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Introduction: Accurate and high-resolution land use and land cover (LULC)
classification remains a critical challenge in ecologically diverse and spatially
heterogeneous dryland environments, particularly in data-scarce regions.
Botswana, with its complex environmental gradients and dynamic land cover
transitions, exemplifies this challenge. While global products such as ESA
WorldCover, Dynamic World (DW), and ESRI Land Cover provide valuable
baselines, their accuracies remain limited (with an overall accuracy of 65-75%)
and often fail to capture fine-scale spatial and thematic details.

Methodology: This study presents one of the first applications of Transformer-
based deep learning models for national-scale LULC mapping in Botswana. The
model was trained on Landsat 8 OLI imagery, integrating field observations,
Dynamic World-derived labels, and Google Earth validation to construct reliable
training datasets in data-limited regions. Qualitative assessments were
conducted using true and false color composites, vegetation and water
indices, and expert validation to evaluate the model's ability to delineate
complex land cover features.

Results and discussions: The Transformer-based model achieved an overall
accuracy of 95.31% on the testing dataset, with a Total Disagreement (TD) of
4.69%, primarily driven by Allocation Disagreement (AD = 3.44%) rather than
Quantity Disagreement (QD = 1.25%). This indicates accurate estimation of class
proportions with some misplacement of classes. F1-scores of 0.80 or higher for
most land cover categories reflect strong thematic performance. Compared to
the global DW product, the model demonstrated superior spatial detail, class-
wise accuracy, and robustness, particularly in urban areas and ecologically
sensitive zones such as the Makgadikgadi Pans and Okavango Delta. Temporal
LULC trajectories reconstructed for 2014, 2019, and 2024 effectively captured
major land change processes, including cropland expansion, grassland
regeneration, and seasonal flooding, providing a valuable tool for
environmental monitoring and sustainable land management in semi-arid
regions.
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1 Introduction

Sustainable natural resource management hinges on timely and
and land
management practices (Azedou et al, 2023). Among the tools
available for these assessments, Land Use Land Cover (LULC)
maps are critical at global, regional, and local scales (Clerici

robust evaluations of conservation interventions

et al,, 2017). LULC changes are recognized as major drivers of
anthropogenic environmental impacts, influencing biophysical
processes such as surface energy balance, hydrology, biodiversity,
and atmospheric composition (Foody, 2002; Lambin et al., 2024;
Pérez-Hoyos et al.,, 2018). Consequently, accurate and temporally
consistent LULC maps are indispensable for a wide range of
applications including urban planning, wetland monitoring,
climate change modeling, carbon accounting, agricultural
planning, ecosystem services valuation, and policy-making
(Clerici et al., 2017; Diengdoh et al, 2020; Gemitzi, 2021;
Nguyen and Henebry, 2019; Talukdar Sea, 2020; Turner et al.,
2007; Herold et al, 2008). However, the quality and utility of
LULC maps are heavily dependent on the per-pixel feature
vector spatial resolution, thematic accuracy, and classification
methodologies used.

Historically, LULC classification relied on field surveys and
aerial photo interpretation, which, although accurate locally, were
labor-intensive, costly, and lacked regional coverage (Adam et al.,
2014). The advent of satellite remote sensing has revolutionized
LULC monitoring, enabling synoptic, multitemporal, and cost-
effective data acquisition across large areas (Attri et al, 2015;
Kuemmerle et al., 2013; Lu and Weng, 2004). Modern satellites
offer high-frequency, multispectral, and high-spatial-resolution
data, enhancing our ability to monitor dynamic land cover
processes with improved consistency (Prasad et al., 2022).

To extract thematic LULC information from remote sensing
data, a variety of classification techniques have been developed.
Machine Learning (ML) algorithms have advanced LULC
classification by improving generalization and classification
efficiency beyond traditional per-pixel methods (Zhang et al,
2022; Song et al., 2019; Pal, 2005). These include supervised and
unsupervised techniques such as k-Nearest Neighbors (kNN) (Tong
et al., 2020; Zerrouki et al., 2019), Support Vector Machines (SVM)
(Gong et al.,, 2013; Pal and Mather, 2005), Random Forests (RF)
(Adam et al., 2014), Artificial Neural Networks (ANN) (Jensen et al.,
2009; Silva et al., 2020), Decision Trees (DT), and Maximum
Likelihood Classification (MLC) (Guermazi et al., 2016). Despite
their proven performance, ML classifiers often struggle with
generalization across heterogeneous landscapes and varying
sensor types, and are limited in their ability to model complex
spatial patterns without extensive feature engineering (Vali et al,,
2022; Han et al., 2023).

The emergence of Deep Learning (DL), a subfield of ML, has
brought transformative improvements to LULC classification
through the use of multi-layered neural networks capable of
learning hierarchical and abstract representations from raw data
(LeCun et al, 2015). DL approaches, particularly Convolutional
Neural Networks (CNNs), have demonstrated superior performance
in tasks involving spatial structure, such as image classification and
object detection (Dhruv and Naskar, 2020; Zhu et al., 2017; Cheng
et al,, 2018). Other DL architectures, such as Recurrent Neural
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Networks (RNNs) and Long Short-Term Memory (LSTM)
networks, have been used to model temporal dependencies in
land cover time series (Chauhan et al., 2018; Sherstinsky, 2020).
More recently, Transformer models—originally developed for
Natural Language Processing (NLP)—have been successfully
adapted for vision tasks due to their ability to capture global
dependencies through self-attention mechanisms (Rahali and
Akhloufi, 2023). Vision Transformers (ViTs) are particularly
well-suited for capturing both global context and fine-grained
spatial
performance in remote sensing and geospatial tasks (Han et al.,
2022; Wang et al, 2024; Liu Z. et al, 2021). Hybrid models
combining CNNs and Transformers have also been proposed to

features and have begun to demonstrate strong

leverage local texture and long-range contextual relationships.
Despite their promise, ViTs remain underutilized in LULC
applications over heterogeneous and ecologically diverse regions
such as Botswana.

Existing global LULC datasets—such as MODIS, ESA
WorldCover and Dynamic World—provide valuable baseline
products but differ in spatial resolution and temporal extent (Luo
etal,, 2024). ESRI Land Use/Land Cover, together with ESA, has also
been used to assess the accuracy of the two LULC maps (Huan,
2022). MODIS (500 m) offers long-term continuity but is limited in
spatial precision (Xiong et al., 2020). By contrast, ESA WorldCover,
ESRI LULC, and Dynamic World offer 10 m spatial resolution but
shorter temporal coverage (Xu et al., 2024).

Moreover, Xu et al. (2024) conducted a global comparison of
10 m GLC datasets and revealed notable inconsistencies in
classification ~accuracy, particularly over fragmented and
heterogeneous land cover classes. Their findings underscore the
limitations of using global datasets for local applications without
contextual adaptation, particularly in mixed-vegetation areas and
transition zones. Therefore, tailored approaches using localized
training data and robust classifiers are essential for achieving
high thematic accuracy in such regions.

Botswana has increasingly become a focal point for LULC
research due to rapid environmental and socio-economic changes
driven by land degradation, climate variability, and land-use
intensification (Mashame and Keatimilwe, 2008; Moleele et al.,
2002). Despite several studies utilizing remote sensing to monitor
land cover changes in Botswana (Adelabu et al., 2014; Brown et al.,
2013), many rely on coarse-resolution imagery, conventional
classifiers, or limited temporal depth. These constraints hinder
the generation of accurate, high-resolution LULC products
necessary for national-scale land management and policy
development.

This study addresses the challenges of LULC mapping by
developing a supervised Transformer model that utilizes Landsat
imagery at a 30-m resolution. The study contributes new knowledge
by demonstrating the applicability of Transformer-based
architectures for LULC classification in heterogeneous African
landscapes, where such models remain underexplored. By
integrating field observations, Dynamic World-derived labels, and
Google Earth for visual validation of Dynamic World labels within
each training and testing polygon, we provide a reproducible
framework for constructing robust training datasets in data-
scarce regions. The objectives of this study are as follows: (i)
model tailored to Botswana’s

Develop a Transformer
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FIGURE 1
Study area map.

heterogeneous LULC characteristics; (ii) Apply the Transformer
model to multi-temporal Landsat imageries from 2014, 2019, and
2024 for further evaluation of the model skill in generating
consistent land cover dynamics. (iii) Assess the relative advantage
of the resulting maps over Dynamic World through visual
inspection with True Color Composite (TCC) and False Color
Composite (FCC) imagery.

