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Introduction: Accurate forest canopy height mapping is critical for
understanding ecosystem structure, monitoring biodiversity, and supporting
climate change mitigation strategies.

Methods: In this paper, we present SenFus-CHCNet, a novel deep learning
architecture designed to produce high-resolution canopy height classification
maps by fusing multispectral (Sentinel-2) and synthetic aperture radar (SAR)
(Sentinel-1) imagery with GEDI LiDAR data. The proposed model comprises
two main components: a Multi-source and Multi-band Fusion Module that
effectively integrates data of varying spatial resolutions through resolution-
aware embedding and aggregation, and a Pixel-wise Classification Module
based on a customized U-Net architecture optimized for sparse supervision.
To discretize continuous canopy height values, we evaluate three classification
schemes—coarse, medium, and fine-grained—each balancing ecological
interpretability with model learning efficiency.

Results: Extensive experiments conducted over complex forested landscapes in
northern Vietnam demonstrate that SenFus-CHCNet outperforms state-of-the-
art baselines, including both convolutional and transformer-based models,
achieving up to 4.5% improvement in relaxed accuracy (RA+1) and 10% gain in
F1-score. Qualitative evaluations confirm that the predicted maps preserve fine-
scale structural detail and ecologically meaningful spatial patterns, even in
regions with sparse GEDI coverage.

Discussion: Our findings highlight the effectiveness of deep fusion learning for
canopy height estimation, particularly in resource-limited settings. SenFus-
CHCNet provides a scalable and interpretable approach for forest monitoring
at regional and national scales, with promising implications for biodiversity
conservation, carbon accounting, and land-use planning.

canopy height estimation, pixel-wise classification, multi-resolutionfusion, sparse
supervision, GEDI, Sentinel-1, Sentinel-2
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1 Introduction

Forest canopy height is a vital parameter in understanding and
managing ecosystems, as it is directly linked to biodiversity, carbon
storage, and overall forest health (Sun et al., 2023; Vargas-Larreta
et al., 2020; Lang et al., 2023). Precise canopy height estimation is
essential for monitoring forest dynamics, evaluating habitat quality,
and supporting conservation strategies. Taller canopies with
complex vertical vegetation structures can create additional
ecological niches, thereby fostering greater biodiversity
(MacArthur and MacArthur, 1961; Roll et al., 2015; Zhang et al,,
2013), and are generally associated with higher biomass and carbon
stocks, contributing significantly to the global carbon cycle (Penne
et al,, 2010; Solomon et al., 2024). Variability in canopy height can
also inform species distribution and ecosystem resilience (Feng et al.,
2020), making it a key indicator for ecological research and climate
change mitigation. Traditional methods for measuring canopy
height, including field surveys (Garrido et al., 2020; Bont et al.,
20205 Shang et al., 2020) and airborne LiDAR (Kovanic¢ et al., 2023;
Sier et al,, 2023; Catalano et al.,, 2023), offer high accuracy but are
often limited by high costs, labor requirements, and restricted spatial
coverage. Satellite remote sensing has transformed large-scale forest
monitoring by providing widespread and frequent data (Trier et al.,
2018; Ghosh et al, 2020), yet fine-scale precision remains
challenging (Gibbs et al., 2007; Popkin, 2015; Duncanson et al.,
20205 Yanai et al., 2020). Physical and semi-empirical approaches,
such as those utilizing TanDEM-X for interferometric SAR and
LiDAR data integration, enable more direct modeling of forest
structure but often demand extensive calibration and are
sensitive to site-specific factors. In contrast, machine learning
models, while data-intensive, can manage complex interactions
among diverse datasets more effectively. Combined with super-
resolution techniques, machine learning models can enhance spatial
detail, offering a flexible alternative that can adapt to different
ecological contexts and improve canopy height estimation.

Recent advances in remote sensing enable the integration of
diverse data sources-including Synthetic Aperture Radar (SAR),
multispectral imagery, and lidar-to improve measurement accuracy
(Lang et al., 2023; Valbuena et al., 2020; Tolan et al., 2024). Sentinel-
1 and Sentinel-2, from the Copernicus program, provide SAR and
multispectral data, respectively, while NASA’s GEDI mission
delivers detailed vertical structure via spaceborne lidar. Fusing
these complementary datasets holds significant potential for
improving canopy height estimation.

However, integrating multi-source data presents challenges.
Differences in spatial resolution, temporal frequency, and data
formats can introduce inconsistencies. For instance, Sentinel-2
includes bands at 10 m, 20 m, and 60 m resolution, whereas
Sentinel-1 maintains a uniform 10 m resolution. Misalignment in
spatial scale and acquisition time-for example, one satellite
a disturbance event and another

capturing data before

afterward-can  degrade = model Conventional

interpolation-based upscaling often yields blurred results lacking

accuracy.

the spatial detail needed for precise analysis (Lanaras et al., 2018;
Kawulok et al, 2021). To address these issues, deep learning
techniques—particularly convolutional neural networks (CNNs)-
have emerged as powerful tools for processing and integrating
multi-resolution data. These methods enable advanced image
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super-resolution and reduce information redundancy (Zhou
et al,, 2022), thereby enhancing the overall quality and usefulness
of the combined datasets.

