, 1987). This study
applies PCA to compiled NDCI rasters for 2021 and 2022,
compressing each season’s spectral data into an RGB image,
enabling to qualitatively compare PCA results of field
observations to the annual HAB extend from the k-means
analysis. Additionally, due to complimentary features of the two
independent techniques we aim to expand our understanding of
Darlings Lake’s annual HAB dynamics. For example, stacking
k-means rasters over each other highlights in which areas
blooms were most severe or occurred most, while PCA
highlights areas of no change and high intensity vs. areas with
change in general. PCA is used to validate that our k-means
classification methodology is reliably estimating HAB activity
and water body parameters. Stacked single-band NDCI rasters
for each cloud-free day in the 2021 and 2022 seasons were
compiled. A PCA was applied to them using the Principle
Components Algorithm in ArcGIS Pro’s Spatial Analyst
toolbox. We evaluate the individual rasters of the first three
principal components and the RGB image of the combination.

2.10 Comparing in situ and satellite data

The HRAA placed two AlgaeTracker™ instruments into
Darlings Lake during the summer of 2022 for real-time
monitoring of the water quality. The AlgaeTracker™ record
measurements of phycocyanin and chl-a concentrations, as well
as water temperature, sun light, wind, rain, and turbidity.
Phycocyanin concentrations are assessed using in vivo
fluorescence with an excitation wavelength of 575 nm and a peak
emission wavelength of 642 nm. Phycocyanin concentrations are
measured in 0–1,500 μg/L or 0–750 RFU (relative fluorescence
units). We currently use a risk categorization based on the World
Health Association’s recommendation from 2006, with thresholds of
30 and 90 RFU for medium and high risk for a cyanobacteria bloom.
These thresholds are exceeded in July and early August of
2022 (Figure 5).

Beyond visualizing HAB extents, we also aim to estimate a
relationship between in situ measurements and satellite data. For
that purpose, satellite imagery rasters are subset to a 50-m radius
around each AlgaeTracker™ and the mean NDVI and NDCI values
are compared to mean daily (between 9:00 and 16:00 local time)
phycocyanin readings pcRFU (shown in Figure 5).

3 Results

We systematically analysed 54 days of multispectral imagery at
Darlings Lake in summers 2020, 2021 and 2022 with the above
described processing routine. The resulting time series of baseline-
subtracted NDCI class maps are then analysed using the above
methodology to estimate the presence and intensity of
potential blooms.

All dates classified as having a potential bloom were in 2021 and
2022. Marshy regions generally have higher NDCI values. However,
subtracting the baseline NDCI raster before the classification step
reduced the signature of permanent aquatic vegetation in the
resulting classes. Bloom signals range from classes 1–5 depending
on algae concentration. By subtracting baseline rasters we effectively
mask vegetation signals and/or highlight bloom changes over time,
creating a distribution of HAB severity across the lake (Figure 4).

The accuracy of the methodology is assessed by calculating the
kappa score between field observations and NDCI measurements
against final classified values (Table 3). For each test day the kappa
score is greater than 0.7, indicating substantial strength of agreement
(Landis and Koch, 1977).

Therefore, the extent and severity of large-scale blooms can be
successfully identified and quantified, allowing for future
monitoring efforts to help guide public access point closures,
water quality alerts, and allow for prioritization of highly affected
areas of the HAB to be monitored.

3.1 Spatial bloom frequency

For the 2021 and 2022 bloom seasons, we added the calibrated
rasters and divided them by the number of images to visualize the
bloom extent in the lake and highlight areas frequently affected by
blooms (Figure 6). In 2021, blooms are distributed across the
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northern section down to 2/3rd of the lake towards the south. In
2022, visible blooms appeared along the western shore into the
middle of the lake. The highest intensity and frequency is associated
with the southern section of Darlings Lake in the marshy area, and
also at the northern tip of the lake. The blooms were generally larger
and more frequent in 2021 compared to 2022.

