AUTHOR=Cede Alexander , Rajagopalan Ragi , Yu Yinan , Herman Jay , Huang Liang-Kang , Blank Karin , Marshak Alexander , Smith Allan , Lorentz Steven TITLE=EPIC and NISTAR radiometric stability assessment using ERA5 reanalysis data JOURNAL=Frontiers in Remote Sensing VOLUME=Volume 6 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/remote-sensing/articles/10.3389/frsen.2025.1646764 DOI=10.3389/frsen.2025.1646764 ISSN=2673-6187 ABSTRACT=A technique to determine the radiometric stability of the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR), the two Earth-viewing instruments operating aboard the Deep Space Climate Observatory (DSCOVR) satellite, which is orbiting the Sun at the Lagrange-1 point, L1, approximately 1.5 million kilometers away from Earth, has been developed and applied. Apart from the satellite’s own measurements, it only uses output from the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate data center (ERA5). This method can be applied to all channels (and not just a subset) and can be repeated periodically to track the instruments’ stability. The method includes the removal of climatological diurnal and seasonal cycles, a multivariate regression fitting with selected ERA5 model output parameters, and referencing the data to the EPIC 551-nm channel, which has been determined to show no drift over the entire mission lifetime together with the NISTAR photodiode channel (200–1,100 nm). The obtained sensitivity changes were very small, ranging from a maximum total degradation of 3% over 10 years in the short UV (<340 nm) to no detectable changes for some channels. For the EPIC UV channels, the derived results were confirmed through a comparison of the EPIC data with radiances from the Ozone Mapping and Profiler Suite (OMPS). We attribute this excellent instrument performance mostly to the L1 orbit, which is not only an ideal location for Earth observation, but is also extremely beneficial (quiet) with respect to instrument performance. At L1, there are only minor temperature variations and much smaller exposure to charged particles from the Sun compared to satellites orbiting the Earth, which are fully or partly inside the Earth’s radiation belts. In this sense, L1 can be considered “observational and instrumental heaven.” The technique described here could only be applied because DSCOVR has two different instruments (EPIC and NISTAR) observing the same Earth flux input. This suggests that it is extremely useful (maybe even essential) to combine imaging instruments (like EPIC) with integrating instruments (like NISTAR) in remote sensing applications.