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In this study, multispectral images were used to detect toxic blooms in Villarrica
Lake in Chile, using a time series of water quality data from 1989 to 2024, based
on the extraction of spectral information from Landsat 8 and 9 satellite imagery.
To explore the predictive capacity of these variables, we constructed 255 multiple
linear regression models using different combinations of spectral bands and
indices as independent variables, with phycocyanin concentration as the
dependent variable. The most effective model, selected through a stepwise
regression procedure, incorporated seven statistically significant predictors
(p < 0.05) and took the following form: FCA = N/G + NDVI + B + GNDVI +
EVI 4+ SABI + CCI. This model achieved a strong fit to the validation data, with an
R? of 0.85 and an RMSE of 0.10 pg/L, indicating high explanatory power and
relatively low error in phycocyanin estimation. When applied to the complete
weekly time series of satellite observations, the model successfully captured both
seasonal dynamics and interannual variability in phycocyanin concentrations
(R? = 0.92; RMSE = 0.05 pg/L). These results demonstrate the robustness and
practical utility for long-term monitoring of harmful algal blooms in Lake
Villarrica.
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remote sensing, phycocyanin, algal blooms, lake, Chile

1 Introduction

Algal blooms in oligotrophic lakes have become a growing concern for inland aquatic
systems, where their frequency is increasing at an alarming rate (Feng et al., 2024). These
lakes, once characterized by low nutrient levels and clear waters, are now vulnerable to the
impacts of the triple planetary crisis of climate change, biodiversity loss and water pollution
(Jenny et al., 2020; Mishra, 2023). These interconnected challenges have created conditions
that exacerbate algal bloom, posing significant risks to aquatic ecosystems, water quality and
human health (Igwaran et al., 2024).
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Among the most damaging blooms are those caused by
cyanobacteria, also known as blue-green algae (Vadeboncoeur
et al, 2021). Cyanobacterial blooms are especially dangerous
because many species of this group produce toxins that can be
harmful to aquatic life, terrestrial animals and humans (Chorus, I., &
Welker, 2021; Moreira et al., 2022; Sviréev et al.,, 2022). These
blooms are characterized by the presence of both general
pigments, such as chlorophyll-a, and more specific pigments,
such as phycocyanin, a marker for cyanobacteria (Konik et al.,
2023). Phycocyanin is not only crucial for the photosynthetic
processes of cyanobacteria but also serves as a valuable indicator
to monitor their presence and growth (Almuhtaram et al., 2021).
Detection of this pigment has become essential for tracking bloom
dynamics and assessing water quality in affected lakes (Binding et al.,
2021). Rising global surface temperatures, driven by climate change,
have created increasingly favorable conditions for the growth and
persistence of cyanobacterial blooms (Zepernick et al., 2023).
Warmer waters favor stratification of lakes, reducing water
circulation and creating nutrient-rich environments in the upper
layers where cyanobacteria thrive (Chorus, I., & Welker, 2021). In
addition, warmer temperatures can increase the metabolic rate of
these algae, further accelerating the formation of blooms (Wu et al.,
2024). The cumulative effects of climate change, combined with
nutrient enrichment from agricultural runoff and urbanization, have
intensified the frequency and severity of these toxic blooms, turning
once pristine oligotrophic lakes into sites of ecological concern
(Sivarajah, 2020; Devlin and Brodie, 2023).

The need for advanced monitoring and mitigation strategies is
more urgent than ever, as harmful algal blooms threaten not only
aquatic biodiversity, but also the sustainability of freshwater
resources for human use (Ahmed et al, 2022; Kazmi et al,
2022). Remote sensing technologies, especially those capable of
detecting phycocyanin, are increasingly important for -early
detection and management of these blooms (Zahir et al., 2024).
On the other hand, we acknowledge the complexity of inland water
optics, including the influence of inherent optical properties that can
introduce  uncertainty  into  reflectance-based  estimates.
Additionally, the use of multispectral satellite data particularly
from the Landsat series is limited by its relatively broad spectral
bands, which can hinder the accurate detection of narrow
absorption features, such as those associated with phycocyanin. A
wide range of indices have been created and evaluated, from those
adapted from agricultural and terrestrial vegetation applications to
combinations of spectral bands specifically designed to detect
primary productivity in aquatic environments (Luo et al., 2023).
For example, spectral indices such as Surface Algal Bloom Index
(SABI) (Boucher et al., 2018) and Flotation Algal Index (FAI) (Ma
et al., 2021) have been used in Lake Villarrica to determine the
spatial distribution of Chl-a, while Green Normalized Difference
Vegetation Index (GNDVI) and Normalized Difference Vegetation
Index (NDVI) have been applied to measure chlorophyll
concentration in the aquatic system of Lake Laja (Rodriguez-
Lopez et al., 2020). Despite these advances, significant challenges
remain. Many indices do not perform optimally in aquatic
ecosystems other than those for which they were initially
developed and validated (Lukhabi et al., 2023). This is because
conditions in different lakes are influenced by a variety of factors,
including  geographic,

meteorological, and physicochemical
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characteristics (Melese and Debella, 2023). It is therefore essential
to fill these gaps by developing methods that are more accurate site-
specific based on the predominant optical characteristics of the
aquatic system under study.