3.2 PCA results

The use of PCA on a time series of satellite imagery allows for
regional behaviour analysis, highlighting the strongest trends in a
region of interest. In this case, using PCA as a method to understand

Darlings Lake’s annual trends reduced the factor of time -
dimensions dictated by the number of images per season -into
the three most significant spatial patterns. The first principal
component accounting for the most co-variation, the second
shows the next strongest, and so forth. Each of these components
can be unique from each other, giving the potential for additional

FIGURE 5
Graph comparing 2022 phycocyanin values measured in RFU by in-water AlgaeTracker™ to scaled, remote-sensed NDCI values. Water
temperatures throughout the summer remained high, only lowering below a HAB-friendly threshold in mid September.

TABLE 3 Kappa score κ results from three sample dates.

Date κ

11-07-2021 0.773

25-08-2021 0.743

07-08-2022 0.78

TABLE 4 Eigenvalues and their relative percentage for the 2021 and
2022 seasons.

2021 Eigenvalue Relative percentage

Layer 1 0.99547 64.2

Layer 2 0.33602 21.7

Layer 3 0.21951 14.2

2022

Layer 1 0.25683 77.5

Layer 2 0.03828 11.5

Layer 3 0.03638 11.0
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FIGURE 6
Composite map of all calibrated rasters for days with detected HABs divided by the number of days over Darlings Lake in (A) 2021, (B) 2022. Image ©

2021, 2022 Planet Labs PBC.

FIGURE 7
Visualization of the first three PCA components for 2021 (left) and 2022 (right) respectively. Components are visualised as layers (Red, Green, Blue
colour schemes). Panels (A,B) show the superposition of the three layers for 2021 and 2022 respectively. Panels (C–H) show the individual layers for
2021 and 2022 respectively. The eigenvalues and relative percentages of these layers are listed in Table 4.
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insight outside of what can normally be achieved through change
detection alone. The PCA results from the 2021 and 2022 seasons of
Darlings Lake demonstrate different spatial trends. In 2021, the
variance in reflective NDCI strength of pixels overlying deep water
were assigned to the first principle component (Figures 7A,C). The
result can be interpreted to correlate well with both analysis of
imagery over the year that highlighted strong blooms repeatedly
spreading and dying across the lake, affecting the NDCI signal
significantly from image to image. Repeated HAB activity in the
northern section of Darlings Lake demonstrated in Figure 6 were
highlighted in component two (Figure 7D). Many of the blooms
were first observed and strongest in the northeast section of the lake,
with an example in Figure 4 (Blenis, 2024). Finally, turbulent water is
less likely to experience algal blooms at the same severity as still
water. Component three shows how the region surrounding the
river input at the north-west section of the lake had much lower
levels of variability in reflected chlorophyll levels in comparison to
the rest of the study area (Figure 7E).

Strong alignment of PCA results with field observations shows
its relevance in understanding annual HAB behaviour in regions
with limited historic environmental data. This could also help give
insight into HAB behaviour under different conditions when
compared to environmental data, though verification through
field site visits and regional expertise are obviously recommended
to ground truth satellite observations.

Different spatial trends were observed in 2022 (Figures 7B,F–H).
The first PCA component (Figure 7F) highlights the coastline,
opposite to the first component for 2021, which highlights the
deep-water section of the lake. Field visits and imagery analysis
from the bloom season noted that many of the blooms were close to
the shore, with the HRAA noting that increased winds and rain in
2022 could explain their observations that blooms were more likely
to be “pushed” against the shoreline (Blenis, 2024). The second and
third components were not as defined as the previous year. A more
generalized view of bloom activity seems to be highlighted in the
second component for 2022 (Figure 7G, demonstrating agreement
with field notes of higher bloom severity along the shoreline and
within coves through the lake in 2022 (Blenis, 2024). The third
component in 2022 showed no strong spatial trend and exhibited
more noise (Figure 7H).

3.3 Comparison of k-means and PCA results

K-means clustering of NDCI values, alongside removing regular
aquatic vegetation signals, allowed analysis of both daily and annual
HAB behaviour (Figures 4, 6). In 2021 blooms extended across
Darlings Lake, with reduced intensity close to the primary inlet and
outlet of the lake. In 2022 blooms were closer to the shore, especially
on the western side of the lake.

