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1 Introduction

Sustainable Development Goal 6 (SDG 6, CleanWater and Sanitation) is a foundational
pillar of the 2030 Agenda, aiming to ensure universal access to safe and affordable drinking
water, sanitation, and hygiene, while promoting the sustainable management of water
resources. It encompasses critical targets including the elimination of open defecation,
improvements in water quality, enhanced water-use efficiency, and protection of aquatic
ecosystems. Achieving SDG 6 is vital not only for public health but also for reducing
poverty, ensuring educational attainment, and enabling economic development.

Despite notable progress, significant disparities persist in water service coverage, with
billions of people still lacking access to basic sanitation and safe drinking water. Many
regions face compounding pressures from water scarcity, pollution, climate change, and
inadequate infrastructure. In response, remote sensing technologies, particularly satellite-
based sensors, are increasingly used to support large-scale, cost-effective monitoring of
water quantity and quality, offering spatial and temporal coverage that complements
traditional field-based methods.

This Research Topic in Frontiers in Remote Sensing highlights innovative applications
of remote sensing and Earth Observation (EO) that support the realization of SDG 6. We
present four articles that span a diverse spectrum of technologies, methodologies, and
geographic contexts, collectively showcasing the growing maturity and impact of remote
sensing in sustainable water management. While the broader discourse around SDG 6 has
often emphasized the quantitative aspects of water (such as availability and access) these
contributions notably centre on the quality dimension of SDG 6. This focus is both timely
and essential, as water quality has historically received comparatively less attention despite
its critical role in achieving sustainable water outcomes. The first contribution, by
Saranathan et al. introduce probabilistic neural networks to retrieve water quality
indicators with associated uncertainty estimates, enabling confidence-based decision-
making in data-scarce environments. Whereas, Balasubramanian et al. leverage machine
learning and multi-mission satellite archives to reconstruct long-term water quality trends,
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facilitating retrospective assessments, essential for monitoring policy
effectiveness and environmental change. On the other hand, Atton
Beckmann et al. demonstrate the power of high-resolution satellite
imagery to monitor algal blooms in small, under-monitored inland
lakes, significantly expanding the scope of water bodies that can be
routinely assessed from space. Finally, Wilson et al. address systemic
barriers to EO adoption, offering inclusive, action-oriented
pathways to empower data-poor regions, particularly in the
Global South.

Together, these contributions underscore the critical role that
remote sensing technologies and EO play in advancing the objectives
of SDG 6. These technologies have matured to the point where they
are actively enhancing water quality monitoring, expanding spatial
and temporal data coverage, informing evidence-based policy, and
enabling the early detection of ecological threats. Yet, realizing the
full potential of EO requires urgent attention to persistent
challenges: the difficulty of integrating EO products into national
regulatory and decision-making frameworks; the limited availability
of robust, transferable algorithms for optically complex water
bodies; the current inability of EO to detect emerging pollutants
or non-optically active water quality constituents; and the lack of
integration with predictive water quality models and
complementary sensing technologies, particularly in the Global
South. Addressing these challenges will require sustained
investment in EO infrastructure, open-data platforms, algorithm
innovation, capacity-building, and interdisciplinary collaboration.

In the sections that follow, we first define the scope of the articles
included in this Research Topic and clarify the central focus of this
editorial essay. We then outline the role of remote sensing and EO in
advancing SDG 6, with particular attention to the specific targets
where these technologies offer the greatest impact. Next, we
summarize the key contributions of the featured papers,
highlighting their methodological innovations and practical
insights. This is followed by a discussion of emerging directions
aimed at enhancing the utility, adoption, and influence of EO in
driving progress toward SDG 6. We conclude with reflections on the
broader implications of these findings and offer recommendations
for future research, policy, and implementation.

2 Scope

The articles in this Research Topic primarily focus on the remote
sensing of water quality, reflecting a key dimension of ensuring clean
water for all. While water quality is a central concern, it is important
to recognize SDG 6 encompasses a broader and more integrated
vision. The goal aims to ensure availability and sustainable
management of water and sanitation for all by 2030, covering a
wide range of targets related to water governance and resource
management.