Statistical techniques, such as linear regression, are commonly
used to estimate water quality parameters (Gad et al., 2023; Adjovu
et al, 2023). For example, Rodriguez-Lopez (2020) developed
models to estimate chlorophyll concentrations in six lakes in
south-central Chile. In a subsequent study (Rodriguez-Lopez
et al, 2020), it was shown that combining regression techniques
with remote sensing data could achieve the same objective, allowing
the study of spatial and temporal variability in these aquatic systems.
The integration of statistical methods with data from a variety of
sources including in situ water quality monitoring and satellite
observations can improve the ability to monitor and manage
aquatic vegetation (Mukonza and Chiang, 2023; Batina and
Krtali¢, 2024). Compared with nonlinear models or analytical
approaches, linear regression offers the advantages of simplicity,
interpretability, and computational efficiency, which are valuable
when establishing baseline predictive models for water quality. This,
in turn, will contribute to the conservation and sustainable
management of these critical natural resources. In Chile, species
responsible for harmful algal blooms, mainly cyanobacteria, have
been reported in lakes such as Villarrica, Laguna Grande de San
Pedro, Vichuquén and Laja (Rodriguez-Lopez et al, 2020;
Rodriguez-Lépez et al., 2023; Yépez et al., 2024). Therefore, the
objective of this work is to develop statistical models to estimate algal
pigments by combining water quality data with satellite
observations.

2 Materials and methods
2.1 Lake Villarrica description

This lake system located at 39°18'S latitude and 72°05'W
longitude is one of the most studied Chilean lakes due to its
environmental, economic and social importance (Rodriguez-
Lépez et al., 2023). Its basin has multiple uses including tourism
and agriculture. In addition, it has two important cities in the
Araucania Region on its banks: the city of Villarrica and the city
of Pucon. A secondary water quality standard has been implemented
for this lake that monitors the parameters of Chl-a, nitrogen and
phosphorus nutrients and water transparency, however, every
summer an algal bloom appears that extends over the largest
surface of the lake and lasts for several months during the year
(Rodriguez-Lopez et al., 2023).

2.2 Water quality data sources

Limnological parameters, including water temperature (°C),
Chlorophyll-a (pg/L), Phycocyanin (pg/L), turbidity (NTU), and
dissolved oxygen (ppm), were recorded during monitoring
campaigns conducted by the Direccién General de Aguas (DGA)
of Chile between 1989 and 2024. The data, collected at seven
monitoring stations as detailed by Rodriguez-Lopez et al. (2023),
initially covered the four stations from 1989 to 2009. However, from
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2009 onwards, probably due to resource constraints, measurements
were only made in summer and spring. The monitored parameters
included surface temperature (measured using the standard
thermometry method 2250 B of the NCh 2313 compendium),
surface chlorophyll-a (Chl-a, using the fluorometric method),
total phosphorus (determined by the standard method 4500 P B,
22nd edition, EAM), total nitrogen (measured using the standard
method 4500-N C, 22nd edition, EAM), and water transparency
(assessed by Secchi disk depth, SDD). At each station in the lake,
water samples were collected from five different depths usinga 5 L
Niskin bottle. These samples were stored in a thermal container.
These samples were stored in thermally insulated boxes, kept cold at
about 5 °C on ice, before being transported to a collection center for
analysis. Chemical analyses were performed at the DGA chemical
laboratory, accredited according to Chilean standard NCh ISO
17025 of 2005 by the Instituto Nacional de Normalizacién.

2.3 Satellite data, pre-processing and
spectral indicators calculation

From October 2014 and March 2024, satellite imagery from
Landsat eight and Landsat 9 (L8, L9) was acquired across different
seasons. A total of 70 images were downloaded, 50 from L8 and
20 from L9 corresponding to the dates of in situ sampling conducted
during this period. Landsat imagery, developed jointly by NASA and
the United States Geological Survey (USGS) (Chatenoux et al,
2021), was obtained through the Earth Explorer platform
(https://earthexplorer.usgs.gov/, accessed on 14 October 2024).
All images correspond to Collection 2 Level one and have a
spatial resolution of 30 m. They were selected based on low
cloudiness criteria, ensuring that sampling sites were cloud- and
fog-free, and that the acquisition date was quite close to the
monitoring date (+3 days) in a large part of the images. Quality
assessment (QA) bands from each satellite were used to mask clouds,
cirrus clouds, and shadows.