In this paper, we propose a deep learning framework that
integrates SAR data from Sentinel-1, multispectral imagery from
Sentinel-2, and GEDI lidar measurements to estimate forest canopy
height with high accuracy. Our approach consists of three main
phases: the Collection Phase, Preprocessing Phase, and Training/
Inference Phase.

1. During the Collection Phase, Sentinel-1, Sentinel-2, and GEDI
are first subjected to Data Quality Filtering to ensure that only
high-quality data are used. The filtered data are then processed
through a Registration and Alignment step to harmonize the
spatial and temporal characteristics of the different data
sources, enabling accurate integration.

2. In the Preprocessing Phase, the aligned data undergo a Super-
Resolution Model process, where lower-resolution imagery
(e.g., 20 m resolution) is upscaled to higher resolution (e.g.,
10 m resolution) to enhance the details necessary for precise
canopy height estimation.

3. Finally, in the Training/Inference Phase, the preprocessed data
are used to Build a Dataset for Training the Model. The deep
learning model extracts essential features through the Feature
Extractor and applies Sparse Supervision to predict canopy
height. The model outputs a Prediction Map that visually
represents the estimated forest canopy height across the
study providing  valuable forest

area, insights  for

management and conservation efforts.
Our contributions are four folds and are summarized as follows:

e We present an end-to-end framework covering data
acquisition, preprocessing, and deep learning for consistent
canopy height estimation.

o We incorporate super-resolution techniques to enhance the
spatial quality of multispectral inputs.

o By fusing Sentinel-1 SAR, Sentinel-2 optical, and GEDI lidar
data, our method captures complementary spatial and vertical
information.

o We validate our framework in diverse Vietnamese forest
regions, showing strong performance across ecosystems.

The remainder of this paper is organized as follows: Section 2
reviews related work on canopy height estimation using remote
sensing and deep learning. Section 3 details the data collection and
preprocessing steps. Sections 4, 5 describe our super-resolution
strategy and deep learning model. Section 6 presents the
experimental setup and results, followed by conclusions and
future work in Section 7.

2 Related work

Estimating forest canopy height using remote sensing data
has garnered significant attention in recent years due to its
importance in ecological research, carbon cycle analysis, and
forest management. Traditional approaches have relied on
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ground-based measurements and airborne LiDAR surveys, which,
while accurate, are often constrained by limited spatial coverage and
high operational costs. The advent of satellite remote sensing has
opened new possibilities for large-scale, cost-effective canopy height
estimation, leading to the development of various methodologies
that integrate data from multiple sources.

2.1 Machine learning approaches

Traditional machine learning algorithms such as Random Forest
(RF) and Symbolic Regression (SR) have shown promise in
modeling forest structure metrics, including canopy height and
cover. However, these methods are often sensitive to input data
quality and may struggle with generalizability in regions with sparse
or inconsistent data.

For instance, RF was applied in Nandy et al. (2021) to estimate
canopy height in India’s Doon Valley using ICESat-2 and Sentinel
imagery, achieving an R? of 0.84 and RMSE of 4.48%. Similarly, Chere
et al. (2023) combined GEDI LiDAR, Sentinel multispectral data, and
SRTM elevation data to estimate canopy cover and height in tropical
forests, reaching R* scores of 0.86 and 0.87, respectively. Another study
(Ghosh et al., 2020) used both RF and SR to predict canopy height in the
Bhitarkanika Wildlife Sanctuary, obtaining moderate performance
(R* =~ 0.6) using multispectral images and field data. While
effective, these models often rely on handcrafted features and may
not capture spatial dependencies in complex forest structures.

2.2 Deep learning techniques

2.2.1 Convolutional neural network

Unlike traditional machine learning approaches that depend on
manually derived features, such as those obtained from LiDAR
waveforms, deep learning (DL) techniques excel in directly
processing raw signals, which simplifies the typically intricate
preprocessing steps (Fayad et al.,, 2021).

Convolutional Neural Networks (CNNs) are powerful tools for
processing different types of signals, such as one-dimensional time
series and two-dimensional images (LeCun et al,, 2015; Huang et al,
2017). Their convolutional layers are designed to capture the spatial and
temporal patterns often present in these data. For instance, GEDI’s
univariate waveform signals record the energy pulses traveling from the
atmosphere to the Earth’s surface. One-dimensional CNNs (1D CNNs)
are commonly used to model the sequential dependencies along these
waveforms. Another approach is to reshape the waveform into a two-
dimensional format, enabling the use of two-dimensional CNNs (2D
CNNis). Although using 2D CNNs for waveform data is less common, it
works particularly well for GEDI signals because of their high sparsity.
The 2D representation helps highlight and preserve structural patterns
in the signal, improving contrast and making feature extraction more
effective (Zhu et al., 2017).

CNNs have also been successfully used for canopy height
estimation by combining Sentinel-2 imagery with GEDI LiDAR
data. In Lang et al. (2023), researchers trained an ensemble of five
deep CNNs, each initialized with different random weights, to
transform Sentinel-2 optical images into canopy height maps
with a ground sampling distance (GSD) of 10 m. The networks
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were optimized by maximizing the Gaussian likelihood, allowing
them to produce both point estimates and uncertainty measures. To
further improve accuracy, geographic coordinates were added as
extra input channels. This method achieved strong global
performance, with an average root mean square error (aRMSE)
of 7.3 m, and was fine-tuned to reduce underestimation of tall
canopies (Lang et al.,, 2023).