Beyond improving water quality, SDG 6 addresses critical
objectives such as equitable access to safe and affordable drinking
water, universal access to sanitation and hygiene, and increased
water-use efficiency across sectors. It also calls for the sustainable
management of freshwater resources and ecosystems, the safe
treatment and reuse of wastewater, and the creation of enabling
environments through policies and institutional frameworks.
Moreover, SDG 6 emphasizes the importance of international

cooperation and capacity-building, particularly for developing
countries, to strengthen water and sanitation-related programs
and activities.

These broader Research Topic will be briefly addressed in the
following section, “Setting the Scene” to provide context on how
remote sensing aligns with the full scope of SDG 6. However, the
main body of this editorial will primarily focus on water quality,
reflecting the central theme of the contributions in this Research
Topic. The final section on Future Directions will explore
opportunities to expand and deepen the role of EO technologies
in advancing the remote sensing of water quality as a key component
of SDG 6 implementation.

Throughout this paper, the terms “remote sensing technologies”
and “Earth Observation (EO)” are used interchangeably to reflect
the integrated nature of EO systems, which encompass satellite,
aerial, UAV-based, and in-situ sensing platforms.

3 Setting the scene for remote sensing
of SDG 6

As regulatory agencies, national governments, and international
organizations work to implement SDG 6, remote sensing and EO are
playing an increasingly important role in supporting both policy
development and regulatory compliance. In this context, EO helps
close critical data gaps that hinder effective water governance. Its
capabilities directly support the assessment of progress toward
environmental standards and several SDG 6 targets, including:

1. Target 6.1 – Safe and Affordable Drinking Water: EO supports
the identification and assessment of surface water bodies that
can serve as potential sources of safe and affordable drinking
water. By detecting seasonal fluctuations, water extent, and
potential sources of contamination, EO helps decision-makers
prioritize investments in water supply infrastructure and track
service delivery in underserved or remote regions.

2. Target 6.3 – Water Quality and Pollution Reduction: EO is
instrumental in monitoring ambient water quality variables
such as turbidity and chlorophyll-a. It can also help identify
pollution hotspots and track untreated or partially treated
wastewater discharges into freshwater bodies. When
combined with land use and infrastructure data, EO enables
assessments of the interactions between pollution sources and
water systems, supporting regulatory action and the design of
cleaner water management systems.

3. Target 6.4 – Water-Use Efficiency and Scarcity: Remote
sensing provides early warning of water scarcity by tracking
variables such as surface water extent, soil moisture,
evapotranspiration, and reservoir levels. In peri-urban and
agricultural zones, remote sensing can help monitor
evaporation rates, irrigation impacts, and thermal signatures
of water withdrawals. These insights support drought
preparedness, agricultural water management, and long-
term water allocation planning, especially in arid and semi-
arid regions experiencing increasing pressure from
climate change.

4. Target 6.5 – Integrated Water Resources Management
(IWRM): Due to its wide spatial coverage and high
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temporal resolution, EO significantly enhances the
implementation of IWRM at local, national, and
transboundary scales. Satellite-derived data can support
basin-scale planning, identify upstream–downstream
interactions, and monitor changes in land use, flow regimes,
and ecosystem health over time. This is particularly important
for transboundary river basins, where shared and objective
data from EO can help build trust, foster cooperation among
riparian countries, and support equitable water-sharing
agreements. In addition, EO contributes to the
standardization and comparability of water quality
monitoring across regions, supporting compliance with
international regulatory frameworks, such as the European
Union Water Framework Directive. Remote sensing can help
assess the ecological and chemical status of water bodies, track
progress toward achieving “good status,” and provide
complementary data to in-situ networks, thereby enhancing
the operational capacity of environmental agencies and
improving cross-border water governance.