Subsequently, the images were processed using the ACOLITE
software (version 20231023.0, https://github.com/acolite, and

accessed on 21 October 2024), which applies various
atmospheric correction algorithms to derive surface-level
reflectance  (Rrs). ACOLITE integrates the atmospheric

correction methods and processing tools developed by the
Royal Belgian Institute of Natural Sciences (RBINS) specifically
for aquatic remote sensing applications (Vanhellemont, 2020;
Vanhellemont and Ruddick, 2016). In this study, two correction
approaches were used: the default Dark Spectrum Fitting (DSF)
algorithm (Vanhellemont and Ruddick, 2018; Vanhellemont,
2019; Vanhellemont, 2020) and the earlier Exponential
Extrapolation (EXP) method (Vanhellemont and Ruddick, 2014;
Vanhellemont and Ruddick, 2015; Vanhellemont and Ruddick,
2016). Corrected Rrs bands for water and some spectral indices
were derived from the ACOLITE output. These included
individual bands, various band ratios, and additional spectral
indices, which were subsequently used as input variables in the
next steps for phycocyanin prediction. The bands used ranged
from the blue to the shortwave infrared region (B, G, R, NIR,
SWIR) and a total of 11 band ratios and 17 spectral indices were
calculated. These variables were selected based on expert criteria
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and an extensive literature review focused on spectral indicators
related to water quality, chlorophyll concentration, algal blooms,
and nutrient levels in aquatic environments that could be related to
phycocyanin (Viso-Vazquez et al, 2021; Wang et al,, 2022;
Rodriguez-Lopez et al., 2023; Magri et al, 2023; Lyu et al,
2023; Choi et al., 2023). The surface reflectance values (ps) of
each indicator were extracted in a 3 x 3 pixel matrix per sampling
point (Rodriguez-Lopez et al., 2023). The extraction sites were
located entirely over open water, free from coastal influences,
floating vegetation, and shadows. Although Figure 1 does not
display the precise locations of the sampling points due to the
map scale, they are situated well away from the coastline.
Importantly, both the sampling points and the extraction pixels
were free of clouds and fog. This extraction was carried out in
QGIS 3.40 software (QGIS Development Team, 2024) and the area
of interest (Roi) was downloaded from the Chilean Geospatial Data
Infrastructure (IDE-Chile, https://www.ide.cl/) accessed on
04 September 2024. Table 1 show the spectral indices obtained
and its specific algorithm.

2.4 Regression models

Building upon previous work (Rodriguez-Lopez et al., 2023 PC),
we developed linear regression models to estimate concentrations of
the pigment phycocyanin (FCA). In this study, a broader set of
explanatory variables was employed, derived from the processing of
satellite imagery and incorporating both spectral bands and
vegetation indices (see Section 2.3). Due to the limited volume of
data available at individual stations (usually <90 data points), we
aggregated all observations across stations to construct generalized
models rather than site-specific ones.

To identify the variables most strongly associated with FCA, we
first computed pairwise Pearson correlation coefficients between all
candidate predictors and the dependent variable. Only those
variables exhibiting statistically significant correlations (pv <
0.05) were retained for model development.

Regression models were then constructed using three variable
selection techniques: stepwise selection (Efroymson, 1960),
backward elimination (Kutner et al., 2005), and forward
2023),
parsimonious and explanatory model configuration. These

selection (James et al., to determine the most
approaches iteratively assess combinations of predictors based
on established statistical criteria, such as the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC), to
optimize the balance between model complexity and explanatory
performance.

While linear regression was chosen for its high degree of
interpretability a critical objective for understanding the
environmental drivers of phycocyanin its suitability was formally
evaluated. We conducted direct comparative analysis against a set of
common non-linear machine learning models, including Random
Forest, Gradient Boosting, Support Vector Regression, and a multi-
layer perceptron Neural Network (Rodriguez-Lopez et al.,, 2023).
This analysis was designed to empirically determine whether the
substantial loss in model interpretability associated with these more
complex algorithms would be justified by a statistically significant

improvement in predictive performance.
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2.5 Models' validation

To assess the generalization performance of the candidate
phycocyanin (FCA) regression models and mitigate the risk of
overfitting inherent (Cohen and Jensen, 1997) in using model-fit
statistics alone (such as AIC or in-sample R*), we employed k-fold
cross-validation (with k = 10) (Mahmood and Khan, 2009). This
procedure provides a robust assessment of predictive capability on
data unseen during model training, which is particularly critical
given the aggregation of observations across sites (see Section 2.4).