PCA results from NDCI signal allowed for a high level analysis
of annual HAB behaviour that included aquatic vegetation signal
(Figure 7). These results corroborate the k-means findings. In 2021,
pixels overlying the middle of the lake - the vast majority of which
would be too deep for satellites to capture subsurface aquatic
vegetation - were most influential in all three components. This
indicates that not only was bloom signal strong, but the change in
signal between clear and HAB-filled waters was much more

dramatic than shoreline vegetation, which would typically
dominate signal strength in aquatic environments (Xie et al.,
2008). Shoreline vegetation and smaller blooms dominate
2022 behaviour, leading to an inverse pattern in the 2022 PCA.

3.4 Comparing in situ and satellite data

Real-time in situ water quality monitoring in the summer of
2022 identified high phycocyanin and chl-a values related to algae
blooms in late July and early August (Figure 5). Values then only
spiked occasionally in September and October. Temperatures were
above 20°C—an optimum temperature for cyanobacteria
growth—throughout July, August, and the first half of September
(Rasti et al., 2018). Co-located (50 m radius around the monitoring
sites) NDVI and NDCI mean values were both compared to in situ
phycocyanin values. Due to atmospheric corrections performed on
images to obtain surface reflectance, NDVI was more affected by
cloud cover, haze, or lens flare than the NDCI values, resulting in
more outliers. While this phenomenon may not have been observed
if we had used top-of-atmosphere values, surface values ended up
with the highest final sensitivity to bloom activity. On July 7th 2022,
with an abnormal lens flare, NDVI gave high chlorophyll estimates
despite little to no bloom activity. NDCI recorded lower
measurements. On August 1st, when a bloom occurred during a
hazy day, NDVI values were low, while NDCI values were larger.
When estimating a linear relationship between NDCI or NDVI
values and phycocyanin readings respectively, it is possible to fit
NDCI values with an R2 value of 0.89 (n = 34) (Figure 8) while
NDVI values are only fit with an R2 of 0.14, and therefore excluded
from further analysis. The NDCI values can be fit to the mean
measurements of phycocyanin (pcRFU) for the day to investigate a
linear relationship

NDCI � −14 + 5.4 × pcRFU. (4)

4 Discussion

This paper offers a strong addition to monitoring practices for
small water bodies that have been difficult to capture given the
coarser spatial resolution of traditional multispectral satellites like
the Landsat series. Municipal water management and stewardship
groups with limited funds can adapt our methodology to other sites,
expanding monitoring efficiency and range to be alerted to potential
HABs, and analyse their spatial-temporal trends over single seasons.

Applying machine learning processes to high-resolution satellite
imagery successfully estimated HAB activity. Classified imagery
compared against an estimated baseline highlighted anomalous
activity related to cyanobacteria blooms (Figure 4). Annual
trends of HAB dynamics were visualized between the 2021 and
2022 bloom seasons (Figure 6). Results of the annual bloom
dynamics are corroborated by HRAA field staff drone surveys in
2021 and combine nearshore and vessel observations in 2022. Scaled
and calibrated NDCI values showed high levels of correlation with in
situ phycocyanin measurements (Figure 8), indicating that imagery
can be used to estimate phycocyanin concentrations from remote
NDCI values. Our approach uses high-resolution satellite imagery,
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with pixels covering only 0.2 ha, to monitor small water bodies while
reducing or eliminating signal noise from shorelines. In the
following sections we discuss the individual methods and their
strengths and weaknesses.