5. Target 6.6 – Protection of Water-Related Ecosystems: EO
technologies provide near-real-time information on the
health and extent of water-related ecosystems, including
wetlands, rivers, lakes, aquifers, forests, and mountain
catchments. Changes in vegetation cover, wetland dynamics,
primary production, sedimentation, or algal blooms can be
detected through EO-data analysis, enabling rapid intervention
to protect and restore critical ecosystems under threat from
anthropogenic pressures or natural hazards.

4 Summary of this collection

Remote sensing technologies, from satellites to Unmanned
Aerial Vehicles (UAVs), have emerged as powerful tools for
tracking water quality indicators across large spatial and
temporal scales. Optical sensors aboard Earth-observing satellites
can detect near-surface concentrations of chlorophyll-a, coloured
dissolved organic matter, total suspended solids, and other optically
active substances, enabling regional to global assessments. This
capability is increasingly critical as climate change and human
activities intensify pressures on inland lakes and urban water
systems. The integration of multi-mission satellite data streams
has significantly improved the temporal resolution of
observations, supporting more timely and actionable water
management decisions.

Over the past decade, remote sensing applications for water
quality management have advanced considerably. Satellite-based
EO, when combined with in-situ measurements, proximal
sensing, and machine learning techniques, now enables
monitoring from global scales down to small, individual
water bodies.

Key contributions to this Research Topic include:

- Saranathan et al. demonstrate that Mixture Density Networks
and Bayesian Neural Networks with Monte Carlo Dropout can
generate pixel-level probability distributions for key indicators
such as chlorophyll-a. By quantifying uncertainty alongside
the estimates, these models enable more informed decision-

making and risk assessment. The broader Research Topic of
uncertainty quantification for EO-derived water quality
variables has been the subject of extensive research
(Hammond et al., 2020; Mélin, 2021; 2019; 2010; Zhang
et al., 2022). However, the use of neural networks models to
estimate heteroscedastic and epistemic uncertainties at a pixel-
level is relatively new. This development represents an
important advancement in generating EO products that
provide not only quantitative estimates of water quality
indicators but also associated measures of uncertainty,
enhancing their reliability for operational monitoring and
decision-making.

While machine learning models are rapidly advancing, their opaque
internal structures remain a challenge for transparency and
interpretability. The proposed uncertainty-aware approach by
Saranathan et al. represents a step forward toward developing
more explainable and biophysically-informed AI algorithms for
retrieving water quality variables (Jiang et al., 2020; Roy et al., 2023).

- Balasubramanian et al. reconstruct long-term time series of
water quality indicators using historical EO datasets. The study
harmonizes data frommultiple satellite missions, including the
Moderate Resolution Imaging Spectroradiometer (MODIS),
Medium Resolution Imaging Spectrometer (MERIS), and
Visible Infrared Imaging Radiometer Suite (VIIRS). It also
applies machine learning models to the 40+ year Landsat
archive. This integration enables the generation of multi-
decadal records of inland and coastal water quality
indicators, such as water clarity, algal blooms, and nutrient
status. Crucially, the researchers went beyond algorithm
development to operationalize EO-derived indicators across
archived datasets, demonstrating their readiness for large-scale
monitoring and policy support (Chen et al., 2022; Wilkinson
et al., 2024).

Although such reconstruction approaches are essential for
assessing the long-term effectiveness of environmental policies
(such as nutrient reduction strategies) they still require further
development to effectively integrate with current and
forthcoming observations from a wide range of EO missions.

- Atton Beckmann et al. demonstrate the feasibility of
quantifying phytoplankton in small lakes using high-
resolution imagery from Planet SuperDoves and Sentinel-2.
This capability is particularly valuable for mapping water
quality in poorly monitored environments, such as small
ponds and streams. Early demonstrations (e.g., Kwon et al.,
2023; Mishra et al., 2020) established the feasibility of deriving
water quality variables from meter-level satellite imagery.
Building on this foundation, the study by Atton Beckmann
et al. demonstrate that such imagery can accurately detect
localized phenomena, such as algal scums and sediment
plumes, with accuracy comparable to in-situ observations.
As these high-resolution data sources become more
routinely available, we can anticipate a significant expansion
in the number of water bodies monitored globally, along with
more granular integration of water quality data into urban
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management systems, e.g., smart city dashboards for water
(Chen et al., 2023; Okoli and Kabaso, 2024).