By pursuing these objectives, this study adds to the expanding
research that applies Transformer models in remote sensing, aiming
to enhance LULC monitoring in ecologically sensitive and data-
limited regions. Additionally, it assesses the performance of a
Transformer model in comparison to other landcover maps such
as Dynamic World, ESA World Cover, MODIS, and ESRI landcover,
providing valuable insights into their respective strengths and
weaknesses within Botswana’s diverse ecological landscapes. In
doing so, this research presents one of the first applications of
Transformer models for national-scale LULC mapping in Botswana,
highlights best practices for integrating multi-source ground truth in
data-limited
Transformers to overcome known limitations of global LULC

regions, and demonstrates the potential of
products in areas with heterogeneous vegetation.

The remainder of this paper is organized as follows: Section 2
describes the datasets and methodology; Section 3 presents and
discusses the results; and Section 4 provides conclusions and

recommendations for future work.

2 Data and methodology
2.1 Study area

Botswana, a landlocked country in Southern Africa, spans
581,730 km? of area between 17°S and 27°S and 20°E-30°E. It has
a semi-arid climate influenced by the Inter-Tropical Convergence
Zone and subtropical highs, resulting in distinct wet and dry
seasons. Annual rainfall ranges from 250 mm in the southwest to
over 650 mm in the northeast (Mosepele et al., 2009; Totolo, 2000).
Shrublands dominate the vegetation cover (Ringrose et al., 2002),
supporting rural livelihoods through pastoralism and subsistence
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farming (Kgathi et al., 2005; Basui et al., 2019), but are increasingly
threatened by degradation and climate variability (Dougill
et al.,, 2016).

In addition to shrublands, the country hosts savannas, mopane
woodlands, grasslands, and key wetlands such as the Okavango
Delta, a UNESCO World Heritage Site with high ecological and
economic value (Mosepele et al., 2009). Monitoring land use and
land cover (LULC) dynamics is critical for sustainable resource
management and climate resilience (Mugari et al., 2022; Mathudi
et al., 2021). The study area is shown in Figure 1.

The study incorporates derived spectral indices, such as NDVI
(Normalized Difference Vegetation Index), EVI (Enhanced
Vegetation Index), and NDBI (Normalized Difference Built-Up
Index), alongside a combination of field observations and
carefully curated labels from the Dynamic World map. Due to
the reported inaccuracies of the Dynamic World dataset in
heterogeneous terrains (Xu et al, 2024), training polygons
derived from Dynamic World were cross-checked against field
survey data in areas where field measurements were available. To
enhance the reliability of the ground truth data, visual cross-
validation was performed using Google Earth imagery at
additional training and validation locations where field surveys
were not available. This hybrid approach for selecting training
site polygons permits the generation of numerous reliable ground
truth sampling points. These points are essential for training and
testing the Transformer model, ultimately enabling the production
of high-resolution, high-accuracy LULC maps tailored to
Botswana’s ecologically diverse landscapes.

2.2 Data acquisition

Training data for LULC classification were sampled from the
Dynamic World (DW) dataset, which provides near-real-time global
land cover at 10 m spatial resolution using Sentinel-2 imagery and a
deep learning framework (Brown et al., 2024). To ensure consistency
with Landsat-derived features, training points were obtained from
January-March 2022 from Landsat 8 OLI Collection 2 Level-2
imagery. This period was selected to capture optimal vegetation
contrast during the peak growing season in Botswana (Zhang
et al, 2003; Chen et al,, 2019). Elevation data were derived from
the Shuttle Radar Topography Mission (SRTM) Digital Elevation
Model (DEM) at 30 m spatial resolution. All spatial datasets, including
Landsat 8 OLI at 30 m resolution, Dynamic World at 10 m resolution,
and SRTM DEM at 30 m resolution, were accessed through the
Google Earth Engine (GEE) platform at: (https://developers.google.
com/earth-engine/datasets/catalog). Nine DW-based LULC classes
were used, with the “Snow and Ice” class replaced by “Pans” to
capture Botswana’s salt flats, such as Makgadikgadi (Ringrose and
Binns, 1996).

Stratified random sampling was applied to the DW map to select
pixels representing all land cover classes for training and testing
(Foody, 2002; Olofsson et al., 2021). Given the limited coverage of
some classes in Botswana, the sampled DW points were cross-
checked against independent field survey data and GE imagery. Only
points where there was agreement among all three sources (DW,
field surveys, GE) were retained. In cases where field data were not
available, the points were included for training only if there was clear
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TABLE 1 Training/validation sampling summary.

No. of polygons No. of pixels % DW % Verified with field data % Verified with GE
Water 49 140,711 100 - 100
Trees 86 53,459 97.45 255 97.45
Grass 60 51,948 97.20 2.80 97.20
FV 44 1,988 100 - 100
Crops 60 30,280 96.32 3.68 96.32
Shrubland 97 81,082 93.62 638 93.62
Built-up 53 8,238 99.89 0.11 99.89
Bareland 99 272 100 - 100
Pans 42 3,985 100 - 100

FV, refers to Flooded Vegetation.
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FIGURE 2
Location of polygons used for sampling.

agreement between DW and GE. Importantly, if the DW
classification disagreed with field survey observations, the point
was relabeled according to the field survey, effectively refining the
DW map. This procedure ensured that DW served as a reliable
source of ground truth, while field surveys and GE provided
independent verification of training/validation points, as shown
in Table 1. Figure 2 shows the location of polygons used for

Frontiers in Remote Sensing

training. Although Table 1 lists numerous polygons, the map
displays them as small point clusters because several polygons are
situated very close to each other, causing the enclosed pixels to
appear stacked in the visualization at the current scale of the map.

From each pixel, spectral values were extracted from seven
Landsat bands (SR_B1-SR_B7), which are well-suited for land
surface classification (Roy et al., 2013; Zhu and Woodcock, 2012). In
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TABLE 2 Vegetation index formulas and references.

Formula Reference

NIR - Red al
EVI=G- € X Huete et al. (1997)
NIR +C; - Red — C, - Blue + L
G =25, C; =6, C; =75, L =10000
NBR = NIR-SWIR2 Key and Paine (2006)
_ NIR-SWIR' .
NDMI = N1R+swmi Wilson and Sader (2002)
_ Green-NIR
NDWI = gt McFeeters (1996)
_ SWIRI-NIR
NDBI = {{ikiinm Zha et al. (2001)
_ SWIRI-SWIR2
NDBal = Grizswire Asner and Lobell (2022)

this study, Landsat 8 Collection 2 Level-2 Surface Reflectance (SR)
imagery (“LANDSAT/LC08/C02/T1_L2”) was used. To ensure
high-quality observations, a cloud and shadow masking
procedure was applied using the quality flag labeled as QA_
PIXEL band. Pixels affected by dilated clouds, cirrus, general
clouds, and shadows were excluded by checking the
corresponding QA bits. For each time period, the filtered images
were composited using the median function to generate a single
representative image for the study area. This approach ensures that
only reliable, cloud-free pixels contribute to the analysis, supporting
reproducibility of the results.

Spectral indices computed include the Enhanced Vegetation
Index (EVI), which improves vegetation detection in high biomass
regions (Huete et al., 2002); Normalized Burn Ratio (NBR) to detect
burned areas and post-fire recovery (Key and Paine, 2006);
Normalized Difference Moisture Index (NDMI) which indicates
vegetation water content (Gao, 1996); Normalized Difference Water
Index (NDWI), to emphasize water bodies (McFeeters, 1996);
Normalized Difference Built-up Index (NDBI) to highlight built-
up areas (Zha et al., 2003); Normalized Difference Bare soil Index
(NDBal)to improve detection of bare soil in arid zones (Chen et al.,
2014). Elevation data from a digital elevation model (DEM) were
also included to account for topographic variations that affect
reflectance and microclimate Balthazar et al. (2012). The
integration of the per-pixel spectral bands and indices and

10.3389/frsen.2025.1654692

topographic in the per-pixel feature vector ensures robust
classification of Botswana’s diverse landscape.

2.3 Model architecture

This study employs a Transformer model, a deep learning (DL)
model, for multi-class LULC classification using 14 input features
(i.e., constitute per-pixel feature vector): seven Landsat 8 OLI
reflectance bands (SR_B1-SR B7), six spectral indices
(Table 2), and elevation data. The combination of raw spectral
bands and indices enhances class separability by capturing diverse
physical and biochemical surface characteristics (Zhu and
Woodcock, 2012), while elevation data accounts for topographic
effects on reflectance and land cover differentiation (Balthazar
et al., 2012).