To more rigorously test model stability and generalizability,
several advanced procedures were implemented. First, we conducted
Leave-One-Out Cross-Validation (LOOCV), the most stringent
form of cross-validation for a dataset of this size. Second,
bootstrap validation with 1,000 iterations was performed to
generate 95% confidence intervals for performance metrics,
providing a robust measure of model stability. Third, temporal
validation was executed by training the model on earlier
chronological data and testing it on more recent observations to
explicitly assess its predictive power on future, unknown conditions.
Finally, the selected ordinary least squares (OLS) model was
benchmarked against regularized regression techniques (Ridge,
Lasso), which penalize complexity to directly diagnose and
prevent overfitting. The final model was selected based on the
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optimal trade-off between predictive accuracy (maximizing R’
and minimizing RMSE) (Preacher, 2006), model parsimony, and
consistent, robust performance across this entire suite of
validation protocols.

Finally, to ensure that the assumptions underpinning linear
regression were met, diagnostic checks were performed on the
selected model. Predictor collinearity was assessed by calculating the
Variance Inflation Factor (VIF) for each variable. Subsequently,
residuals were examined through visual inspection of plots against
fitted values to confirm linearity and homoscedasticity (Tsai et al.,
1998), while quantile-quantile plots (Augustin et al., 2012) were used to
assess the normality of the residual distribution. This comprehensive
validation and diagnostic process ensures high confidence in the final
model’s predictive power and its applicability for estimating FCA.

3 Results

3.1 Behavior of limnological parameters
Figure 2 and Table 2 show seasonal variations in turbidity,

temperature, dissolved oxygen (DO), chlorophyll-a (Chl-a),

dissolved organic matter (DOM) and phycocyanin in Lake
Villarrica during 1985-2024.
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TABLE 1 Spectral indices used.

10.3389/frsen.2025.1633522

N° Index Abbreviation Formula References
1 Flotation Algal Index FAI FAI = Rnir — R'nirR'nir = Rred + (Rswir — Rred) x (Anir —  Hu 2009; Ma et al., 2021
Ared)/(Aswir — Ared)
2 Surface Algal Bloom Index SABI (NIR — RED)/(BLUE + GREEN) Alawadi, 2010; Boucher et al., 2018
3 Cyano-Chlorophyta Index CCI (R490 — R640)/(R570 — R630) Zhou et al., 2018; Zhou et al., 2019
4 Normalized Difference Vegetation NDVI (NIR - R)/(NIR + R) Rouse et al.,, 1976; Markogianni et al.,
Index 2018
5 Normalized Difference Chlorophyll NDCI (RRE — RRed)/(RRE + RRed) Mishra and Mishra, 2012; Mishra et al.,
Index 2014
6 Green Normalized Difference GNDVI (NIR — G)/(NIR + G) Gitelson et al., 1996; Mejia Avila et al.,
Vegetation Index 2023
7 Enhanced Vegetation Index EVI G x ((NIR = R)/(NIR + C1 x R — C2 x B+ L)) Huete et al., 2002; Rodriguez-Lopez
et al., 2023
8 Emergent Vegetation Spectral Index EVSI (R = SWR)/(R + SWR) Qing et al. (2020)
9 Green Chlorophyll Index GCI (NIR/G) - 1 Gitelson et al., 2005; Rodriguez-Lopez
et al., 2020
10 Modified Normalized Difference MNDWI (G - SWIR)/(G + SWIR) Xu (2006)

Water Index

11 Normalized Ratio Vegetation Index NRVI

(R/NIR -1)/(R/NIR +1)

Markogianni et al., 2018; Mejia Avila
et al,, 2023

12 Green Difference Vegetation Index GDVI NIR - G

Sripada et al., 2006; Mokarram et al.,
2015

13 Normalized Area Vegetation Index NAVI

(1 — pAl/pA2) =1 — RVI-1

Carmona et al.,, 2015; Venancio et al.,
2020

14 Renormalized Difference Vegetation = RDVI
Index

(NIR - R)/+/(NIR + R)

Vescovo et al. (2012)

15 Vegetation Atmospheric Resistance VARI
Index

16 Atmospherically Resistant Vegetation =~ ARVI
Index

17 VI Green VI

Turbidity is lowest in spring (0.49 NTU) and highest in autumn
(5.51 NTU), coinciding with a marked increase in DOM during
autumn (5.27 QSU), probably indicative of organic matter inputs.
Water temperature ranges from coldest in winter (10.31 °C) to
warmest in summer (21.36 °C) following seasonality. DO peaks in
autumn (11.33 ppm), while chlorophyll-a concentrations are highest
in autumn (8.57 pg/L), suggesting high biological activity.
Phycocyanin follows a similar trend, with higher values in
autumn (6.21 pg/L) and lower in spring (0.16 pg/L). Variability
is generally higher for DOM and phycocyanin across seasons,
highlighting dynamic changes in water quality parameters.