While high-resolution data hold great potential for mapping
previously unmonitored water bodies, their application is often
challenged by the need to correct for variable scene illumination,
surface reflectance, sun glint and geolocation. These Research
Topic are especially pronounced when using Unmanned Aerial
Vehicles (De Keukelaere et al., 2023; Windle and Silsbe, 2021).

- Wilson et al. argue that technological progress in EO must be
matched by institutional support and user capacity in order to
translate innovation into meaningful outcomes. Their study
identifies major barriers to achieving SDG 6 in low- and
middle-income countries, particularly related to
infrastructure gaps, limited technical skills, and fragmented
institutional mandates. While platforms like Google Earth
Engine and other open-data tools have improved access to
EO data, the technical capacity to process and apply these
datasets remains limited in many contexts. To address these
challenges, the authors propose a multifaceted strategy that
includes raising public awareness through targeted campaigns,
creating centralized hubs to improve access to EO data,
expanding education and training programs to build
scalable expertise, and fostering global coordination and
policy alignment. They also highlight the role of global
initiatives such as GEO AquaWatch and the World Water
Quality Alliance in supporting the integration of EO into
national monitoring systems and SDG reporting,
particularly for indicator 6.3.2 (ambient water quality).

Despite progress in technical skill development, the transition
toward sustained institutional capacity remains underdeveloped,
limiting long-term and system-wide adoption (Pritchard et al.,
2022; Thapa et al., 2019). As we enter the Fifth Industrial
Revolution, characterized by the explosion of information and
the integration of generative AI, new questions emerge around
how to build adaptive and enduring capacity (Marino and
Monaca, 2025; Ziatdinov et al., 2024; Gunderson et al., 2020;
Orion, 2019). How can pedagogical approaches be designed to
retain institutional knowledge while keeping pace with rapidly
evolving technologies? Emerging learning tools such as virtual
reality (Makransky and Petersen, 2021), digital twins (Hazeleger
et al., 2024), serious games (Sajjadi et al., 2022), gamification and
generative AI tools (Patra et al., 2024) offer promising avenues.
Yet, these questions remain open and are the subject of ongoing
inquiry as the landscape of AI-driven capacity-building
continues to evolve.

Across these contributions, a consistent set of technologies and
data infrastructures emphasize the advancement of remote sensing
for SDG 6. The Sentinel constellation (Sentinel-2 and Sentinel-3)
and the Landsat series remain the backbone of optical water quality
monitoring, widely applied in both regional case studies and global
assessments. Complementing these are legacy ocean-colour
missions such as Moderate Resolution Imaging
Spectroradiometer (MODIS), Medium Resolution Imaging
Spectrometer (MERIS), Visible Infrared Imaging Radiometer

Suite (VIIRS), and Ocean and Land Colour Instrument (OLCI),
which support long-term trend analysis across large water bodies.
More recently, hyperspectral satellite missions—including Plankton,
Aerosol, Cloud, ocean Ecosystem, PACE (Werdell et al., 2019),
PRecursore IperSpettrale della Missione Applicativa, PRISMA
(Candela et al., 2016) and Environmental Mapping and Analysis
Program, EnMAP (Storch et al., 2023)—have begun to demonstrate
their enhanced ability to resolve optically complex waters, such as
those rich in suspended matter or algal pigments, though their
integration into operational workflows is still in its early stages. On
the ground, the development of extensive in situ datasets—such as
the GLObal Reflectance community dataset for Imaging and optical
sensing of Aquatic environments, GLORIA (Lehmann et al., 2023),
Lake Bio-optical Measurements and Matchup Data for Remote
Sensing, LIMNADES (Carrea et al., 2015), SeaWiFS Bio-optical
Archive and Storage System, SeaBASS (Werdell et al., 2003) and
various regional monitoring networks, has proven essential for
training and validating analytical and machine learning
algorithms. These datasets enable robust generalization across
diverse water types and geographies. In parallel, cloud-based
platforms and pre-processed EO datasets, such as atmospherically
corrected surface reflectance, are lowering technical barriers by
streamlining data access, processing, and integration. These
advances are enabling more consistent, scalable, and regionally
transferable approaches to EO-based water quality monitoring.