The input data were structured as tensors of shape (batch
size, 14, 1), treating the 14 features as a sequence of tokens
(Figure 3). Each feature was projected into a 64-dimensional
embedding space using a dense layer, enabling richer feature
representation, similar to applications in non-textual domains.
Since the features do not possess an inherent sequential order, no
positional encoding was applied. The features were used in the
following fixed order to ensure: SR_B1, SR_B2, SR_B3, SR_B4, SR_
B5, SR_B6, SR_B7, EVI, NBR, NDMI, NDWI, NDBI, NDBal, and
elevation. The embedded features passed through a Transformer
Encoder block, consisting of: 1. Multi-Head Self-Attention (MHSA)
with 4 attention heads, enabling the model to learn complex
dependencies across features; 2. Position-wise Feed-Forward
Network (FFN) with 128 hidden units, followed by a projection
back to 64 dimensions, allowing the model to learn non-linear
combinations of features; and 3. Residual connections, Layer
Normalization, and Dropout (rate = 0.2) for improved training
stability, convergence, and overfitting prevention. The output from
the Transformer encoder was passed through a Global Average
Pooling (GAP) layer, aggregating the feature sequence into a fixed-
length vector. GAP reduces trainable parameters compared to
flattening, aiding in preventing overfitting (Lin et al., 2003). Two
fully connected layers with dropout regularization (rate = 0.3) were
then applied to introduce non-linearities and improve

TABLE 3 Confusion Matrix with Producer’s and User’s Accuracy for Botswana based on the training dataset.

Class Water Trees Grass FV Crops Shrubland Bareland Built-up Pans PA (Train %) UA (Train %)

Water 112475 0 0 26 49 22 1 2 5 99.91 99.73
Trees 0 40493 631 27 380 317 0 12 0 96.73 95.19
Grass 0 908 36865 13 615 3144 0 0 8 88.72 90.57
FV 54 97 75 1293 9 77 1 1 1 80.41 83.15
Crops 19 326 1078 17 21335 1508 7 78 9 87.52 92.37
Shrubland 1 156 1888 176 450 62156 0 44 15 95.79 91.86
Bareland 12 0 0 0 3 8 172 1 12 82.69 93.99
Built-up 0 0 0 0 246 25 0 6329 0 95.89 97.84
Pans 223 558 166 3 10 409 2 2 1807 56.82 97.31

FV refers to Flooded Vegetation.
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(128,14,1)
Batch-size, 14 features, 1 channel

!

Transformer Encoder Block
- - MLP Head
Multi-Head Attention (4 heads)
(128, 14, 368
e
Add (128, 64)
Dense (64 units) ]
(128,14,128 Dropout
8.320 (128, 128)
Dense (64 units) W
(128,14, 64) (128 units)
8250 (1,161)
OUTPUT
(128,9)

Batch-size, 9 LULC classes

FIGURE 3
The Transformer model architecture used in the LULC
classification.

generalization. The final classification was performed using a dense
softmax output layer with 9 units, corresponding to the nine LULC
classes (see Figure 3). The model was compiled using the Adam
optimizer (Kingma and Ba, 2014) with a learning rate of 1 x 1074,
and categorical cross-entropy loss was used as the training objective.
Classification accuracy was used as the primary evaluation metric.
Adam was chosen for its adaptive learning rate and efficiency in
training deep models, particularly in geospatial classification tasks
(Zhu et al., 2023). This architecture effectively utilizes Transformer
encoders to model feature interactions across the spectral bands and
indices and topographic domains, enhancing LULC classification in
diverse landscapes.

2.4 Model training

During data collection from multiple polygons, the dataset was
partitioned using a pre-assigned sample column, where each
observation was tagged as either train or test. This column was
generated through a stratified random sampling procedure, ensuring
that 80% of the pixels from each land cover class were allocated to
the training set and 20% to the testing set. This approach preserved
class proportions across subsets and reduced bias from imbalanced
class representation. The partitioning scheme was stored within the
dataset to guarantee reproducibility. In total, 371,065 pixels were
collected, with 296,852 pixels assigned to training and 74,213 to
testing. Training proceeded iteratively, where the Transformer
architecture learned to map input feature sequences to LULC
labels by minimizing classification error. During each epoch, the
model processed mini-batches, computed predicted probabilities,
and compared them to true labels using categorical cross-entropy
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loss. Loss gradients were propagated backward to update model
parameters via the Adam optimizer (Kingma and Ba, 2014), which is
known for adaptive learning rates and stability in DL. The
methodological flowchart is shown in (Figure 4).

To prevent overfitting and improve generalization, two
regularization strategies were employed: dropout (set at 0.2 in the
Transformer encoder and 0.3 in the fully connected layers) and early
stopping. Dropout reduces co-adaptation of neurons, promoting a
more robust representation (Hinton et al, 2012), while early
stopping halted training when validation performance showed no
improvement over a fixed number of epochs, preventing
unnecessary training and overfitting. This training pipeline
ensured the model effectively captured spectral-index interactions
patterns while maintaining generalization. The design choices in
training strategy, data partitioning, and regularization follow best
practices for DL in remote sensing and LULC applications (Zhu
et al.,, 2023).

2.5 Model evaluation

2.5.1 Standard evaluation metrics
The Transformer-based LULC
evaluated using a range of standard evaluation metrics, including

classification model was

Overall Accuracy (OA), Producer’s Accuracy (PA), User’s Accuracy
(UA), Precision, Recall, and F1 Score, as defined in Equations 1-6
based on the test dataset. These metrics provide various perspectives
on classification quality and are widely used in remote sensing and
land cover studies for accuracy assessment (Congalton, 1991;
Stehman, 1997). The metrics capture overall model performance
as well as class-wise performance, ensuring comprehensive
evaluation, which is critical for applications like LULC mapping,
where accurate delineation of land cover is essential. Overall
Accuracy (OA) measures the proportion of correctly classified
samples relative to the total number of test instances. It is
defined as

_ Number of Correctly Classified Pixels
B Total Number of Pixels

OA x 100 (1)

Producer’s Accuracy (PA) indicates the probability that a
reference class is correctly identified, measuring omission error.
It is defined as

True Positives

)

" Total Reference Positives

User’s Accuracy (UA) measures the probability that a predicted
class label corresponds to the true land cover. It is expressed as

Az True Positives % 100
" Total Classified Positives

©)

Recall quantifies the proportion of actual positives correctly
identified and is given by
True Positives

Recall = — - (4)
True Positives + False Negatives

Precision measures the proportion of true positives among all
samples classified as a given class, and is calculated as
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FIGURE 4
The methodology flow chart for LULC classification for Botswana.

Precisi True Positives )
recision =
True Positives + False Positives

F1 Score is the harmonic mean of Precision and Recall,
providing a balanced measure that accounts for both false
positives and false negatives. It is computed as

Precision x Recall

Fl=2 (6)
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2.5.2 Disagreement measures in thematic accuracy
assessment

In recent years, the use of the Kappa coefficient in thematic
accuracy assessment has been increasingly criticized and
discouraged in the remote sensing literature. Several studies have
argued that Kappa can be misleading and does not provide a clear
diagnostic of classification errors (Foody, 2020; Olofsson et al.,
2011). As an alternative, the wuse of disagreement
measures—namely, Total Disagreement (TD),
Disagreement (QD), and Allocation Disagreement (AD)—has
been recommended for evaluating the accuracy of land use and
land cover (LULC) classifications (Foody, 2020; Olofsson et al.,

2011) as shown in Equations 7-9.

Quantity
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Total Disagreement represents the proportion of incorrectly
classified samples and is simply defined as:

TD =1- OA, (7)

where OA is the overall accuracy of the classification. Quantity
Disagreement quantifies the disagreement due to differences in the
amount (quantity) of each class between the reference and the
classified maps. It is computed as:

1 n
D=— Ry — Py, 8
Q ZNI;k sl (8)

where Ry and Py are the total number of reference and predicted
pixels, respectively, for class k, n is the number of classes, and N is
the total number of samples. Allocation Disagreement reflects the
disagreement that arises when the quantities are correct but the
spectral-index interactions allocation of class labels is incorrect. It is
given by:

AD =TD - QD. 9)

Together, QD and AD provide a more interpretable and
diagnostic decomposition of classification error, making them
particularly suitable for assessing the quality of thematic maps.
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2.5.3 Model consistency beyond training period

Further evaluation of the trained model is carried out using
input data beyond the training period of January-March 2022.
Predictions for 2014, 2019, and 2024 were generated using the
same data sources and the January-March time frame applied in
2022 for model training and testing. The landcover dynamics
over a period of 10 years is assessed in terms of consistency with
seasonal and interannual variability as well as the evolving
LULC dynamics.