3.2 Correlation matrix

The correlation analysis was performed to evaluate the linear
associations between all potential predictor variables (derived as
described in Section 2.4) and the target variable, phycocyanin
(FCA). The complete matrix of Pearson correlation coefficients (r)

Frontiers in Remote Sensing

(G-R)/(G+R-B)

(NIR = (R =y x (R = B)))/(NIR + (R =y x (R = B)))

(G - R)/(G +R)

Gitelson et al., 2002
Kaufman & Tanre, 1992

Cheng et al., 2013; Rodriguez-Lopez
et al., 2020

and their corresponding significance levels (p-values) are presented
(Figure 3; Supplementary Figure S1). Based on this analysis, and
adhering to the methodology described (Sections 2.3, 2.4), only
predictor variables exhibiting a statistically significant correlation
with FCA (p < 0.05, confirmed in Supplementary Figure S1) were
selected for inclusion in the subsequent regression modeling phase.

The results highlighted several predictors with strong,
significant linear relationships to FCA (Figure 3). Specifically,
strong positive correlations were identified between FCA and
SABI (r = 0.82), CCI (r = 0.81), the blue spectral band (B; r =
0.78), N/G (r = 0.70), and N/R (r = 0.66). In contrast, significant
negative correlations were observed between FCA and GNDVI
(r = -0.73), NDVI (r = —0.71), and EVI (r = —-0.57).

3.3 Model selection

The variable selection techniques produced a range of high-
performing models, as shown in Table 3. While several models
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yielded high initial R* values, our comprehensive validation
(detailed identified a
parsimonious six-variable model as providing the optimal balance
of predictive power, stability, and robustness against overfitting.
This model, identified through the Stepwise selection method, was
selected as the final model for phycocyanin estimation:

framework in Section 2.5) more

Frontiers in Remote Sensing

FCA = N/G + NDVI + B + EVI + SABI + CCI

This model was chosen because it consistently performed
well across stringent validation tests, including LOOCV and
temporal validation, confirming its suitability for general
application.
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TABLE 2 Seasonal Behavior of limnological parameters in lake Villarrica.

Turbidity (NTU)  Temperature (‘C) DO (ppm) Chl-a (ug/L) DOM (QSU) Phycocyanin (ug/L)
Summer Av 1.59 21.36 9.38 5.08 0.95 2.53
Max 1.76 22.10 9.56 5.89 1.09 3.61
Min 1.27 20.64 9.11 3.95 0.78 1.55
SD 0.28 0.73 0.24 1.01 0.16 1.03
N 35 35 35 35 35 35
Autumn Av 5.51 18.46 11.33 8.57 5.27 6.21
Max 6.12 20.00 12.50 10.67 5.90 8.02
Min 0.28 0.73 0.24 1.01 0.16 0.70
SD 0.79 0.54 0.27 245 0.56 1.22
N 35 35 35 35 35 35
Winter Av 0.87 10.31 9.45 2.89 242 0.53
Max 0.97 10.90 10.43 347 3.44 1.10
Min 0.68 9.96 8.90 1.79 0.97 0.23
SD 0.17 0.52 0.85 0.96 1.29 0.50
N 35 35 35 35 35 35
Spring Av 0.49 12.03 10.75 3.12 1.89 0.16
Max 0.55 12.99 11.87 4.99 297 0.25
Min 0.37 11.05 9.53 1.73 0.76 0.08
SD 0.10 0.97 1.17 1.69 1.11 0.09
N 35 35 35 35 35 35

3.3.1 Model robustness and overfitting analysis

To validate the structural integrity of the selected six-predictor
model, a suite of advanced diagnostics was performed to move
beyond standard performance metrics and explicitly assess its
robustness, stability, and risk of overfitting. The results provide
strong empirical support for the model’s generalizability.

First, to quantify the stability of the model against variations in the
training data, a bootstrap validation with 1,000 resamples was
conducted. This analysis yielded a tight 95% confidence interval for
the coefficient of determination (R*) of [0.821-0.927], demonstrating
that the model’s high predictive power is not an artifact of a specific data
partition but is consistently high across the resampling space.

A critical diagnostic for overfitting involved comparing the
standard OLS model complexity-penalized Ridge
regression model. The performance of the Ridge model (R* =

with a

0.835) was nearly identical to that of the unpenalized OLS model
(R*> = 0.834). This lack of improvement from a penalized approach
provides compelling evidence that the OLS model is not over-
parameterized and that its performance is not inflated by
spurious correlations from its predictors.