4.1 Classifying HAB activity

Darlings Lake has been affected by large-scale HABs since the
1990s, and was added to New Brunswick’s Public Health Advisory
List on 9 July 2021 (Blenis, 2024). While in situ field testing is
limited to scheduled revisit dates and specific locations, satellite
image analysis as presented in this paper offers a promising low-
cost approach to observe and identify HABs. Both methods
complement each other. The in situ monitoring are valuable
ground-truths, and satellite imagery evaluate the spatio-
temporal extent of potentially harmful HABs. The high spatial
and temporal resolution of the satellite imagery presented here
enabled detecting HAB signals successfully, especially when the
HAB extends across a large fraction of the lake as was observed in
2021 (Figure 4). Using a baseline image we are able to account for
and suppress the aquatic vegetation signal from the HAB signal,
highlighting the HAB in each image. These methods have been
verified through analysis of PCA results to extract spatial trends
and the results from Cohen’s Kappa accuracy estimate applied to
sample dates (Table 3).

While deep learning (DL) models have shown to be
outperforming other classification methods, they also require for

a large training data set, which are dependant on hours of manual
expert annotations. For remote sensing questions DLmodels need to
extract joint features from spectral, spatial and temporal data and
need to be transferable to other data sets in all three domains (Sagan
et al., 2020). Our method on the other hand does not require a large
training data set, nor is it prone to the risk of over-fitting or being
biased to a particular feature.

Our technique is promising for detecting large scale blooms,
analysing the affected areas in the lake to assist decision making
for future monitoring and HAB mitigation sites. Detecting HAB
along the shoreline within the resolution of the satellite imagery
(here, 3 m) is more challenging. Short wavelengths scatter easily in
the atmosphere, and peripheral objects can complicate signal
readings. Coastlines are additionally affected by reflection from
trees and brush, which can deteriorate the analysis result. The
bloom intensity for the 2022 data is stronger in coastal areas and
bays compared to the extent in the lake observed in 2021
(Figure 6), which possibly requires additional in situ testing,
especially in marshy area in the south of the lake. Vegetation
and water level changes along the shore are predominant signals
in 2022 (associated with the first principal component
in Figure 7).

In this study, we aim to reduce uncertainty in differentiating
HAB activity from shoreline signals by calibrating the NDCI rasters,
rather than the common approach of removing pixels bordering the
shore. The calibration involves subtraction of a baseline raster (mean
of seven rasters without bloom). For water bodies like Darlings Lake
that experience shoreline-adjacent algal blooms, the removal of
pixels would reduce the analytical area and severely reduce or
remove HAB detection and estimated severity. The calibration
approach is a compromise between reading imagery directly into
an unsupervised learning model, which could falsely indicate HAB
activity from changes in aquatic vegetation health or water levels,
and the complete removal of shallow-water pixels, which could miss
the warmer shoreline waters where blooms are most often observed.
Through consultations with field partners at the HRAA and
verification through manual investigation of imagery and
accuracy assessments, we are confident that in this pilot study
this methodology allowed us to produce the best results.

4.2 Comparing measurements between in
situ and remote sensors

In situmonitoring of HAB events in Darlings Lake has evolved
over several years. In 2021 the HRAA conducted dockside water
samples and water quality testing, alongside using a drone during
an August bloom to observe its lake-wide extent. While both
methods allowed for an estimate of the bloom’s severity, these
methods were not able to consistently project the HAB dynamics
long-term.

In 2022 two AlgaeTracker™ water sensors were placed along the
center left shoreline of Darlings Lake (Figure 1). These in situ
measurements allow for real-time monitoring. The monitors also
provide ground-truth confirmation of bloom activity in the area
around the devices beyond image analysis.

Mean NDCI measurements are positively correlated with
phycocyanin values measured in RFU (Figure 8). However, the

FIGURE 8
Visualization of the linear relationship between mean calculated
NDCI surrounding each tracker and the corresponding day’s mean
phycocyanin concentration measured in RFU (pcRFU).
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linear relationship found in this experiment (Equation 4) might
not be directly transferable to other satellite types or phycocyanin
readings. Phycocyanin readings depend on the methodology of
how they were measured in water and the lack of control over the
environment-based measurement. Fluorescence can be affected by
light, nutrient conditions, cell age, and other factors (e.g., Gregor
et al., 2007). Measurements in the laboratory when phycocyanin
are dissolved in water vary compared to when they are in
association with other pigments, proteins, and membranes.
Temperature and turbidity also affect the readings. Correction
factors might be necessary to improve the accuracy of any absolute
values such as cyanobacteria cell concentration derived from
phycocyanin readings, which are environment-dependent
(Rowan, 1989).