3 Results and discussions
3.1 Model training

The Transformer-based classification model achieved strong
performance during training, with an OA of 95%. These metrics
indicate a high level of consistency between predicted and
reference labels, exceeding chance expectations despite slight
class imbalances. This is consistent with prior research
showing the Transformer’s capacity to capture complex spatial
and contextual features in remote sensing data (Han et al., 2022;
Guo et al., 2024).

The model was trained on 296,852 labeled pixels across nine
LULC classes and performed well in most categories. The overall
producer’s accuracy (PA) varied among the nine land cover
classes, reflecting differences in per-pixel feature vector
distinctiveness and classification performance (see Table 3).
The accuracy rates were as follows: Water (99.91%), Trees
(96.73%), Shrubland (95.79%), and Bareland (95.89%).
Additionally, the accuracy for Grass was 88.72%, Crops
87.52%, Built-up areas 82.69%, and Flooded Vegetation
80.41%. The results indicate excellent model performance,
likely due to its unique and easily identifiable spectral
signature, aided by the use of vegetation indices that enhanced
separability (Zhang et al., 2020; Zhao et al., 2020). However, the
Pans class showed lower PA (56.82%), likely due to seasonally
varying signatures contained in the spectral bands and indices,
which were affected by contamination from elevated water levels
in some summers. Additionally, its low frequency in the training
set made it harder to distinguish from water bodies during the
wet season (Chiloane et al., 2020). The Flooded Vegetation and
Built-up classes also displayed moderate PA values (0.79),
suggesting challenges in differentiating them due to spectral
mixing in heterogeneous zones, a common issue noted in
Transformer-based models (Marjani et al., 2025). Despite
these challenges, the model demonstrated high UA (>0.90)
for all classes except for Flooded Vegetation, which achieved
83.15%. Although Pans have a PA of (56.82%), it achieved a high
UA (0.97), indicating that when it did classify a pixel as Pan, it
was usually correct. This behavior reflects a conservative learning
approach prioritizing precision over recall, common in deep
models when trained on imbalanced data (Johnson and
Khoshgoftaar, 2019). Overall, the training results demonstrate
that the Transformer model successfully learned complex LULC
patterns, leveraging distinct information contained in per-pixel
feature vector, and effectively demonstrated class-specific
learning (Voelsen et al., 2016).
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3.2 Model evaluation

The Transformer-based land cover classification model was
held-out
74,213 pixels. The model achieved an overall accuracy (OA) of

evaluated using a testing  dataset comprising

95.31%, corresponding to a total disagreement (TD) of 4.69%.

Decomposition of the disagreement revealed a quantity
disagreement (QD) of 1.25% and an allocation disagreement
(AD) of 3.44%.

classification error arises from the per-pixel feature vector

These results indicate that most of the
allocation mismatches, mainly due to mixed signatures from
mixed vegetation cover within the pixel rather than systematic
quantity errors, suggesting that the model effectively captures
class proportions but encounters minor spatial misplacements.
Such low levels of QD and AD underscore the model’s strong
capability and
ecologically complex and heterogeneous dryland environments.

generalization spatial consistency, even in
These findings reinforce the suitability of Transformer-based
architectures for land use and land cover (LULC) classification,
particularly due to their ability to model long-range dependencies
and contextual information within high-dimensional satellite
imagery. (Han et al., 2022; Guo et al., 2024; Marjani et al., 2025).

Moreover, the LULC created from the Landsat 8 image was
assessed against both True Color Composite (TCC) and False Color
Composite (FCC). TCC, created using Bands 4 (Red), 3 (Green), and
2 (Blue), offers a straightforward visualization of land cover. In this
composite, healthy vegetation appears darker due to its strong
absorption in the red and blue wavelengths, while a brownish
color represents unhealthy or sparse vegetation. Bare surfaces,
such as deserts or urban areas, are distinguishable by their
whitish appearance, reflecting high amounts of visible light.
However, due to limitations in spectral differentiation, certain
land cover types with similar reflectance values in the visible
spectrum may be challenging to distinguish. This issue is
particularly evident when distinguishing between areas with
similar vegetative cover or bare soils (Song et al., 2017).

To overcome these challenges and enhance the discrimination of
LULC types, a false color composite (FCC) was generated using
Bands 7 (Shortwave Infrared), 5 (Near-Infrared), and 3 (Green). The
FCC allows for a more effective differentiation of vegetation and
other land cover types, as healthy vegetation appears in shades of
green due to strong reflection in the near-infrared (NIR) band. This
makes it easier to identify dense vegetation areas (Song et al., 2017).
Areas exhibiting reddish tones in the FCC are typically indicative of
stressed or sparse vegetation, which may also reflect transitional
zones where vegetation is either degrading or upgrading. Such
patterns are often associated with varying soil moisture levels
that influence vegetation growth (Li et al.,, 2011). For instance, in
the Okavango Delta (Figure 5), areas with saturated soils, shadowed
wetlands, or waterlogged vegetation appear as dark regions in the
TCC (Figure 5a) and green in the FCC images (Figure 5b), whereas
same areas appear as trees and grass in the predicted map
(Figure 5c). In contrast, they appear as trees, grass, and
shrubland in the Dynamic World map (Figure 5d), reflecting the
specific environmental conditions of wetlands and floodplains (Fang
et al.,, 2010).

The model’s performance was evaluated using PA and UA
metrics derived from the testing dataset. These values are
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TCC (a) and FCC (b) alongside the model prediction (c) and Dynamic World image (d) from January to March 2022 around Okavango Delta.

TABLE 4 Confusion Matrix with Producer’'s and User’s Accuracy for Botswana based on testing dataset.

Class Water Trees Grass FV Crops Shrubland Bareland Built-up Pans PA (test %) UA (test %)
Water 28109 0 0 4 11 6 0 0 1 97.26 91.97
Trees 0 10288 136 13 84 72 0 6 0 96.48 94.40
Grass 0 229 9232 4 135 791 0 0 4 88.60 76.37

FV 15 27 13 304 2 19 0 0 0 83.78 52.32
Crops 1 69 276 3 5267 366 2 18 1 80.61 89.75

Shrubland 0 41 486 40 134 15481 0 13 1 87.38 82.28

Bareland 7 0 0 0 0 5 46 1 5 72.87 88.85
Built-up 0 0 0 0 60 3 0 1575 0 85.37 94.59
Pans 71 170 52 0 5 81 0 0 428 47.77 99.54

FV refers to Flooded Vegetation.

summarized in Table 4, where the Pans class recorded the lowest PA
of 47.77%., indicating significant omission errors and difficulty in
identifying all instances of this ephemeral and seasonally dynamic
land cover type. However, the UA for Pans was 99.54%, suggesting
that while the model rarely predicted pixels as Pans, those
predictions were highly accurate. This conservative prediction

Frontiers in Remote Sensing

behavior, favoring high precision over recall, is common for
underrepresented or ambiguous classes in classification tasks and
has been reported in similar studies dealing with small-scale or
transient landscape features (Graves et al, 2016). Flooded
Vegetation showed a PA of 83.78% and a UA of 52.32%. This
indicates that while most actual Flooded Vegetation pixels were
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TCC (a) and FCC (b) alongside the model prediction (c) and Dynamic World

successfully identified (high PA), the model also misclassified a
substantial proportion of other classes as Flooded Vegetation,
resulting in a lower UA, likely due to misclassifications often
occurring at boundaries between water and vegetated areas (Feng
etal., 2015). This is also evident from the predicted map (Figure 5¢)
than in the Dynamic World map (Figure 5d), which indicates mostly
trees closer to Flooded Vegetation.

Water bodies, which exhibit low reflectance in both the NIR and
SWIR bands, appear blue in the FCC image (Figure 6a) and light
green and grey in TCC (Figure 6b), consistent with findings from
previous studies (Ma et al., 2019). Class-specific accuracy metrics
provide further insights into the model’s performance, as
summarized in (Table 4). The water class exhibited the highest
PA of 97.26% and a UA of 91.97%, reflecting the model’s excellent
capability to detect and correctly classify water bodies. This is
consistent with the well-documented spectral distinctiveness of
water, which generally shows strong absorption in the near-
infrared and shortwave infrared regions (Sagan et al., 2020; Ma
et al,, 2019). Therefore, the predicted map is better at capturing the
observed vegetation condition in the Okavango Delta than the
Dynamic World map. In contrast, the predicted map (Figure 6¢)
shows water and Pans, whereas the Dynamic World map (Figure 6d)
shows water and bareland. This indicates that the Transformer
model misclassifies the Pan as water due to spectral similarity
and the presence of a wet Pan surface during the January to
March period, due to seasonal rainfall. On the other hand, the
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(b) FCC Makgadikgadi 2022
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image (d) from January to March 2022 around Makgadikgadi Pans.