Furthermore, to ensure the reliability and interpretability of the
individual predictor coefficients, multicollinearity was assessed
using the Variance Inflation Factor (VIF). All six predictors in
the final model exhibited VIF values below 6.5, a result well within
the acceptable threshold, confirming the absence of debilitating
collinearity.
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Collectively, these diagnostic tests, visualized in Figure 4,
confirm that the selected six-variable model is not only accurate
but also statistically robust, stable, and well-specified, justifying its
selection as a reliable estimator for phycocyanin concentrations in
Lake Villarrica.

3.3.2 Comparative analysis with non-linear models

To provide a comprehensive justification for the choice of a
linear framework, the performance of the final selected model was
benchmarked against a set of common non-linear machine learning
algorithms. The results, visualized in Figure 5, confirm the suitability
of the linear approach. While ensemble models such as Random
Forest showed a marginally higher mean cross-validated R®
(Figure 5A), a Mann-Whitney U test confirmed that this
performance difference was not statistically significant (p =
0.9937) (Figure 5H).

Further diagnostics revealed broad similarities in model
Both exhibited
comparable learning curves and low overfitting risk (Figures
5B,C), produced similarly distributed residuals (Figure 5E), and

behavior. linear and non-linear models

showed visually alike predictive accuracy when plotted against
actual values (Figure 5F). Critically, an analysis of feature
importance demonstrated that both model types identified a
similar set of influential spectral indices, with the Cyanobacteria
(CCD all
approaches (Figure 5D).

Index ranking as a key predictor across
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TABLE 3 Comparison of top-performing models for Phycocyanin (FCA) estimation. Performance metrics (humber of variables, R?, RMSE in pugL-1) for
leading linear regression models identified via Stepwise, Backward, and Forward selection methods.

Model Num variables R? RMSE (upg/L) Method
ECA = N/G + NDVI + B+ EVI + SABI + CCI 6 0.842 0.107 Stepwise

FCA = N/G + NDVI + B+ GNDVI + EVI + SABI + CCI 7 0.852 0.102 Stepwise

FCA = N/G + N/R + NDVI + B+ EVI + SABI + CCI 7 0.850 0.105 Backward

FCA = N/G + N/R + NDVI + B+ GNDVI + EVI + SABI + CCI 8 0.844 0.104 Stepwise

ECA = N/R + NDVI + B+ GNDVI + EBI + SABI + CCI 7 0.838 0.114 Forward

FCA = N/G + NDVI + B+ GNDVI + EVI + SABI 6 0.775 0125 Stepwise

FCA = NDVI + B+ GNDVI + EVI + SABI + CCI 6 0.776 0.127 Stepwise

FCA = N/G + N/R + NDVI + B+ EVI + SABI 6 0.739 0.129 Stepwise

Given these comparable performance and diagnostic  the ensemble methods (Figure 5G). This efficiency, combined

characteristics, the decision was based on practical advantages.
The linear model offers significantly greater computational
efficiency, with training times orders of magnitude faster than
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with the superior interpretability of its coefficients, positions the
linear model as the optimal choice on the performance-
interpretability trade-off spectrum (Figure 5I). Therefore, because
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Validation and diagnostic analysis of the final phycocyanin (FCA) model. The panels illustrate key assessments including sample size adequacy (A)
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model selection using information criteria (B), overfitting diagnostics through learning curves and regularization paths (C,D) model stability via bootstrap
validation (E) residual analysis for linearity and normality (F,H), temporal validation performance (G), predictor importance (l) cross-validation robustness
(J) and summaries of model complexity versus performance (K,L).
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no significant performance gain was observed to justify the
substantial loss of interpretability and efficiency, the linear
regression model was confirmed as the most appropriate choice
for the scientific objectives of this study.

3.4 Estimation models

The selected model (Section 3.3) was used to estimate FCA
concentrations across the full time series. Due to data limitations at
individual stations, model evaluation was conducted at the weekly
scale for the entire lake (Figure 6), rather than per site. The linear
model successfully captured the seasonal dynamics, interannual
variability, and several extreme values observed in the measured
data. Overall model performance was high, with an R* of 0.91 and
RMSE of 0.050.
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To further assess the model’s utility for operational and year-
round monitoring, its performance was disaggregated and evaluated
by season. The analysis revealed consistently high performance
across distinct seasonal conditions. The model achieved an R* of
0.93 (RMSE = 0.057 pg/L) in Autumn, an R* of 0.88 (RMSE =
0.089 pg/L) in Summer, and an R* of 0.80 (RMSE = 0.085 pg/L) in
Spring. This remarkable consistency is quantified by the coefficient
of variation (CV) for the R? metric across seasons, which was an
exceptionally low 0.063 (6.3%). This result provides strong empirical
evidence that the model’s predictive power is stable and reliable
throughout the year, making it a suitable tool for continuous
monitoring applications.