4.3 Understanding annual HAB dynamics
through climate data, satellite imagery, and
field observations

The summer of 2021 exhibited drought-like conditions
through May and June, alleviated by large rainfall events in
July; Saint John, New Brunswick received 233.8 mm of rain,
almost three times the monthly average of 88.3 mm (Lewis,
2021). Sudden influxes of accumulated organic compounds
(both pollutants and nutrients alike) from rainfall under these
conditions can raise the likelihood and severity of cyanobacteria
blooms considerably (Lürling et al., 2018; Paerl and Huisman,
2009). HAB events through the summer were extensive, and
tended to accumulate in the northeastern section of the lake
and along the shoreline (Figure 6 left). The regions with highest
bloom severity are also closest to the mouths of the Kennebecasis
River and four smaller estuaries, all of which flow through
agricultural regions into the lake. The high bloom sum in the
northeastern region was only lower around the river input, which
would be more turbulent and therefore less habitable for
cyanobacteria to grow in.

Both lower temperatures and a wetter season were observed in
2022. May and June 2022 were cooler than average and exhibited
regular rainfall. July and August experienced eight large rainfall
events at regular intervals, and a maximum rainfall of 33 mm
(Canadian Centre for Climate Services, 2024). Field staff noted
that regular blooms in late July and early August (Figure 5)
remained close to shore, and did not extend across the lake like
in 2021 (Blenis, 2024).

While AlgaeTracker™ buoys were not used in 2021, results
from both composite k-means and PCA maps demonstrate similar
spatial trends to field observations and drone imagery. The
combined three methods, as well as external climate data,
suggest that the combination of abnormally high rainfall events
interspersed with long periods of warm temperatures between
allowed for favourable conditions for lake-wide bloom events.
In 2022 total seasonal precipitation was high, but maximum
rainfall events were less than half of July 2021s largest rainfall
event. Regular rainfall throughout 2022, alongside lower input
excess nutrient from a single event could allow for favourable
conditions, while reducing the likelihood of widespread blooms
like the previous year.

4.4 HAB frequency

Blooms in Darlings Lake appear to follow a seasonal trend. In
both 2021 and 2022, HABs initially began to occur in mid-July,
reoccurring a few times until September. While satellite imagery was
not available to capture images on the same frequency of the in situ
sampling (Figure 5), the imagery was able to capture most of the
large-scale blooms in 2022.

High temperatures, sporadic rainfall, and input of excess
nutrients contribute to the likelihood of algal blooms
developing (Paerl and Otten, 2013). Precipitation events were
often followed by dry conditions, especially in 2021, leading for
Darlings Lake to experience some of the most favourable
conditions for HABs in recent history (Canadian Centre for
Climate Services, 2024; Blenis, 2024; Paerl and Huisman, 2008).
Since 2022, the watershed has not experienced the same behaviour
in rainfall, and the HRAA has noted that while there have been
occasional small blooms along the shoreline, they have been less
than 3 m in area, smaller than a SuperDove satellite pixel (Blenis,
2024; Kington and Collison, 2022).

4.5 Addressing limits and uncertainties in
HAB detection with satellite imagery

There were some limits when it came to HAB detection over
Darlings Lake. The most prominent limitation was that while the
classification could easily identify changes in open water, differences
in reflectance along the shoreline led to slight changes in
classification numbers between images regardless of bloom
presence. In the future, bloom identification without accounting
for shoreline signal variability could lead to misinterpretation when
identifying small blooms.