The effectiveness of CNNs in capturing spatial and temporal
dependencies has led to their widespread adoption in remote
sensing, especially for environmental monitoring tasks. Across
multiple datasets, CNNs have consistently improved the accuracy
and efficiency of estimating forest biophysical parameters such as
canopy height and biomass (Lang et al., 2023; Fayad et al., 2021;
Mahesh and Hinsch, 2023; Oehmcke et al., 2021). These advances
underscore CNNs’ ability to enhance signal contrast and extract
meaningful patterns from complex and often sparse data,
reinforcing their role as essential tools in geospatial analysis.

2.2.2 Vision transformer

Vision Transformers (ViTs) have shown strong performance in
aerial imagery tasks, demonstrating their effectiveness across a range
of applications (Xu et al., 2021; Wang et al., 2022; Gibril et al., 2023;
Reed et al, 2022). However, applying ViTs to generate detailed
canopy height maps from high-resolution airborne LiDAR data
remains challenging, primarily due to the limited availability of such
data. This scarcity hinders the model’s ability to generalize to new
geographic regions, particularly those with little or no training data
(Schacher et al., 2023).

To address these challenges, self-supervised learning (SSL)
methods-such as the DINOv2 approach-have been instrumental
in advancing vision tasks like image classification and segmentation
(Oquab et al., 2023; Sirko et al., 2021). To further reduce reliance on
SSL and limit potential biases caused by geographically constrained
supervision, (Fayad et al., 2024), employed knowledge distillation
from a U-Net CNN teacher model to build a 10-m canopy height
model (CHM) for Ghana, using multispectral imagery from
Sentinel-1, Sentinel-2, and GEDI data. Similarly, to mitigate
biases from localized supervision, recent work (Tolan et al., 2024)
improved canopy height maps by integrating CNNs trained on
spaceborne LiDAR data, thereby enhancing both model accuracy
and its ability to generalize across regions.

3 Data Collection Phase
3.1 Study area

The study situated in northern Vietnam,

approximately 80 km south of the capital city Hanoi,

area is

encompassing portions of Ninh Binh, Hoa Binh, and Thanh
Hoa provinces. Geographically, the region spans an area of
roughly 110 x 110 km and is characterized by a highly
heterogeneous landscape comprising lowland plains, karstic
limestone formations, tropical evergreen forests, and
secondary regenerating vegetation. The variation in terrain,
ranging from flat valleys to steep mountainous zones, presents
a complex spatial structure that is particularly relevant for

evaluating remote sensing techniques in forest monitoring.
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At the heart of the study area lies Cuc Phuong National Park,
Vietnam’s first and most ecologically significant national park,
established in 1962'. Covering an area of over 22,000 ha, the
park is located at the convergence of three provinces and is well-
known for its exceptional biodiversity, hosting over 2,200 species of
vascular plants, 135 species of mammals, and over 300 species of
birds®>. The forest within the park is predominantly tropical
evergreen broadleaf, with some areas containing primary forest
that has remained largely undisturbed for centuries (Duwe et al.,
2022). The canopy height within the park ranges significantly, from
under 10 m in young regenerating forests to over 40 m in mature and
undisturbed stands.

The region’s climatic conditions are influenced by the tropical
monsoon system, with high annual precipitation ranging from
1,800 to 2,100 mm, and a distinct wet season from May to
October. These environmental factors, combined with rich soil
diversity and topographic complexity, contribute to the dynamic
vertical and horizontal structure of forest canopies across
the landscape.

Beyond its ecological importance, the area is also a site of
conservation priority and ongoing forest restoration efforts. It
includes buffer zones with agricultural encroachment and mixed
land uses, creating a mosaic of land cover types that challenge
traditional forest classification and canopy height estimation
methods. This makes the area particularly suitable for testing the
generalizability of machine learning models across varying
vegetation conditions, land cover transitions, and forest
disturbance gradients.

In summary, the selected study area offers a diverse and
representative forested environment that reflects many of the
ecological, topographic, and land-use characteristics found in
tropical Southeast Asia. Its combination of primary forest,
secondary growth, anthropogenic disturbance, and varied
terrain makes it an ideal testbed for developing robust models
for tree height classification using remote sensing and deep

learning approaches.

3.2 Satellite data description

3.2.1 Model input data

In this study, we leverage multi-source satellite imagery from the
Sentinel-1 and Sentinel-2 missions to construct a comprehensive
feature representation for tree height classification. These satellites,
part of the European Space Agency’s Copernicus program, provide
complementary data modalities-radar and multispectral optical
imagery—each contributing unique information to our hybrid
deep learning model.