Given the use of linear regression and implementation of cross-
validation during model selection, an additional train-test split was
not required. The model’s parsimony and interpretability further
support its application for long-term phycocyanin estimation.
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Observed vs predicted phycocyanin (FCA) concentrations over time. Weekly time series from 2014 to 2021 showing measured (blue) and modelled

(red) FCA value.

3.4.1 Mapping model
In Figure 7 we show the mapping model in a Landsat eight
satellite image of 03-14-2020.

3.5 Algal community variability

In Figure 8 we can observe bar diagrams comparing the seasonal
abundance of eight phytoplankton groups at seven stations (VRI to
VR7) during summer and spring. Bacillariophyceae (brown bars)
dominate in both seasons, with higher total abundance observed in
summer, especially in VR5, VR6 and VR7. In particular,
Cyanophyceae (green bars) show a significant presence in
VR7 during summer, indicating possible cyanobacterial blooms,
while their contribution is minimal in spring. Other groups, such as
Chlorophyceae (yellow) and Cryptophyceae (blue), are present but
less abundant in both seasons.

Seasonal differences reveal that total phytoplankton abundance
is systematically higher in summer, suggesting favorable
environmental conditions, such as warmer temperatures or
greater nutrient availability. In spring, abundance is lower at all
stations, with Bacillariophyceae still dominant but other groups
contributing more visibly. Station VR7 stands out for its great
variability, with Cyanophyceae thriving in summer but almost
absent in spring. These patterns highlight changes in community
composition influenced by seasonal and spatial factors.

In Figure 9 the bar plots depict the abundance of various
cyanobacteria species across seven stations (VR1 to VR7) during
summer (left) and spring (right) in Villarrica lake. In summer, total
cyanobacteria abundance is significantly higher, particularly at VR4,
VR5, and VR7, with dominant species such as Microcystis spp.,

Dolichospermum lemmermannii, and Anabaena spp. VR5 shows the
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highest abundance, while VR6 and VR7 display relatively lower
totals but with notable contributions from Anabaena spiroides and
Aphanocapsa sp. In spring, cyanobacteria abundance is drastically
reduced at all stations, with fewer dominant species, including A.
spp., A. spiroides, and Microcystis elachista. The seasonal variation
highlights a pronounced bloom in summer, likely driven by
favorable conditions, while spring displays a more subdued
cyanobacteria presence.

4 Discussion

Lake Villarrica, located in the south-central of Chile, is one of
only two lakes in the country alongside Lake Llanquihue that benefit
from the application of a secondary environmental quality standards
for the protection of the surface continental waters as well as the
Exempt Resolution SMA N°671/2016 which proposes and justifies
the modification of the water quality monitoring performed by the
DGA in Lake Villarrica due to multiple anthropogenic impacts, the
lakes condition has changed from oligotrophic to mesotrophic,
which has led to the implementation of Decree N°19/2013 of the
Ministry of Environment (Rodriguez-Lopez et al., 2023). These
standards are crucial for protecting aquatic ecosystems and
public
anthropogenic pressure. The lake holds significant ecological,

health, particularly in regions under increasing
economic, and social value, positioning it as a major tourist
destination in southern Chile. Its strategic location also includes
two urban centers on its shores: the cities of Villarrica and Pucdn,
according to the last census conducted in 2017 the population is
55,478 habitants and 3,260 habitants respectively (INE, 2017), both
of which contribute to, and are impacted by, the dynamics of the

lake’s water quality.
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FIGURE 7
Mapping of the best estimation model selected.
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FIGURE 8
Abundance of algal groups in the seven-water station in Villarrica Lake.

Over the past decade, Lake Villarrica has experienced recurrent
episodes of algal blooms, primarily during the austral summer
months, which coincide with the peak tourist season. These
events have raised concerns due to their potential ecological
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consequences, aesthetic impacts, and implications for recreational
water use. More recently, there has been a noticeable increase in both
the frequency and duration of these blooms, which now extend from
late spring through to early autumn. This shift in phenology is likely
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linked to climate driven changes, particularly the warming of surface
water temperatures, which create more favorable conditions for
bloom development (Rodriguez-Lopez et al., 2023).

In our previous research (Rodriguez-Lopez et al., 2023), we
focused on the remote detection of algal blooms in Lake Villarrica
using satellite-based observations and field validation techniques.
These studies enabled us to characterize the spatial and temporal
patterns of bloom occurrences, as well as to identify the dominant
algal taxa responsible for bloom formation. Notably, we found that
the blooms were frequently dominated by Dolichospermum circinale
(formerly Anabaena circinalis), a filamentous cyanobacterium
belonging to the class Cyanophyceae. This species is known for
its ability to produce harmful cyanotoxins, raising additional
concerns for human and ecosystem health.