Dynamic World map does not recognize Pan in its classification, and
all water-free Pan areas are mostly labeled as bareland (Figure 6d).

Trees were similarly well predicted, with a PA of 0.96 and UA of
0.94, demonstrating the model’s strong ability to capture the unique
spectral and structural features associated with forested areas. These
findings are supported by previous studies that show Transformer
models effectively distinguish vegetative classes when provided with
multispectral and index-rich input data (Reedha et al., 2022). The
attention mechanisms within Transformer architectures allow for
better modeling of tree canopy textures as the reflectance signatures
in the per-pixel feature vector are highly influenced by the canopy
texture. Grass and Shrubland were also predicted with relatively high
PA values (0.85 and 0.87, respectively), indicating that the model
successfully captured the spectral characteristics representative of
these vegetation types. However, the UA for Grass (0.76) suggests
some degree of confusion, likely due to its spectral similarity with
other green vegetation, particularly Crops. Shrubland had a higher
UA of 0.82, implying better reliability in the predictions. This reflects
the Transformer’s ability to utilize broader and distinct signals from
each per-pixel feature vector, yet also highlights persistent
challenges in distinguishing between vegetation types with
overlapping reflectance patterns (Zhao et al., 2023). The Chobe
area in Botswana has a lot of Trees, Shrubland, and Grass, especially
during the rainy season. The model was able to clearly show these
land cover types, matching well with what is seen in the TCC and
FCC images (Figures 7a,b), consistent with relatively higher PA and
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TCC (a) and FCC (b) alongside the model prediction (c) and Dynamic World image (d) from January to March 2022 in Chobe District.

UA for the vegetation classes (Table 4). Compared to the Dynamic
World map, the model performed better because it picked up small
differences in vegetation and more closely followed the natural
patterns of the area. The grass area bounded by shrubland in
pink color in FCC (Figure 7a) and violet in TCC (Figure 7b)
formed a natural landscape pattern. This pattern, including tree
vegetation on the exterior side of the shrubland, is well captured by
the map produced by the Transformer model (Figure 7c). In
contrast, the DW map fails to capture the distinct natural
shrubland boundary between grass and trees (Figure 7d).
Bareland achieved a moderate PA of 72.87% and a high UA of
88.85%. This indicates that while the model missed some Bareland
instances, its predictions were largely accurate when it did assign
pixels to this class. The spectral distinctiveness of bare soil,
particularly in the visible and SWIR bands, supports the model’s
high reliability for this class, consistent with prior findings in arid
and semi-arid regions (Milewski et al., 2022). In Botswana, barren
areas are mainly located in the Kgalagadi District, as shown in
Figure 8. Visually, the Predicted LULC image (Figure 8c) closely
follows the whitish pattern seen in the TCC (Figure 8a) and pink
landscape in the south and western gradient of the FCC image
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(Figure 8b), where bareland areas are clearly identified. In contrast,
the Dynamic World map (Figure 8d) shows dominantly shrubland
over the same areas.

For the Built-up class, the model achieved a PA of 85.37%,
meaning most actual built-up areas were correctly identified. The
UA was 94.59%, showing that the majority of predicted built-up
pixels were accurate. The high PA highlights the model’s strong
ability to capture built-up areas, while the high UA suggests that
when the model predicts built-up areas, it is mostly reliable. The
strong performance can be attributed to the clear spectral patterns of
built-up surfaces, such as rooftops and roads, which are easily
identifiable in both the TCC and FCC images (Figures 9a,b). The
Predicted LULC map captured built-up areas in Gaborone City
more accurately (Figure 9c) than the Dynamic World map
(Figure 9d). The Dynamic World does not distinguish between
building blocks and bare land, dense settlement and sparse
settlement, and roads from other structures within the city,
highlighting the limitations of GLC maps in capturing fine-scale
urban features in the local context. In urban regions like Gaborone,
the predicted map (Figure 9c) successfully resolves urban
morphology, roads, vegetation, buildings, and water bodies visible
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in the TCC and FCC composites (Figures 9a,b). In comparison, the
Dynamic World map (Figure 9d) shows a homogeneous block of
built-up land, failing to distinguish intra-urban land cover
heterogeneity. Although Dynamic World derived from
Sentinel-2 imagery with a nominal 10 m spatial resolution, this
discrepancy suggests local-level generalization or smoothing in the
global product, which undermines the expected benefits of higher
resolution. This paradox highlights the importance of high-quality,
context-specific training data, as emphasized by Xu et al. (2021).
Opverall, the model’s testing performance reinforces the efficacy
of Transformer-based approaches LULC dlassification,
particularly when dealing with complex landscapes. The attention

is

for

mechanism enables the model to focus on relevant per-pixel feature
vector across the input image, thereby contributing to improved
generalization and class discrimination. These findings align with
the emerging literature, which highlights Transformers as a state-of-
the-art alternative to CNNs and traditional machine learning
algorithms in remote sensing classification tasks (Adegun et al.,
2023; Zhao et al., 2023).

Flooded Vegetation and Pans were among the most challenging
classes to classify accurately. Table 5 presents a side-by-side
comparison of PA and UA for these classes based on both the
training and testing datasets. For Flooded Vegetation, the model
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achieved relatively high PA (80.41% on training and (83.78%) on
testing, indicating that most actual Flooded Vegetation pixels were
correctly identified. However, the UA was considerably lower on the
testing dataset (52.32%), suggesting that a substantial portion of
pixels predicted as Flooded Vegetation actually belonged to other
classes. This discrepancy likely stems from spectral similarities
between Flooded Vegetation and nearby vegetated areas, such as
Trees or Grass, which can confuse the classifier.

For Pans, the UA remained very high (97.31%) on training
(99.54%) on testing, demonstrating that pixels predicted as Pans
were almost always correct. In contrast, PA was relatively low,
especially on the testing dataset (47.77%), indicating that the
model failed to detect a significant fraction of actual Pans. This
limitation is likely related to the seasonal timing of the imagery
(January-March), when many pans may have been submerged
under water, reducing their spectral distinctiveness and making
them less detectable.

The performance of the Transformer-based model was further
evaluated using several metrics, including precision, recall, and the
F1 score, across various land cover classes, as shown in (Figure 10).
These metrics provide a more nuanced understanding of the model’s
ability to not only identify land cover types but also minimize both
false positives and false negatives. Precision, recall, and F1 score are
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TABLE 5 PA and UA for Flooded Vegetation and Pans based on training and
testing datasets.

Training dataset Testing dataset

PA (%) UA (%) PA (%) UA (%)
Flooded Vegetation 80.41 83.15 83.78 52.32
Pans ‘ 56.82 ‘ 97.31 47.77 99.54

essential for assessing classification performance, particularly when
dealing with imbalanced datasets and complex land cover types (Sim
et al., 2024).

The Water class attained a high precision (0.92), meaning 92%
of pixels predicted as water were correctly classified. This excellent
result aligns with earlier research, which highlights the reliability of
remote sensing techniques in identifying water bodies, owing to
their unique spectral signatures—particularly in the visible and
near-infrared wavelengths (Fu et al, 2022). The Water class
achieved a recall of 0.97, indicating that the model accurately
detected 97% of actual pixels. This high recall
demonstrates the model’s effectiveness in fully capturing the
spatial distribution of water bodies, which is essential for reliable

water

hydrological and environmental monitoring (Wang et al., 2021). An
F1 score of 0.95, reflecting a perfect balance between precision and
recall, underscores the model’s strong and consistent performance in
accurately detecting water features.
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The high precision, recall, and F1 score of 0.94, 0.96, and 0.95,
respectively, suggest that the model is highly reliable in identifying
the Tree class. This is supported by studies that have shown
Transformer-based models excel in classifying vegetation types
due to their ability to capture spatial context and complex
spectral patterns (Ma et al, 2019). In particular, the use of
spectral indices, such as NDVI, enhances the classification
accuracy of vegetation (Navidan et al., 2021), which may explain
the model’s strong performance in this class.