3.2.1.1 Sentinel-1 SAR imagery
Sentinel-1 provides Synthetic Aperture Radar (SAR) data, which
captures the Earth’s surface backscatter intensity independently of

1 https://sotnmt.ninhbinh.gov.vn/tin-trong-nuoc/vuon-quoc-gia-cuc-

phuong-rung-nguyen-sinh-dep-nhat-viet-nam-106.html

2 https://www.vacne.org.vn/gioi-thieu-vqg-cuc-phuong/214218.html
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illumination or atmospheric conditions. The mission comprises two
satellites—Sentinel-1A  and Sentinel-1B-operating in a sun-
synchronous near-polar orbit with a 12-day repeat cycle,
effectively reduced to 6 days when both satellites are active. The
SAR data is highly valuable for its sensitivity to surface structure,
texture, and dielectric properties, allowing robust observation of
terrain features such as land cover type, moisture content, and
vegetation density.

For forest applications, SAR is particularly advantageous in
detecting canopy structural characteristics, especially in densely
vegetated areas where optical data may be limited due to cloud
cover. The backscatter response in the VV and VH polarizations
serves as an indirect indicator of canopy complexity and
biomass. In this work, Sentinel-1 data constitutes a critical
input to the regression stage of our model, aiding in the
quantification of vertical forest structure for tree height
classification.

To ensure complete spatial coverage of the study area—including
the region of interest—we selected two Sentinel-1 image tiles acquired
over a 5-month period, from March 6 to 6 August 2024. Both tiles
share identical orbital parameters, with Orbit Number: 53575 and
Product ID: 068102. Specifically, the tile marked with the red
bounding box in Figure 1 has a Checksum ID of 5C5B, while the
tile delineated by the light blue bounding box is associated with
Checksum ID A368.

For Sentinel-1 data processing, we performed spatial cropping
and alignment with corresponding Sentinel-2 imagery. The
procedure involves initially merging the two Sentinel-1 tiles into
a unified mosaic. Subsequently, the geographic coordinates of each
pixel in the mosaic are calculated, and coordinate system
synchronization with the Sentinel-2 reference frame is verified.
Finally, the overlapping region, where pixel coordinates are
aligned with the Sentinel-2 dataset, is extracted and used as the
input data for the model.

3.2.1.2 Sentinel-2 multispectral imagery

Complementing SAR data, Sentinel-2 imagery provides high-
resolution multispectral information, which is essential for
capturing biochemical and biophysical properties of vegetation.
We employ Level-2A products, which offer atmospherically
corrected surface reflectance, significantly enhancing the
reliability of vegetation analysis. Sentinel-2 has a 5-day revisit
frequency and provides imagery across 12 spectral bands with
resolutions of 10, 20, and 60 m.

Our analysis emphasizes the 10-m bands (B2 - Blue, B3 -
Green, B4 - Red, B8 - Near Infrared). Furthermore, the B9 band
(Short Wave Infrared, SWIR) is offered at a coarser 60-m
resolution, while the other bands, namely B1 (Ultra Blue), B5-
B7 (Red Edge), BSA (Narrow NIR), and B11-B12 (SWIR), are
offered at 20-m resolution.

The dataset used includes Sentinel-2B imagery (Tile ID:
T48QWH) captured on 12 February 2024, at 03:28:49 UTC (as
visualized in Figure 1). This acquisition features high image clarity
and minimal atmospheric interference, with less than 3% cloud
cover. The image dimensions are 10980 x 10980 pixels, fully
covering the ROI and surrounding forested areas of interest.
Detailed information about Sentinel-2 is provided in the table

shown in Figure 2.
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FIGURE 1

Initial Sentinel-1 and Sentinel-2 data overlaid on the map. The Sentinel-1 data consist of two images, each enclosed by red and light blue bounding
boxes, respectively. The Sentinel-2 image is highlighted with a green bounding box.
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Field Meaning

S2B Satellite: Sentinel-2B

MSIL2A Processing Level: MSI = MultiSpectral Instrument,
L2A = Level-2A (Surface Reflectance)

20240212T032849 Sensing time: February 12, 2024 at 03:28:49 UTC

N0510 Processing baseline: Version 05.10

RO18 Relative Orbit Number: 018

T48QWH Tile ID (MGRS grid reference): 48QWH

20240212T054533 Product generation time:

February 12, 2024 at 05:45:33 UTC

Region of interest (ROI) on the geographical map of Vietnam. The left panel shows the national map with provincial boundaries, where latitude
(North-South axis) and longitude (East-West axis) are explicitly indicated, and the ROl is highlighted by a dashed bounding box. The right panel presents a
Sentinel-2B Level-2A surface reflectance image of the ROI, together with a table summarizing the metadata of the acquisition.

Together, the integration of Sentinel-1 and Sentinel-2 data enables a
robust and multi-perspective characterization of forest structure. Their
synergistic potential-temporal continuity, structural sensitivity (SAR),
and spectral richness (optical)-forms the foundation for accurate tree
height classification when combined with GEDI-derived ground truth
in our hybrid classification-regression model.

Frontiers in Remote Sensing

3.2.2 GEDI reference data

Launched on 5 December 2018, the Global Ecosystem Dynamics
Investigation (GEDI) mission, onboard the International Space
Station (ISS), employs advanced Light Detection and Ranging
(LiDAR) technology to generate high-resolution 3D observations
of forest vertical structure. By measuring the time delay of laser

frontiersin.org


https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1666123

Bui-Quoc et al.

pulse returns, GEDI accurately characterizes forest canopy
height, vertical layering, and foliage density, providing critical
insights for assessing aboveground biomass, biodiversity, and
ecosystem health.