In Rodriguez-Lopez et al. (2023), we extended this line of
research by the of
phycocyanin concentrations as an indicator of bloom toxicity.

assessing potential remotely sensed
Phycocyanin is a water-soluble pigment specific to cyanobacteria
and serves as a reliable proxy for their presence and abundance. By
estimating phycocyanin levels using hyperspectral and multispectral
satellite data calibrated with in situ measurements, we aimed to
distinguish potentially toxic cyanobacterial blooms from non-toxic
algal proliferations. This approach contributes to the development
of early warning systems and management tools for monitoring
harmful algal blooms (HABs) in freshwater ecosystems.

Unlike earlier approaches that primarily emphasized presence-
absence classification, our objective was to develop predictive
models capable of estimating continuous phycocyanin values
using satellite-derived data.

We employed surface reflectance data obtained from the
Landsat satellite series, specifically leveraging information from
the blue, green, red, and near-infrared (NIR) spectral bands. In
addition to individual bands, we computed a suite of spectral indices
known to be relevant for aquatic environments and vegetation
dynamics, including the Normalized Difference Vegetation Index
(NDVT), Green NDVI (GNDVI), Enhanced Vegetation Index (EVI),
Surface Algal Bloom Index (SABI), Cyanobacteria Index (CCI), and
various band ratio combinations such as NIR/Green (N/G).
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To explore the predictive capacity of these variables, we
constructed 255 multiple linear regression models using different
combinations of spectral bands and indices as independent
variables, with phycocyanin concentration as the dependent
variable. Model performance was assessed using a set of
validation metrics, including the coefficient of determination (R?)
and root mean square error (RMSE), and we retained the ten
highest-performing models for further analysis.

The most effective model, selected through a stepwise
regression  procedure, incorporated statistically
significant predictors (p < 0.05) and took the following form:
FCA = N/G+ NDVI + B + EVI + SABI + CCI

This model achieved a strong fit to the validation data, with an
R? 0f 0.852 and an RMSE of 0.102 pg/L, indicating high explanatory
power and relatively low error in phycocyanin estimation. When

seven

applied to the complete weekly time series of satellite observations,
the model successfully captured both seasonal dynamics and
interannual variability in phycocyanin concentrations (R*> = 0.91;
RMSE = 0.050 ug/L). These results demonstrate the robustness and
practical utility for long-term monitoring of harmful algal blooms in
Lake Villarrica.

The inclusion of multiple vegetation and algal indices allowed
for improved sensitivity to variations in water optical properties
associated with  cyanobacterial Notably, the
combination of traditional vegetation indices (e.g., NDVI, EVI)

abundance.

with indices specifically tailored to cyanobacterial detection (e.g.,
SABI, CCI) enhanced the model’s capacity to discriminate bloom
conditions under a range of environmental scenarios.

Our findings support the integration of satellite-based regression
modeling as a cost-effective and scalable tool for monitoring toxic
cyanobacterial blooms in freshwater ecosystems. The approach not
only enables frequent and spatially extensive assessments but also
provides a solid foundation for the development of early warning
systems to protect public health and aquatic biodiversity. We expect
future research to incorporate in situ spectral measurements and
explore the integration of higher resolution sensors, such as
Sentinel-2A/B, to improve model calibration and support more
robust water quality assessments.
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5 Conclusion

This study highlights the potential of satellite remote sensing
specifically the use of Landsat imagery for supporting the
continuous monitoring of harmful algal blooms (HABs) in
ecologically and socially valuable lakes such as Villarrica in southern
Chile. A multivariate regression model, integrating both general (NDVI,
EVI) and cyanobacteria-targeted indices (SABI, CCI), demonstrated
promising accuracy in estimating phycocyanin concentrations (R* =
0.852; RMSE = 0.102 pg/L), a key proxy for toxic cyanobacterial
presence. While these results are encouraging, it is important to
acknowledge the limitations associated with the moderate spatial
and spectral resolution of Landsat data, which may reduce the
model’s sensitivity to optically complex water conditions influenced
by CDOM, suspended sediments, or bottom effects.

From an applied perspective, these findings offer a useful
foundation for developing early warning systems to support lake
management strategies, especially in regions facing increasing
pressure from climate change and eutrophication. Future efforts
should incorporate in situ spectral measurements and leverage
higher-resolution satellite sensors (e.g., Sentinel-2 or hyperspectral
missions) to improve detection capability and enable more
responsive, cost-effective monitoring programs tailored to the needs
of local water authorities.
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