The Grass class achieved a precision of 0.76, indicating that 76%
of the pixels predicted as Grass were correctly classified. Its recall
reached 0.89, meaning that 89% of the actual Grass pixels were
accurately identified by the model. The corresponding F1 score of
0.82 demonstrates a strong balance between precision and recall,
highlighting the model’s reliable performance in detecting Grass.
This level of accuracy suggests the model effectively distinguishes
Grass from other vegetative land cover types, although some spectral
overlap with other land cover types may still account for occasional
misclassifications. Such performance is consistent with findings in
prior studies, which note that vegetation classes like Grass can be
well distinguished using multispectral remote sensing data, though
confusion with spectrally similar vegetation types can occur (Foody,
2002; Thenkabalil et al., 2011).

The Flooded Vegetation class demonstrated a precision of 0.52,
meaning that 52% of the areas predicted as Flooded Vegetation were
correctly classified. A recall of 0.84 indicates that the model
successfully identified 84% of all actual Flooded Vegetation
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FIGURE 10

Precision, Recall and F1-Score of the Transformer model based on the testing dataset

instances. The corresponding F1 score of 0.64 reflects a moderate
balance between precision and recall, suggesting that the model
detects Flooded Vegetation reasonably well but still struggles with
misclassifications. The relatively low precision highlights that a
notable proportion of other classes, particularly spectrally similar
ones such as Water bodies or dense Tree cover, were incorrectly
labeled as Flooded Vegetation. This challenge of class separability
has also been noted by Feng et al. (2015), who reported that spectral
overlap can complicate the accurate mapping of inundated
vegetation using satellite imagery.

The Crops class achieved a precision of 0.90, meaning that 90%
of the pixels predicted as Crops were accurately classified. This high
precision indicates that the model was efficient at identifying Crops
while minimizing false positives. The recall value of 0.81 indicates
that the model correctly identified 81% of all actual Crop pixels.
While this is a strong result, it suggests that the model did miss 19%
of the actual Crop pixels, potentially due to spectral confusion with
other types of vegetation or misclassification of crop fields with
similarly vegetated areas. The F1 score of 0.85 indicates a balanced
performance between precision and recall, confirming the model’s
robustness in detecting Crops. This score suggests that, overall, the
model performs well in classifying Crop areas, although some minor
misclassification errors might occur due to spectral overlaps with
other vegetation types, such as Grass or Flooded Vegetation. In
remote sensing, crops often exhibit unique spectral signatures that
can be effectively distinguished using satellite imagery, but
challenges can arise due to seasonal variations, growth stages,
and similarities to other land cover types (Jensen, 2005). The
model’s high precision, however, suggests that it was particularly
successful at distinguishing Crops from non-crop land cover types.

The Shrubland achieved a precision of 0.82, meaning that 82% of
the pixels predicted as Shrubland were correctly identified. The
recall value of 0.96 indicates that the model successfully detected
0.87% of all actual shrubland pixels, demonstrating strong sensitivity
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and the model’s ability to accurately capture the extent of Shrubland
areas. The F1 score of 0.85 reflects a high-performing model, with
both precision and recall values closely aligned. This high
performance suggests that the model is quite effective at
identifying shrubland. However, there may still be occasional
confusion with other land cover types with similar spectral
signatures, such as Grass or Tree classes, although this is not
indicated to be a significant issue given the high recall and
F1 score. Shrubland areas are typically characterized by distinct
vegetation signatures, making them relatively easy to detect with
high accuracy. However, challenges may arise in cases of
heterogeneous landscapes where Shrubland coexists with other
land cover types, or during periods of low vegetation activity
(e.g., droughts) (Liu et al., 2017).

The Built-up class achieved a precision of 0.95, indicating that
95% of the pixels classified as Built-up were accurately identified.
However, the recall for Built-up areas was 0.85, indicating that the
model identified only 85% of all actual Built-up pixels. As a result,
the F1 score was 0.90, reflecting a reasonable balance between
precision and recall. These results suggest that while the model is
effective in detecting Built-up areas, confusion with spectrally
similar land cover types, likely bareland, may contribute to the
lower recall. This issue of spectral overlap between Built-up areas
and bare land has been documented in previous studies, where
materials such as concrete and soil have similar reflectance
characteristics, leading to misclassification (Zhou and Huang,
2020; Jin et al, 2013). The Bareland class achieved a high
precision of 0.89, meaning that 89% of the pixels predicted as
Bareland were correctly classified. The recall of 0.73 indicates
that the model successfully captured 73% of all actual Bareland
pixels, although some were missed. The resulting F1 score of
0.80 reflects a good balance between precision and recall,
suggesting that the model performs effectively in distinguishing
Bareland from other land cover types, with slightly better
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performance in avoiding false positives than in capturing all true
Studies have shown that bareland exhibits a low
the it
distinguishable from vegetated or built-up areas (Zhou et al,
2018; Lu and Weng, 2011).

The model’s performance on the Pans class, which represents

instances.

reflectance  in visible spectrum, making easily

saline surface areas, achieved a perfect precision of 1.00, meaning
that all pixels predicted as Pans were correctly classified. This
highlights the model’s strong reliability in avoiding false positives
for this class. However, the recall of 0.48 indicates that the model
detected less than half of the actual saline areas, likely due to seasonal
effects in the training data, as many pans may have been submerged
during the rainy season. The resulting F1 score of 0.65 reflects a
moderate overall performance, showing that while the model excels
at precision, it substantially underestimates the full spatial extent of
pans. This issue is consistent with findings from previous studies,
which note that saline surfaces often exhibit spectral confusion with
water bodies and bare soils, particularly under variable moisture
conditions (Zhang et al.,, 2019; Zhao et al., 2018).

Overall, the assessment of the model during testing (Table 4)
and visual inspection of areas dominated by specific classes (Figures
5-9) as well as precision, recall, and the F1 score demonstrated
strong model performance across most land cover classes. The
Transformer model exhibited strong overall performance, with
Fl-scores above 0.84 for all classes except Flooded Vegetation
and Pans, which achieved 0.64 and 0.65, respectively. Although
the model performed satisfactorily on Flooded Vegetation and Pans,
misclassifications with spectrally similar classes lowered the
precision for Flooded Vegetation (0.52), while the recall for Pans
was reduced (0.48), likely because many Pans were submerged under
water during the rainy season (January-March). Despite these
challenges, the model proved effective in capturing key land
types,
environmental

cover demonstrating its suitability for large-scale

The
Transformer-based model’s performance aligns with previous

monitoring and land-use assessment.
studies that highlight the strength of attention mechanisms in
handling complex and heterogeneous land cover types (Guo

et al., 2024).

3.3 Assessment of the prediction of the
transformer model beyond training periods

The trained Transformer model was applied to predict LULC
during the January-March period for the years 2014, 2019, and
2024, utilizing the same 14 per-pixel feature vector consisting of
spectral bands, spectral indices, and elevation, as the input vector
used during training. To qualitatively assess prediction accuracy, we
visually compared the model outputs against True Color Composite
(TCC) and False Color Composite (FCC) images, and against the
Dynamic World map, which we use as a baseline GLC. For both
2014 and 2019, the predicted LULC maps demonstrate strong visual
congruence with FCC and TCC composites (Figures 11, 12).In 2019,
the model (Figure 12¢) captures more detailed land cover transitions
than the Dynamic World map (Figure 12d), which tends to
generalize land cover into homogeneous patches. This supports
the findings of Xu et al. (2024), who observed that Dynamic
World maps tend to smooth spatial transitions in heterogeneous
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landscapes, resulting in reduced thematic granularity. Liu X. et al
(2021) similarly noted that globally optimized models often fail to
capture local-scale complexity, especially in ecosystems with high
spatial heterogeneity such as agro-pastoral zones or riparian
corridors. However, the absence of Dynamic World data for
2014 limits historical assessments. This lack of temporal depth
has been flagged by Brown et al. (2024) as a significant
constraint when conducting long-term land cover change
the
demonstrates flexibility by leveraging historical satellite imagery

analyses. In contrast, current Transformer model
to generate retrospective LULC predictions, supporting more
robust temporal assessments.