5 Future directions in remote sensing of
water quality

As remote sensing technologies and EO continue to mature and
diversify, the scope of remote sensing applications for sustainable
water management is rapidly expanding. Looking ahead, six
strategic priorities emerge that can further strengthen the role of
remote sensing in improving water quality targets of SDG 6.

5.1 Monitoring small water bodies for
drinking water security

With the rapid depletion of groundwater resources and
increasing hydrological variability driven by climate change,
small surface water bodies are becoming vital sources of drinking
water, particularly for rural, peri-urban, and marginalized
communities (Jasechko et al., 2024). These lakes, ponds, and
reservoirs, often less than 1 km2 in area, remain among the least
monitored yet most vulnerable to contamination and seasonal
fluctuations. Historically overlooked by traditional water
management systems due to their small spatial footprint and
remoteness, their importance in local water supply is
steadily growing.

The use of sub-meter high-resolution EO platforms (such as
Pléiades, WorldView, and UAVs) has the potential to substantially
improve monitoring of small water surfaces by providing data at
scales relevant for local water management and policy
implementation. Figure 1 presents a pan-sharpened Pléiades
image of the Sekdoornse Plas in the Netherlands, where floating
solar panels have been installed. This pond, currently being explored

Frontiers in Remote Sensing frontiersin.org04

Salama 10.3389/frsen.2025.1659681

https://doi.org/10.3389/frsen.2025.1549286
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1659681


for its potential to complement the local drinking water supply while
also serving as a site for green energy production, exemplifies the
integration of renewable infrastructure with small water bodies. This
approach reflects the growing importance of multi-functional water
resource management, particularly in regions facing increasing
demand and water stress. High-resolution EO data, such as the
image presented in Figure 1, enable detailed assessments of how
floating solar installations influence water quality like
photosynthetically available radiation and light attenuation
coefficients, which in turn affect lake stratification and
lake–atmosphere heat exchange (Heiskanen et al., 2015).
Meanwhile, high-resolution thermal EO capabilities are being
actively developed under missions such as the ESA Land Surface
Temperature Monitoring (LSTM, Koetz et al., 2019) and NASA’s
Surface Biology and Geology (SBG, Stavros et al., 2023). These
missions aim to provide thermal data at spatial resolutions fine
enough (30–100 m) to detect water surface temperature anomalies.
In parallel, commercial satellite constellations are emerging with
even finer Thermal InfraRed capabilities. For instance, HotSat1 by
SatVu captures detailed heat variations across the Earth’s surface
with a resolution of up to 3.5 m, both day and night. These systems
offer potential for fine-scale assessment of surface temperature
gradients, particularly in the context of floating infrastructure
and climate-sensitive inland waters. For example, Prandini et al.
(2025) showed, using detailed in-situ measurements, that floating

solar modules created a microclimate above them with temperatures
approximately 12% higher than those recorded by weather stations
in the surrounding area. When coupled with biophysical lake
models, EO data can support the quantification of energy fluxes
(e.g., latent heat) and help infer biogeochemical processes like CO2

exchange linked to algal primary production (MacIntyre
et al., 2010).

To fully unlock the potential of high-resolution, future research
should prioritize the development of robust EO algorithms and
integrating them with biophysical and ecological models specifically
designed for small, optically complex water bodies. Incorporating
these water bodies into national SDG indicator frameworks could
help guide targeted investments and strengthen resilience in water-
scarce regions, ensuring that these often-overlooked resources are
effectively monitored, managed, and protected.