GEDI operates between latitudes 51.6°N and 51.6°S, offering the
highest spatial sampling density of any spaceborne LiDAR system to
date. It is equipped with three lasers, each firing 242 times per
second, generating measurements at footprints spaced
approximately 60 m along-track with a swath width of about
4.2 km across-track.

GEDI data products are released in multiple levels:

o Level 1B: Geolocated waveform data.

o Level 2A/B: Canopy height, canopy profile metrics, and
ground elevation.

o Level 3: Gridded canopy height and terrain elevation maps.

o Level 4: Aboveground biomass density and associated
uncertainties.

In this study, we utilize the Level 2A product, which contains
detailed canopy height and profile metrics. The dataset includes
several critical fields used in our analysis:

o Shot Number (integer): Unique identifier assigned to each
laser pulse emitted by GEDL

o Beam (object): Specifies which laser beam was used for the
measurement.

o Latitude/Longitude (float): Geographic coordinates of the
footprint location on Earth’s surface.

« Canopy Height (rh98) (float): Height of the canopy, typically
measured at the 98th percentile of waveform energy return.

o Quality Flag (float): Indicator of the measurement’s reliability.

« Plant Area Index (float): Ratio representing total leaf area per
unit ground area.

o Degrade Flag (float): Flag indicating data degradation due to
noise sources such as cloud or dust interference.

« Sensitivity (float): Degree to which the system can detect small
or low-reflectance targets.

To ensure the reliability of the GEDI-derived canopy height
measurements, a noise filtering step was applied prior to integration
with the satellite data. First, only footprints with a quality flag equal
to one were retained, indicating that the shot met specific
requirements regarding energy, sensitivity, amplitude, and real-
time surface tracking. Second, footprints with a degrade flag
greater than zero were discarded, as these correspond to
measurements collected during degraded instrument states.
Finally, we applied a threshold on the Sensitivity field, retaining
only records with values greater than 0.95 to ensure robust
Although  this
straightforward, it plays an essential role in eliminating invalid or

waveform  detection. filtering  process is
degraded measurements and thereby improves the reliability of the
training labels used in our study.

The dataset was obtained through NASA’s Earth Science Data
Systems (ESDS) and spans from 1 January 2021 to 5 August 2024. It
comprises a total of 97.5 GB distributed across 174 HDF5 files.
Figure 3 provides a summary of the GEDI dataset characteristics
used in this study.
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4 Methodology

In this section, we introduce SenFus-CHCNet, a fully
convolutional deep neural network designed for generating
canopy height classification maps by leveraging multi-source and
multi-band  satellite data. Specifically, the model integrates
12 spectral bands from Sentinel-2 and 2 polarization bands (VV
and VH) from Sentinel-1, spanning across three distinct spatial
resolutions (10 m, 20 m, and 60 m GSD). The input data are first
synchronized and fused using a dedicated band fusion module,
which produces a unified feature tensor. This tensor is subsequently
fed into a UNet-based architecture that performs sparse learning to
generate the final pixel-wise canopy height classification map. This
section is organized into two main components: the multi-source
and multi-band  fusion module (Section 0.6), the pixel-wise
classification module (Section 0.7), and sparse learning (Section 0.8).

4.1 Model architecture overview

SenFus-CHCNet accepts input data that are heterogeneous in
both data modality and spatial resolution. The input bands are
grouped according to their spatial resolution, resulting in three
mutually exclusive Sentinel-2 band subsets. In particular, the VV
and VH polarizations from Sentinel-1, which have a spatial
resolution of 10 m, are grouped together with the 10 m bands
from Sentinel-2. Consequently, we define three input subsets
as follows:

Biom = {B02, B03, B04, B0S, VV, VH},
Baom = {B05, B06, B07, B0Sa, B11, B12},
Beom = {BO1, B09}.

These correspond to the 10 m, 20 m, and 60 m spatial resolution
groups, respectively. The three groups are illustrated in the input
Sentinel-1,2 component as shown in Figure 4. For each group, the
bands are combined to form unified input tensors: Z g, € R®99,
Toom € R4 T 0 e R¥¥1¥16, where each tensor is structured as
(number of channels) x (height) x (width).

To integrate multi-resolution data effectively, a hierarchical
fusion strategy is used. First, features are extracted separately
from each resolution-specific input tensor. The features from the
60 m input are then upsampled to match the 20 m resolution and
fused with the corresponding 20 m features. This combined
representation is transformed and upsampled again to match the
10 m resolution, where it is fused with the 10 m features to produce
the final unified feature map. The output of this multi-stage fusion
process is a high-resolution feature tensor:

F = Squeeze (F(Z 01> Zaoms Leom)) € REOEE )

where F() denotes the fusion function and Squeeze() operation

refers to the process of removing singleton dimensions
(i.e., dimensions of size 1) from a tensor.