Several distinct land cover patterns during January-March
2024 emerge from the composites and predicted LULC maps,
offering critical insights into model performance (Figure 13).
Wetlands and water-saturated vegetated areas, such as those in
the Okavango Delta, manifest in darker shades, and water
bodies—especially near the Makgadikgadi Pans—are highlighted
in blue in the FCC images. This spectral behavior is consistent with
findings by Braga et al. (2021), who emphasize the role of NIR and
SWIR in vegetation and moisture differentiation. Similarly, Kirimi
et al. (2018) reported that FCC imagery is particularly effective in
delineating seasonal water bodies in sub-Saharan Africa. The
2024 predicted LULC map (Figure 13c) shows strong visual
alignment with both the FCC (Figure 13a) and TCC (Figure 13b)
images, with clearer land cover class boundaries compared to the
Dynamic World map (Figure 13d). The Dynamic World map
significantly underrepresents water features over the Pans region,
contrary to the FCC and predicted maps that more accurately
capture the expected inundation during the summer rainy
season. This mismatch may stem from the Dynamic World
algorithm’s reduced sensitivity to ephemeral or shallow water
bodies, a limitation noted in global classifiers that rely on coarser
temporal and spatial generalizations (Sogno et al., 2022).

Reddish patches in the FCC, indicating vegetation under stress
or sparsity, correspond to several predicted vegetation classes. Dense
green zones align with healthier vegetation types, again
underscoring the model’s nuanced classification capacity in
complex ecosystems. This observation aligns with the challenges
discussed by Liu et al. (2007), who highlight spectral similarity
among vegetation types as a persistent hurdle in multispectral
classification. Moreover, Bareland classes demonstrate a high
degree of consistency across FCC, TCC, and the predicted map,
in contrast to the Dynamic World map, which appears spatially
inconsistent. Notably, built-up areas adjacent to Bareland
sometimes exhibit spectral confusion, especially in arid zones
where soil and construction materials share reflectance properties
(As-Syakur et al.,, 2012).

In summary, although the Dynamic World map offers valuable
insights at a global scale, its generalized classification strategy and
localized resolution limitations constrain its application in complex,
heterogeneous environments. By contrast, the Transformer-based
model, trained on context-specific data and enhanced pixel level
signature, provides more accurate, detailed LULC classifications.
These findings underscore the importance of localized training data
and high-resolution imagery for producing reliable LULC maps,
echoing recommendations from recent literature (Phinzi et al,

2023). The enhanced interpretability and spatial resolution of the
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(a) TCC 2014

FIGURE 11

(b) FCC 2014
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TCC (a) and FCC (b) alongside the model prediction (c) from January to March 2022.

(a) TCC 2019 (b) FCC 2019

FIGURE 12
TCC (a) and FCC (b) alongside the model prediction (c) and Dynamic World image (d) from January to March 2019.

predicted maps affirm their utility in supporting environmental
monitoring, land management, and adaptation planning in data-
sparse regions.

3.4 The impact of misclassification on the
fidelity of LULC change estimates in the
recent decade

The dynamics of LULC in Botswana were assessed using a
Transformer model and the Dynamic World (DW) land cover
product. The Transformer model outputs detailed LULC statistics
for 2014, 2019, and 2024 (Table 6) at 30 m resolution, while the
DW product offers corresponding estimates for 2019 and 2024
(Table 7) at 10 m resolution. A comparative analysis reveals notable
inconsistencies between the two, particularly for vegetation, agricultural,
and hydrological classes. These discrepancies underscore the limitations
of the DW product in accurately capturing transitional and
heterogeneous land cover, especially in dryland environments.

Shrubland emerges as the dominant class in both datasets;
however, DW exhibits an unrealistically high and steadily
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(c) Predicted LULC 2019 (d) Dynamic World 2019
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increasing shrubland extent—from 69.91% in 2019 to 74.81% in
2024. In contrast, the Transformer model reveals more plausible
temporal variations: a decline from 64.78% in 2014 to 53.34% in
2019, followed by a rebound to 62.47% in 2024. The inflated
shrubland coverage in DW likely results from misclassification of
spectrally similar vegetation types such as grasslands and croplands,
a known limitation in previous global assessments (Soubry and Guo,
2022). This is also evident when examining the color composites
(Figures 7a,b) and the Transformer map (Figure 7c) of the Chobe
district. The DW classification misidentifies trees as shrublands
(Figure 7d) in areas outside of a narrow band of shrubland
This
sensitivity  to

depicted in the color composites.
DW’s

ecological changes and anthropogenic land use pressures.

tendency toward
overgeneralization reduces short-term

Cropland areas are markedly underestimated in the DW
product, with coverage reported at only 5.52% in 2019 and 4.88%
in 2024. In contrast, the Transformer model captures a more
dynamic cropland trend; an increase from 8.52% in 2014 to
16.46% in 2019, followed by a decline to 10.66% in 2024, which
likely reflects inter-annual variations in rainfall and planting
patterns within the January-March peak growing season. The
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FIGURE 13
TCC (a) and FCC (b) alongside the model prediction (c) and Dynamic World image (d) from January to March 2024.

TABLE 6 Land Cover Statistics for 2014, 2019, and 2024 based on the Transformer model (30 resolution).

2014 2019 2024
Area (km?) % Cover Area (km?) % Cover Area (km?) % Cover
Water 10802.56 1.86 9676.90 1.67 16308.35 2.81
Trees 65866.27 11.36 28541.90 4.92 24906.22 4.30
Grass 47256.13 8.15 60309.47 10.40 47714.10 8.23
FV 14856.76 2.56 7322.37 1.26 6920.11 1.19
Crops 49384.79 8.52 95422.85 16.46 61802.52 10.66
Shrubland 375551.83 64.78 309259.33 53.34 362187.77 62.47
Built-up 319.01 0.06 968.42 0.17 2085.39 0.36
Bareland 13188.57 227 65332.31 11.27 53168.76 9.17
Pans 2552.86 0.44 2945.23 0.51 4685.56 0.81
Total 579779 100.00 579779 100.00 579779 100.00

Frontiers in Remote Sensing 17 frontiersin.org


mailto:Image of FRSEN_frsen-2025-1654692_wc_f13|tif
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1654692

Manyothwane and Mengistu Tsidu

TABLE 7 Land Cover Statistics Based on Dynamic World Map for 2019 and
2024 (10 m resolution).

2019 2024

Area % %

(km?) Coverage Coverage
Water 2093.40 0.36 1610.70 0.28
Trees 68421.37 11.80 49169.53 8.48
Grass 14604.54 2.52 9479.42 1.64
FV 684.47 0.12 590.56 0.10
Crops 32007.15 552 28271.38 4.88
Shrubland 405333.29 69.91 433758.50 74.81
Built-up 2252.17 039 2942.96 0.51
Bareland 53917.59 9.30 53903.24 9.30
Pans 454,00 0.08 41.67 0.01
Unclassified 10.81 0.00186 10.81 0.00186
Total 579779 100.00 579779 100.00

elevated crop area in 2019 may coincide with higher rainfall or
intensified agricultural activity, while the subsequent reduction in
2024 could result from fallow periods due to a shortage of rainfall.
These patterns are consistent with known seasonal land use changes,
climatic variability, or temporary abandonment (Lark et al., 2020).
The DW product’s limited ability to resolve such temporal
variability reflects challenges in distinguishing spectrally
overlapping classes within mixed agro-ecological systems.

Tree cover is overestimated in DW (11.80% in 2019), compared
to 4.92% in the Transformer model, although estimates begin to
converge by 2024. The Transformer model depicts a more credible
pattern of forest decline—from 11.36% in 2014 to 4.30% in 2024,
aligning with known deforestation pressures such as logging and
agricultural encroachment (Hansen et al,, 2013). The inflated and
static tree estimates in DW likely stem from confusion with tall
shrubland or regenerating vegetation, pointing to limitations in
spectral separability and temporal smoothing within the DW
classification pipeline. Sensor differences in both crop and tree
cover estimates by the Transformer model are not contributing
factors, as all years were derived from Landsat 8 imagery with
consistent surface reflectance processing. These trends highlight the
importance of considering both ecological and anthropogenic
factors when interpreting temporal LULC dynamics.

Grasslands are consistently underestimated in DW, with coverage
declining from 2.52% in 2019 to 1.64% in 2024. The Transformer model,
by contrast, shows a broader and more variable grassland extent ranging
between 8.15% and 10.40%. DW’s insensitivity to grassland dynamics
hampers its effectiveness in tracking post-disturbance regrowth and
seasonal transitions, which are typical in savanna and rangeland
systems (Suttie et al., 2005). This insensitivity is clearly illustrated in
Figure 7d, which contrasts with Figures 7a—c, where grassland is bordered
by a narrow strip of shrubland in the southwestern quadrant.