Temporal variability in classification could be caused by a
host of different circumstances. The first is differing magnitudes
of reflectance throughout the year, or time of day between
satellite fly-overs, leading to differing solar zenith angles (Ma
et al., 2020). PlanetScope instruments each have harmonized
calibrations to account for each sensors’ calculated sensitivity,
but this is naturally less consistent than using a single sensor’s
repeated observation instead (Ma et al., 2020). Other factors
depend on the local environment. Water level changing through
the summer from either droughts or flood events can change
reflectance levels at or near the water’s surface and shoreline
(Kislik et al., 2022). These changes in water level could change the
relative NDCI value. Future research will consider measuring
changes in water level while conducting in situ field surveys to see
how seasonal differences in the shoreline could be affecting
these results.

Haze and seasonal atmospheric effects - such as increased
levels of smoke due to extended and widespread fire seasons, or fog,
which is common around the Bay of Fundy, where Darlings Lake is
located - are another challenge for time series analyses of multi-
spectral imagery. It is difficult to correct with generic atmospheric
corrections (Ahmad et al., 2019). Haze is a common artifact in
multi-spectral data caused by fractions of water vapor, ice, fog,
sand, dust, smoke, or other small particles in the atmosphere
(Ahmad et al., 2019). Images are therefore not automatically
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flagged for pixel error as would be implemented for a day with
extended cloud cover. Fog or smoke from wildfires is a likely factor
affecting a satellite image on July 30th and August 8th 2022, in
which the highest phycocyanin measurements of the year were
recorded, but there was a relatively low classified NDCI signal
across the lake despite visible green patterns indicative of an algae
bloom in true colour imagery. Other dates have pseudo pixels that
are not flagged for their quality, which affect a limited portion of
the lake with an erroneously high or low NDCI reading. In these
cases we removed the entire image from the study to ensure that
false readings were not affecting the actual measurements of
chlorophyll in this proof-of-concept study. In the future, we
will be examining implementing automated dehazing to the
process to both improve the number of image samples and
reduce the amount of manual verification needed. Dehazing is a
process that can be manually performed by defining the haze
extent and haze-free areas (e.g., Makarau et al., 2014). Approaches
using unsupervised machine learning techniques are, while
computationally expensive, promising (e.g., Hu et al., 2020) and
could reduce uncertainties in the times series analysis in the future.
In less foggy regions, the complete removal of imagery may not be
necessary provided that cloud masking and dehazing provide
sufficiently accurate results. Song et al. (2024), for example,
implement two indices, one being NDCI, and one taking the
difference of the atmospheric reflectance of aerosol (blue,
442 nm) to the reflectance of the third red-edge (780 nm) band
into account. They empirically define thresholds through visual
assessment to differentiate a bloom signature from clouds, and
point out the benefit to monitoring at a higher temporal resolution
when including images that are partly covered with clouds. The
challenges of cloud masking are that gaps need to be filled with
proxies or no-data values. The latter can reduce the analytical area
for a time series if there are multiple days with multiple
no-data gaps.

Surface roughness via turbulence can also lead to confusion
identifying a bloom. Windy days can change the water’s surface
from a spectral reflector to a diffuse reflector, leading to a difference
in signal strength (McClain and Strong, 1969). At the moment an
experienced observer is needed to manually remove days with
turbulence. In the future, we plan to add information from
rainfall and wind anomalies that may cause surface roughness or
for the algorithm to automatically remove such images from the
analysis or classify it as a non-bloom day.

NDCI is more effective than NDVI in highlighting bloom extent
and severity in the water overall. The NDCI values are less affected
on hazy days, and aquatic vegetation and algae signals have a higher
relative contrast against water signals. We find that while the above
conditions affected NDVI values, the NDCI values are less affected
by atmospheric effects and glare (Figure 3), similar to studies by
Kislik et al. (2022); Zhang et al. (2018).

Future work to improve HAB detection could include fusing
time series of index rasters from different satellite constellations and
thereby increasing the number of images. For example, Sadeh et al.
(2021) integrated PlanetScope and Sentinel-2 images to identify crop
types and their phenology. Their suggested approach improves the
spectral quality to Sentinel 2 standards and the temporal and spatial
resolution to PlanetScope standards. Additional corrections are
required to match the imagery to in situ measurements.