5.2 Imaging spectroscopy of emerging
contaminants

One of the most pressing yet understudied frontiers in remote
sensing is the detection of emerging contaminants in aquatic
systems. These include microbial pathogens (e.g., Escherichia coli,
Vibrio spp.), heavy metals, dissolved nutrients, pharmaceutical
residues, endocrine-disrupting compounds (EDCs), personal care

FIGURE 1
Pan-sharpened Pléiades Neo image of the Sekdoornse Plas (Netherlands) at 0.3 m spatial resolution. The image was acquired on 2025-04-07 and
provided via the Netherlands Space Office Satellite Data Portal.
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products (PPCPs), per- and polyfluoroalkyl substances (PFAS), and
microplastics. Detecting these pollutants using satellite or airborne
platforms remains challenging due to their typically low
concentrations and the absence of distinct absorption or
reflectance features detectable by EO sensors. Consequently, they
are largely invisible to traditional multispectral sensors. These
contaminants are often linked to land-based pollution sources
such as household wastewater, agricultural runoff, and urban
stormwater, posing significant ecological and human health risks,
especially in regions with inadequate sanitation infrastructure.
However, recent advancements in remote sensing technologies,
particularly hyperspectral imaging, offer new opportunities. With
its capacity to capture continuous, high-resolution spectral
signatures across narrow wavelength intervals, hyperspectral
remote sensing holds promise for detecting subtle spectral
patterns that could be associated with these pollutants.

For microplastics, hyperspectral imaging has already demonstrated
success in both laboratory and environmental settings, enabling pixel-
level identification of polymer types based on their distinct spectral
features (Balsi et al., 2025; de Fockert et al., 2024; Gebejes et al., 2024;
Faltynkova et al., 2021). Detection may occur directly (when high
concentrations or surface accumulations are present) or indirectly
through proxies such as fluorescence, water colour, or algal
community shifts. Similarly, while direct detection of PFAS remains
nascent (Tshangana et al., 2025), optical sensing technologies such as
Raman spectroscopy and microcavity sensors have been shown to
discriminate PFAS compounds based on their vibrational spectral
characteristics (Chen et al., 2024; Rodriguez et al., 2020), suggesting
a foundation for future hyperspectral adaptation.

Beyond plastic and chemical pollutants, microbial
contamination can also be inferred through remote sensing. For
instance, recent studies have used Sentinel-2 data in combination
with environmental modelling to predict Salmonella and Vibrio
presence in river systems based on variables such as turbidity,
temperature, and chlorophyll-a (Palharini et al., 2025). While
these approaches do not detect microbes directly, they represent
viable early-warning systems based on proxies.

Heavy metals and dissolved nutrients have shown more direct
optical detectability in some cases. Red and Near Infrared reflectance
and hyperspectral indices, when integrated with machine learning
models, have been used to estimate concentrations of metals such as
copper, lead, and cadmium in inland waters (Xu et al., 2024).
Similarly, advances in fluorescence spectroscopy and high-
resolution EO data are enabling assessments of nutrient
concentrations, dissolved organic carbon, and related water
quality indicators (Ngamile et al., 2025; Kumar et al., 2024).
Despite this progress, detection of pharmaceutical residues,
PPCPs, and EDCs remains in the early stages of remote sensing
applicability. Current research relies largely on in-situ optical and
biosensing platforms to characterize the presence and dynamics of
these compounds (Li et al., 2024).

To move toward operational monitoring, future efforts should
prioritize the integration of airborne and satellite hyperspectral
missions (e.g., EnMAP, PRISMA, PACE) with in-situ spectral
libraries, chemometric modelling, and machine learning
approaches. Such efforts could significantly extend EO’s capacity
to monitor water quality beyond conventional optical parameters,
bridging into the chemical and biological domains of contamination.

5.3 Triple sensing: EO, proximal sensing, and
citizen science

Achieving SDG 6 requires monitoring systems that are not only
accurate and scalable but also inclusive and grounded in local
realities. A promising pathway lies in the integration of triple
sensing approaches: combining satellite-based EO, proximal
sensing, and citizen science. This fusion offers multi-scale
framework to assess and manage water quality in ways that are
technically robust and socially embedded.