Water bodies and flooded vegetation also exhibit key
divergences. The Transformer model captures an increase in
surface water between 2014 and 2024, potentially reflecting
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changes in rainfall patterns or hydrological inputs. In contrast,
DW reports a decline in water coverage—from 0.36% to 0.28%.
DW’s limited sensitivity to ephemeral or shallow water features,
especially during dry-season acquisitions, has been noted in prior
studies of semi-arid hydrology (Murray-Hudson et al., 2018). Visual
comparison with color composites over the Okavango Delta
(Figure 5) further confirms that the Transformer model better
reflects the presence and extent of flooded vegetation than DW.

Bareland appears relatively stable in the DW estimates (9.30% in
both years), whereas the Transformer model captures significant
temporal variation—from 2.27% in 2014 to 11.27% in 2019, followed
by a decline to 9.17% in 2024. This contrast highlights DW’s
insensitivity to processes such as land degradation or agricultural
preparation (e.g., ploughing), where dry soils and senescent
vegetation are often spectrally confounded.

Built-up and pans classes show partial agreement between the
two products. The Transformer model records a gradual increase in
built-up area (0.06%-0.36%) and in pan extent (0.44%-0.81%) from
2014 to 2024, indicating expanding urbanization and possible pan
growth due to salinization and changing hydrological regimes.
Eckardt and Drake (2010) reported that the Makgadikgadi pans,
including the Sua and Ntwetwe pans near Sowa Town, experience
intense evaporative processes and aeolian salt transport. Reduced
upstream  inflow—exacerbated by abstraction and climate
variability—has intensified salinization, altering both land cover
and spectral characteristics detectable by remote sensing. These
changes contribute to the pan expansion observed in the
Transformer model. In contrast, DW captures only a modest
increase in built-up area and an implausible decline in
pans—from 0.08% in 2019 to 0.01% in 2024. These differences
may result from DW misclassifying dry pan surfaces as bareland or
salt crusts, a challenge identified in previous studies (Eckardt and
Drake, 2010). As shown in Figure 6, pans are consistently mislabeled
in the DW map compared to the Transformer output and color
composites. In addition to the Transformer model’s alignment with
ongoing urban expansion, the urban landscape, which features a mix
of different land classes, is clearly depicted in the map generated by
the Transformer model (Figure 9c), which is consistent with the
color composites presented in Figures 9 (a,b). This is in contrast to
the uniform built-up areas shown in DW (Figure 9d). The uniform
built-up identified in DW have also
unrealistically higher built-up fractions compared to the estimates

regions resulted in
from the Transformer model.

In summary although both products capture the broad spatial
distribution of LULC types, the Transformer model demonstrates
superior temporal fidelity, class separability, and ecological
plausibility. Misclassification in DW; particularly underestimation
of of

shrubland—compromises its utility for robust land change

crops and grasslands and  overgeneralization
detection in dryland ecosystems. These findings emphasize the
value of regionally tuned DL models in improving land cover

monitoring and supporting data-driven resource management.

3.5 Comparison with other data sets

The
demonstrated significantly higher performance compared to

Transformer-based land cover classification model
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widely used global products. During training, the model achieved an
OA of 95%, and testing results confirmed its robustness with an OA
of 95.31%. These findings highlight the model’s ability to capture a
more robust landcover map at 30 m resolution based on the 14 per-
pixel feature vector, as each element of the feature vector exhibits
distinct spatial variation in Botswana, leading to complementary
reflectance images from Landsat 8 surface reflectance bands and
spectral indices.

By contrast, global LULC products show comparatively lower
accuracies. For example, Venter et al. (2022) reported that among
the global products for 2020, Esri’s Land Cover achieved the highest
OA at 75%, followed by Dynamic World at 72% and ESA
WorldCover at 65%. While these datasets provide valuable global
coverage, their generalized training approaches and reliance on
heterogeneous global samples limit their precision at local to
regional scales. This discrepancy highlights the advantage of
localized models that are specifically trained on regionally
representative data.

The Transformer-based model also outperformed previously
reported machine learning approaches in the Southern African
Development Community (SADC) region. In a study conducted
by Kavhu et al. (2021) for the Okavango Basin, various models for
Land-Use/Cover classification were compared using spectral
indices, achieving OA ranking as follows: Deep Neural
Network (DNN) (89.32%), XGBoost (88.02%), Random Forest
(84.35%), and Neural Network (Nnet) (76.80%). However, there
is also a notable agreement between our findings and those
reported in global assessments regarding class-specific
performance. Venter et al. (2022) also showed that on all
three global maps, water was the class most accurately
mapped at (92%). Our Transformer model similarly achieved
very high accuracy for water, with precision, recall, and F1-scores
of 0.92, 0.97, and 0.95, respectively. They also reported Flooded
Vegetation as the least performing class with 53% accuracy. This
trend was also reflected in our model, where Flooded Vegetation
yielded relatively low performance, with a precision of 0.52 and
an F1 score of 0.64.

A key contribution of this study is the comparative analysis with
the Dynamic World (DW) product. The Transformer model
outperformed DW in both urban and rural settings. In urban
like the captured
heterogeneity, including roads, rooftops, and small water bodies,

centers Gaborone, model intra-urban
which were typically omitted or generalized in the DW maps. In
environmentally dynamic zones such as the Makgadikgadi Pans and
Okavango Delta, the model adopted a conservative prediction
strategy that prioritized precision and minimized false positives
for spectrally ambiguous classes such as Flooded Vegetation and
Pans. This reflects its adaptability to transitional and ephemeral
landscapes—an advantage over static or generalized global products.
One of the model’s standout capabilities lies in its ability to generate
LULC the

reconstruction of land cover dynamics over multi-year periods.

temporally  consistent trajectories, enabling
Between 2014 and 2024, the model accurately captured key land
change processes such as cropland expansion, deforestation,
grassland regeneration, and flooding events. These are also
observed in a study conducted by Kah et al. (2025) in the
Continental Gambia River Basin shared between the Republic of

Guinea, Senegal, and The Gambia. They reported that Forest and
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savanna areas decreased by 20.57% and 4.48%, respectively, largely
due to human activities such as agricultural expansion and
deforestation for charcoal production.

Despite its strengths, the model has opportunities for
refinement, including the integration of a multitemporal
training strategy, which can improve the model’s ability to
detect short-term changes in land cover and phenological
variations, thus improving its generalization over seasons and
years. Overall, the study provides strong empirical evidence that
Transformer-based models, when local specific data, they can
significantly outperform global datasets in terms of capturing
highly localized spatial patterns as depicted also in individual
element of the per-pixel feature vector These results align with
emerging literature that advocates for regionally tailored DL
approaches in land monitoring applications (Xu et al., 2024;
He et al,, 2021; Wang et al., 2022).

4 Conclusion

This study presents one of the first applications of Transformer
architectures for national-scale land use and land cover (LULC)
mapping in Botswana. By integrating field observations, Dynamic
World-derived labels, and Google Earth validation, we constructed a
reliable training dataset that overcomes common challenges of data
scarcity The
demonstrated strong performance by effectively capturing both

in sub-Saharan Africa. Transformer model
local and long-range spatial dependencies, which emanate
primarily from the spatial dependence of the spatial aggregation
of the per-pixel feature vector. This capability produces accurate
LULC classifications across heterogeneous landscapes. These
findings highlight the suitability of attention-based architectures
for large-area mapping tasks and contribute new knowledge on how
Transformer models can be adapted for remote sensing applications
in data-limited regions.

The resulting Land Use and Land Cover (LULC) maps
provide valuable insights into land cover dynamics and have
direct implications for sustainable resource management.
Specifically, the model outputs support land use planning,
biodiversity conservation, agricultural forecasting, and climate
change adaptation strategies across Botswana and beyond.
Compared to existing global datasets, our approach offers
improved thematic reliability, demonstrating that attention-
based models can effectively address spectral ambiguities and
enhance classification accuracy in ecologically complex
environments. Consequently, this work establishes a practical
framework that can be adapted to other African landscapes where
accurate and up-to-date LULC information is critical for
informed decision-making.

Future research should build on this foundation by expanding
the temporal scope to incorporate multi-season and multi-year
imagery, thereby improving the capacity to capture land
dynamics and seasonal variability. Enhancing class separability
through data fusion, for example, by combining Landsat with
Sentinel-1/2 or PlanetScope data, will further reduce spectral
confusion and refine classification accuracy. In addition, scaling
the approach across larger geographic domains will allow

comparative studies of Transformer-based LULC mapping in
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different ecological contexts. Overall, this work not only
demonstrates the feasibility of Transformer architectures for
operational LULC mapping but also provides a pathway toward
more reliable, scalable, and transferable solutions for environmental
Africa  and  other data-

monitoring  in  sub-Saharan

constrained regions.
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