Challenging, however, is that different sensors often provide
imagery at slightly different bandwidth and spectral responses.
Sentinel imagery uses a push-broom optical sensor, while Planet
uses filtered imagers (UK, 2024; Kington and Collison, 2022;
Onačillová et al., 2022). Recent studies have shown these
methods, while comparable, can result in different reflectance
readings if their differences are not accounted for (Onačillová
et al., 2022; Razzak et al., 2023). Additionally, SmallSats can
suffer from cross-sensor inconsistencies, which may decrease the
radiometric quality and accuracy of atmospheric correction (e.g.,
Niroumand-Jadidi and Bovolo, 2021; Liu et al., 2022; Houborg and
McCabe, 2018).

Beaulne and Fotopoulos (2024) point out that integrating data
from multiple sensors, optical and synthetic aperture radar (which
provides insights on cloudy days) requires development of data
management and analysis techniques on a large scale to provide
general insights into long-term trends in the distribution and
frequency of blooms in the environmental and climate
change context.

While this study exhibited promising results, our
methodology does not currently address a general qualitative
question for all satellite imagery, or all bodies of water. The
specific focus of this project relates to the Planet SuperDove
constellation’s spatial frequency and band width, and is a
promising one-satellite-type quantitative assessment of a ML-
based classification and analysis tool over one lake. While our
pilot study successfully outlined both daily and annual
interpretations of HAB behaviour, we expect to significantly
adapt our methodology as we expand to new environments,
taking into consideration issues like increased turbulence,
seabed reflectance, and large changes in shoreline positioning
based on flood/drought conditions or tidal signatures. Large
bodies of water and shallow ponds would bring unique
behaviour and considerations, and will require alterations to
the above, more generalized methodology.

We believe that with further testing, this has the opportunity
for real applications as an addition to current monitoring
practices, expanding monitoring range and frequency. We
plan to continue testing this in a range of environments and
with different types of algae, including different lakes and
expanding to rivers and shallow marine waters. The use of
NDCI as a band combination for the analysis means that the
scale of monitoring can also be expanded to open-source satellite
imagery such as the Sentinel 2 program. Finally, this method
could help provide remote sensing insight in future studies,
giving researchers the opportunity to conduct a historical
analysis of HAB severity and activity with the series of
methods we outlined in this paper.

5 Concluding remarks

We demonstrate that multi-spectral satellite surface reflectance
rasters at 3 m-resolution can be utilized to monitor harmful algal
blooms (HAB) in lakes via time-series analysis of NDCI values.
Comparing unsupervised classification with the k-means algorithm
of any days compared to a non-bloom baseline raster highlight HAB
events in Darlings Lake, New Brunswick, at a similar or higher

Frontiers in Remote Sensing frontiersin.org15

Evans et al. 10.3389/frsen.2025.1633491

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1633491


magnitude than existing aquatic vegetation. The classified k-means
maps of mean bloom days effectively visualize the distribution and
relative concentration of biotic activity across Darlings
Lake (Figure 4).

Mean calculated NDCI values in the area surrounding in situ
water monitoring devices showed a positive correlation against
measured phycocyanin values (Figure 8; Equation 4). HAB events
of various severity were classified successfully, with lake-wide, severe
events being classified higher than smaller, localized blooms. Plots
demonstrating annual bloom activity via compiling bloom extent
estimates can exhibit where HABs appear most
frequently (Figure 6).

The above methodology provides a guide for image processing
and analysis to monitor HAB activity in near real time, and estimate
severity via a NDCI-phycocyanin proxy. Our processing and
analysis methodology agree with in situ data and fieldwork
conducted by the HRAA, indicating the use of machine-learning
techniques on high-resolution satellite imagery can give users near-
real-time and historical insight of HAB dynamics in their water
bodies. In the future this routine can be further developed to reliably
estimate cyanobacteria blooms in a variety of freshwater
environments, increasing the scope of modern HAB analysis and
mitigation efforts.
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