The extracted feature tensor F in Equation 1 serves as input to a
UNet-based architecture for pixel-wise classification. UNet is a
widely adopted convolutional neural network originally proposed
for biomedical image segmentation (Ronneberger et al., 2015) and

later extended to a variety of dense prediction tasks (Diakogiannis
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FIGURE 4

Overall architecture of the SenFus-CHCNet model. The model comprises three main components: the orange represents the input data, the blue
denotes the Multi-source and Multi-band Fusion Module, and the green corresponds to the Pixel-wise Classification Module. Within the blue block, four
types of blocks are incorporated: EB (Embedding Block), RF (Recursive Fusion), IN (Instance Normalization), and U (Upscaling Block).

etal,, 2020). In this work, we utilize UNet to predict a canopy height
classification map, wherein each pixel is assigned to a discrete height
class. The final classification output is defined in Equation 2 below:

M = UNet (F) € C, @)

where C represents the set of discrete class indices corresponding to
canopy height levels.

Given the sparse nature of the labeled canopy height data, sparse
supervision is applied during the training phase. This approach
enables the model to learn effectively from partially annotated data
without requiring dense labels. For clarity, we omit the batch
dimension in all the equations presented in this section.
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4.2 Multi-source and multi-band
fusion module

The Multi-source and Multi-band Fusion Module is designed to
effectively integrate heterogeneous spectral and radar inputs from
Sentinel-1 and Sentinel-2 data. These inputs vary not only in
modality (optical vs. SAR) but also in spatial resolution (10m,
20m, and 60 m),
representation. To overcome this, the module incorporates

posing challenges for unified feature
resolution-specific embedding pathways, followed by dedicated
aggregation blocks to harmonize and fuse the extracted features

across modalities and scales.
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4.2.1 Embedding blocks

The Embedding Block is the first stage in our fusion module and
is designed to extract rich and resolution-aware feature
representations from multi-band satellite inputs. Since Sentinel-1
and Sentinel-2 data contain bands of different spatial resolutions
(10 m, 20 m, and 60 m) and varying channel numbers, each
resolution group is processed independently by a dedicated
embedding path. Specifically, each input group-corresponding to
the 10 m, 20 m, and 60 m resolution bands-is passed through its
respective embedding block, denoted as EB o, EB2gym» EBgom. These
blocks transform the original input tensors into enriched feature
representations at a specific spatial resolution. The output of each
embedding block preserves the original spatial dimensions while
expanding the feature depth along a new latent dimension of size 64,
effectively creating a high-dimensional representation for each
spectral band within its respective resolution group. This process
yields three resolution-specific embeddings, which serve as the basis
for the subsequent fusion process.

Each block is tailored to its corresponding input resolution and
band configuration, ensuring that spatial details and spectral
semantics are preserved before fusion. To achieve this, the block
employs a deep residual architecture composed of stacked
3x3 convolutional layers interleaved with Parametric ReLU
(PReLU) activations. The depth and width of the network
progressively  through the layers,

hierarchical abstraction of spatial patterns and

increase allowing  for
inter-band
dependencies.

A key feature of the embedding block is its use of residual
connections, which bridge early and deeper representations. These
skip connections not only facilitate the flow of gradients during
backpropagation but also preserve low-level spatial details (He et al.,
2016; Mou and Zhu, 2018) that are critical for accurate pixel-level
canopy height prediction. This residual mechanism is applied at two
different stages in the block, reinforcing both intermediate and final
feature maps.

After the final convolutional stage, the output tensor
undergoes reshaping and instance normalization. The use of
instance normalization serves two purposes: it stabilizes
training by reducing internal covariate shift, and it ensures
that the learned features are locally consistent and robust to
illumination or backscatter variations-especially important
when combining radar (Sentinel-1) and optical (Sentinel-2)
modalities.

The final output of the embedding block is a five-
dimensional tensor that retains the original spatial resolution,
the input band grouping, and a newly added feature dimension
of size 64. This multi-dimensional structure is critical for the
next phase of the model, where embeddings from all resolutions
will be spatially aligned and recursively fused to form a unified
representation.

Overall, the Embedding Block acts as a resolution-preserving
encoder, transforming raw multispectral and SAR inputs into
structured  high-dimensional features, while maintaining
separability across spectral bands and enabling downstream
fusion without early loss of information. The processing
procedure within the embedding block is elaborated in

Algorithm 1.
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Require: Input tensor 7 qg € R Presxfres s
Ensure: Output embedding &£ es € RE*Pres*04xHres s
Where:
For res =10 m: bres =6, Hres = Wres = 96
For res =20 m: Dres =6, Hres = Wres =48
For res =60 m: bres =2, Hres = Wres =16
1: X1 — PReLU(Convires~0r==®8 (T o))
21 Xy « PRelU(Conviis8=res 10 (xy))
3: X «— PReLU(Convirg16=0re=18 (Xy))
4: X3 — Xg +Xg
5: Xq — PReLU(Convires 07032 (X3))
6 X4 — PReLU(Convi82-bre=32 (x,))
7 X5 — X3+ Xa
8: X — PReLU(Convhre32-brest4 (xg))
9: Eres «— InstanceNorm(Reshape (Xs))
;

0: return &res

Algorithm 1. Embedding Block EB,s for resolution-specific input.