The papers in this Research Topic have demonstrated how EO
provides synoptic, repeatable, and large-scale coverage of surface
water bodies, allowing for the routine monitoring of key water
quality indicators. However, EO-derived water quality information
is primarily restricted to the surface layer and can be significantly
constrained by cloud cover (Uday et al., 2025), as well as by its
inability to directly detect optically inactive contaminants (Vakili
and Amanollahi, 2020).

Proximal sensing technologies, including UAV-mounted
sensors, in-situ IoT devices, and mobile-based field platforms,
help bridge critical observational gaps by providing high-
frequency, high-resolution measurements at local scales (e.g.,
Kuusk et al., 2024). Proximal sensing is particularly effective in
detecting fine-scale spatial heterogeneity and enabling rapid
responses in small or dynamic water bodies. When deployed as
part of a coordinated measurement network, they offer valuable
coverage in both urban and rural contexts where EO data may be
limited or unavailable (e.g., the WATERHYPERNET Ruddick
et al., 2024).

Citizen science complements both modalities by engaging
communities in data Research Topic and validation through
mobile apps and low-cost kits. Mobile phone applications such as
HydroColor (Leeuw and Boss, 2018) or EyeOnWater (Novoa et al.,
2015) train volunteers in collecting water colour observations.

While citizen-sourced data offer promising opportunities for
expanding water quality monitoring, they face critical challenges
related to sensor calibration, data consistency, and scientific
reliability (Pattinson et al., 2023). Variability in device types, user
practices, and sampling protocols can introduce significant
uncertainty. For instance, Mahama and Salama, (2024) reported
notable inconsistencies in smartphone-based turbidity
measurements, particularly in optically complex waters where
such tools are often deployed. To address these limitations,
calibration and validation against high-quality reference
data—such as measurements from UAV-mounted sensors or
IoT-enabled probes—are essential for correcting biases and
improving usability (Bakar et al., 2025).

To realize this triple-sensing model at scale, it is essential to
ensure data interoperability, standardization of quality-control
protocols, consistent metadata reporting, and calibration across
devices. Embedding citizen-generated observations within
frameworks validated by proximal and EO data can enhance data
reliability, while institutional support is crucial for integrating
community-sourced data alongside conventional datasets. When
implemented effectively, this integrative approach has to potential of
delivering comprehensive, scalable, and trustworthy water-quality
insights, supporting more resilient, inclusive, and evidence-based
governance in line with SDG 6.
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5.4 Digital twins for water quality

While digital twins have made substantial progress in hydrology,
particularly for modelling river flows, flood dynamics, and drought
forecasting (Yang et al., 2024), their application to water quality
remains relatively underdeveloped (Hamzah et al., 2024). A digital
twin for water quality entails a dynamic, real-time numerical
representation of aquatic systems, continuously updated with
observational data to simulate and predict spatial and temporal
changes in key parameters such as nutrient concentrations, algal
blooms, turbidity, and dissolved oxygen. To realize this vision, the
integration of triple sensing frameworks with hydrodynamic,
biophysical, and biogeochemical models (hereafter called process-
based models) is essential. EO provides synoptic and temporally rich
surface data; proximal sensors offer high-frequency, localized in situ
observations; and citizen science fills critical data gaps through
community-based monitoring. When assimilated into process-
based models, these inputs enable three-dimensional, time-
evolving simulations of water quality dynamics, capable of
supporting scenario analysis, forecasting, and policy evaluation.

Although EO data assimilation with process-based models is a
well-established approach for improving aquatic ecosystem
simulations (e.g., Ciavatta et al., 2018), the assimilation of EO-
derived water quality products remains relatively underutilized and
is still not widespread in operational systems (Groom et al., 2019).