4.2.2 Aggregation blocks
Following the resolution-specific embedding stage, the next
objective in our fusion module is to integrate information across
the multiple spectral bands of each resolution group. To this end, we
introduce a specialized Aggregation Block, which performs intra-
resolution fusion by compressing and refining band-wise
embeddings into a unified feature representation. The detailed
computational operators of this block are outlined in Algorithm 2.
Require: Input tensor &res € REPres 64xHres lres

Ensure: Output tensor Apes € R4 Hresxlires
Where:

For res =10 m: bres =6, Hres = Wres = 96

For res =20 m: bres =6, Hres = Wres =48

For res =60 m: bres =2, Hres = Wres =16
: X' — Reshape (Eres) 10 RE*(Bres 0xHresxlires
: X' « PRelLU(Convsys (X)) > Output channels: 256
: X'« SEBlockyse (X')
: X' « PReLU(Convsxz (X)) > Output channels: 128
: X' « SEBlockiqs (X))
© Ares < Conviys (X)) > Output channels: 64

~N o oWy =

creturn Apes

Algorithm 2. Aggregation Block (ABBlock).

Each input embedding tensor &, € [REXbres x64xHresxWres

where
bres denotes the number of bands in the given resolution group, is
first reshaped and projected into a higher-dimensional feature space.
This transformation enables the network to model joint spatial-
spectral relationships between bands. To enhance the learning of
meaningful inter-band dependencies, the block applies a series of
convolutional layers with increasing abstraction depth.

A key innovation in this block is the use of Squeeze-and-
Excitation (SE) mechanisms (described in Algorithm 3). These
are lightweight attention modules that adjust the importance of
features across channels by modeling their global relationships. The
SE block first applies global average pooling to create a compact
summary of each channel’s activation strength. Then, a two-layer
fully connected bottleneck computes adaptive weights, which are
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used to rescale the original channels. This channel-wise weighting
works as a soft attention mechanism, highlighting important
features and reducing the influence of irrelevant or noisy
signals-an advantage when working with heterogeneous inputs
like SAR-optical fusion.

Require: Input tensor X e R&*C"  reduction ratio r
Output tensor X' eRBCH
recalibration

T: X« PRelLU(Convsxz (X)) > Output shape: 16 x 16
: X — PRelLU(Convsys (X)) > Output shape: 4 x 4
.Y « GlobalAvgPool(X) > Shape : RE*¢ 11
Y «< Reshape(Y) to RE*C
1 Z — RelLU(Linear(Y,C - C/r))
1 Z«— Sigmoid(Linear(Z,C/r — C))
: Z — Reshape (Z) to RFC1~
: X' —~XoZpr>Channel-wise scaling

Ensure: with channel-wise

O 0 N O o WON

: return X

Algorithm 3. Squeeze-and-Excitation Block (SEBlock).

In our implementation, two SE blocks are applied in sequence,
with convolutional layers in between to gradually reduce and refine
the feature dimensionality. This design compresses the
representation step by step, starting from an expanded feature
space (e.g., 256 and 128 channels) and producing a final output
of 64 channels. Throughout this process, the spatial structure is
preserved, and information from all bands within the resolution
group is fully integrated.

The output of this block, Ares € [RIX04xHresxWies represents the
aggregated feature tensor for each resolution. It provides a compact
but expressive encoding of the spectral information at that
resolution, which is later aligned and fused with features from
other resolutions to form the final joint representation used for
canopy height classification.

By separating the embedding and aggregation steps, the model
remains flexible in handling different numbers of bands and
This that the final fused
representation preserves both local spatial detail and global
In addition, the

improves generalizability, making it easy to adapt the model to

resolutions. design  ensures

semantic  consistency. modular structure

other satellite configurations or geospatial domains.

4.2.3 Upscaling and fusion

After obtaining the aggregated feature representations from each
resolution group via the Aggregation Blocks, the next step is to align
these multi-resolution features into a common spatial scale for
unified analysis. Since Sentinel-derived inputs come from three
different spatial resolutions (10 m, 20 m, and 60 m), we adopt a
progressive upscaling and fusion strategy that integrates coarse-
resolution information step by step into finer-resolution
representations.

The fusion process begins by aligning the 60 m and 20 m
aggregated features. Specifically, the 60 m representation Agom is
first upsampled by a factor of three to match the spatial dimensions
of the 20 m feature map. The upsampled tensor is then concatenated
with the original 20 m aggregated features along the channel

dimension. This joint representation is passed through another
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Block to fused
representation Mo, as expressed in the following equation:

Aggregation produce the intermediate

Miom = ABBlock (As, @ Upscaling, (Agom)) (3)

Next, to unify all information at the highest resolution level
(10 m), the fused 20 m feature map Moy, in Equation 3 is further
upscaled by a factor of two. It is then concatenated with the 10 m
aggregated representation Ao, and the final fusion is carried out
through Block to
comprehensive multi -resolution feature map Mg, as shown
in Equation 4:

another  Aggregation produce the

M om = ABBlock (Ao ® Upscaling,, (Mjom)) (4)

In practice, both Upscaling,, and Upscaling, —are
implemented as interpolation-refinement blocks that combine
the efficiency of interpolation with the adaptability of learnable
convolutional transformations. Each block begins with bilinear
interpolation to enlarge the feature maps to the target spatial
resolution (e.g., from 16 x 16 to 48 x 48 for Upscaling, ). While
bilinear interpolation provides a smooth and computationally
efficient upsampling, it may introduce blurred edges and fail to
capture complex spectral-spatial relationships. To mitigate this,
we introduce a subsequent 3 x 3 convolutional layer whose
parameters are fully trainable, allowing the network to refine
the interpolated features and adaptively emphasize meaningful
spatial patterns. This refinement step ensures that the enlarged
features are not simply interpolated copies but are transformed
into semantically consistent representations that align with the
learning objectives of canopy height classification.