However, developing a unified global digital twin for water
quality remains impractical due to the complexity, variability,
and context-specific nature of aquatic systems. Each river basin,
lake catchment, or coastal zone presents distinct hydrological,
ecological, and socio-environmental conditions that require
regionally tailored modelling approaches and calibration
strategies. For example, Cho et al. (2020) argue in their review
that a major challenge in assimilating EO data into water quality
models lies in the uncertainty of EO observations and the
spatiotemporal mismatches between measurement scales and the
model grid and time domains. Addressing these limitations requires
not only methodological advances (e.g., Salama et al., 2022) but also
a shift toward more integrated modelling frameworks. As digital
twin frameworks evolve, future efforts should prioritize the fusion of
triple sensing data with process-based aquatic models at regional
and global scales. Doing so will enable a new class of predictive tools
that go beyond static or near-real-time monitoring, supporting early
warning systems, pollution control strategies, and adaptive water
quality governance. This convergence marks a critical step toward
more intelligent, anticipatory, and evidence-driven water
management systems aligned with the targets of SDG 6.

5.5 From research to operations

To ensure broader and sustained impact, remote sensing-based
water quality products must move beyond research prototypes
toward full operational integration. For EO-based services,
reaching Technology Readiness Level 9 (TRL 9) signifies that a
system is not only technically mature but has been demonstrated
under real-world conditions and embedded within established
monitoring workflows. This transition involves more than
algorithm refinement: it requires integration into regulatory or

institutional frameworks, development of automated and scalable
processing pipelines, rigorous validation with in situ observations,
and the establishment of user support mechanisms and training.
Operational readiness also depends on sustained collaboration with
stakeholders and a shift from individual capacity-building to
institutional strengthening. This includes long-term
organizational commitment, the establishment of technical and
operational protocols, and alignment with existing standards for
data quality, accessibility, interoperability, and reporting. While
platforms such as Google Earth Engine, Digital Earth Africa, and
Euro Data Cube have advanced the technical scalability of EO
applications, broader and lasting adoption requires co-producing
water quality information that is not only technically robust but also
fit for use within regulatory frameworks and day-to-day
decision-making.

5.6 Enhancing policy uptake and decision
integration

Despite significant advances in EO, a persistent challenge lies in
completing the value chain. Specifically, bridging the gap between
data availability and its effective integration into decision-making
processes (Virapongse et al., 2020). To increase uptake, remote
sensing products must be integrated into institutional workflows,
policy frameworks, and regulatory tools. This involves:

• Co-designing EO solutions with policymakers, water
managers, and civil society to ensure relevance, usability,
and alignment with real-world needs.

• Translating EO outputs into actionable indicators, thresholds,
or risk scores that match local water guidelines and standards.

• Embedding EO-derived products into early warning systems,
environmental impact assessments (EIAs), water safety plans,
and SDG reporting dashboards.

• Demonstrating the socio-economic value of EO by
quantifying how satellite-based monitoring reduces costs,
increases responsiveness, or mitigates risks, particularly in
resource-constrained contexts.

• Building institutional trust through capacity development,
long-term partnerships, and transparent validation
procedures that clarify limitations and uncertainties of
EO products.

6 Conclusion

In summary, Earth Observation (EO) and remote sensing
technologies are powerful enablers for operationalizing SDG 6.
Their integration into water governance systems enhances data
availability and transparency, while supporting more adaptive,
evidence-based decision-making in the face of climate change
and increasing demand for clean water. However, system-wide
adoption requires expanding technical capabilities to include fine-
scale water bodies and emerging pollutants, strengthening the
integration of multi-modal sensors with process-based models,
and advancing explainable AI techniques to improve the
biophysical relevance of water quality retrievals. Equally
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important is the evolution of institutional capacity to keep pace with
rapid technological change. While emerging tools like digital twins,
virtual reality, and generative AI offer promise, durable knowledge
systems remain essential.

Decisive next steps include aligning EO products with national
SDG 6 reporting frameworks, expanding validation networks,
particularly in the Global South, and securing long-term funding.
These efforts must be supported by cross-sectoral alliances, open
data practices, and strategic capacity building. Only then can EO
move beyond its current technical role to become a foundational
element of inclusive and resilient water quality management system.
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