Following the convolutional refinement, a non-linear activation
function (ReLU) is applied to further enhance the discriminative
capacity of the features by introducing non-linearity and improving
representation expressiveness. The overall design of these upscaling
modules can thus be summarized as a sequential operation: bilinear
interpolation — convolution — ReLU.

This hierarchical upscaling mechanism ensures that spatial
information from lower-resolution sources (e.g., Sentinel-2 BO1,
B09, or Sentinel-1 VH) is effectively incorporated into the final high-
resolution feature space, while preserving contextual structure and
minimizing interpolation artifacts. By fusing coarse-to-fine
information in this manner, the model is able to exploit the full
range of spectral and spatial cues available across the Sentinel dataset
hierarchy, ultimately producing a dense, high-resolution feature
representation that is well-suited for downstream pixel-wise
canopy height classification.

4.3 Pixel-wise classification module

The final stage of the SenFus-CHCNet framework is the Pixel-
wise Classification Module, which is responsible for producing a
dense canopy height classification map from the fused multi-
resolution features. At this point, the output tensor from the
previous fusion stage-denoted as My —is reshaped into a four-
dimensional feature map of shape RE#969 which serves as the
input to this module.
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To perform the pixel-wise classification, we adopt a U-Net-
based architecture specifically tailored for this task. U-Net is widely
recognized for its capability to preserve spatial detail through
symmetric skip connections while enabling deep feature learning
via hierarchical encoding and decoding. In this work, we adapt the
original U-Net design to match the spatial and semantic
requirements of the canopy height classification problem.

Our customized U-Net consists of four downsampling (encoder)
blocks and four upsampling (decoder) blocks, symmetrically
connected by skip connections that bridge corresponding levels.
Each encoder block contains two convolutional layers with kernel
size 3 x 3, followed by Parametric ReLU (PReLU) activation and
batch normalization. The spatial resolution is halved at each level via
2 x 2 max pooling, while the number of channels is doubled, starting
from 64 and progressing through 128, 256, and 512. This
hierarchical structure enables the network to capture increasingly
abstract and spatially broader representations of forest structure.

At the bottleneck,
1024 channels is applied, serving as a semantic bridge between

a double convolutional block with

the encoder and decoder. The decoder then mirrors the encoder,
using bilinear upsampling followed by convolution to gradually
reconstruct the spatial resolution back to 96 x 96. At each decoding
stage, the upsampled feature maps are concatenated with the
corresponding encoder outputs via skip connections, ensuring the
recovery of fine-grained spatial details.

Each decoder block applies the same double convolution pattern
as the encoder. The final layerisa 1 x 1 convolution that projects the
64-channel feature tensor into C output channels, where C is the
number of canopy height classes (e.g., 5, 12, or 17). The final output
tensor has the shape RP*©®9  from which class predictions are
obtained by applying a softmax activation followed by an arg max
operation along the class dimension.

Opverall, this pixel-wise classification design enables the model to
produce high-resolution, semantically rich canopy height maps that
reflect the vertical structure of forests across diverse landscapes.

4.4 Sparse learning strategy

One of the primary challenges in training deep learning models
for canopy height classification using satellite and GEDI data is the
extreme sparsity of ground-truth labels. Although satellite inputs
provide dense spatial coverage, the reference height labels derived
from GEDI footprints cover only a small fraction, approximately 0.
1%, of the total area of the image. As a result, the training data
consists mostly of unlabeled pixels, posing a risk of gradient dilution,
biased learning, and poor convergence if standard dense loss
functions are applied naively.

To address this issue, we adopt a sparse training strategy, in
which the loss is computed and backpropagated only at pixel
locations where ground-truth labels are available. This approach
ensures that the model focuses its learning signal on valid

supervisory  information  while ignoring undefined or
irrelevant regions.
Let M eRPOHW  pe the predicted canopy height

classification map from the network (after softmax), and let
Yg €{0,1,...,C - 11" denote the corresponding ground-
truth label map, where a special value (e.g, —1) is used to
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indicate invalid or missing labels. Let Q be the set of pixel
indices (b, h,w) where ground-truth labels are valid, as defined
in Equation 5 below:

Q ={(b, h,w)| Yy [b,h,w] # -1} (5)

The sparse categorical cross-entropy loss is then computed as:

1

Tl Y log(M[b, Yy [b, h,w], h,w])

(bhw)eQ

(6)

Esparse =-

Here, M[b, ¢, h,w] denotes the predicted probability for class ¢ at
pixel (A, w) in batch b, and Yy [b, h, w] gives the ground-truth class
index at that location. Only valid pixels contribute to the loss in
Equation 6, ensuring that training is not affected by
unlabeled regions.

This formulation is naturally supported by modern deep
which  offer  built-in  sparse

implementations and masking capabilities. Furthermore, the

learning  libraries, loss
sparse strategy integrates well with class balancing techniques,
such as weighted cross-entropy or focal loss, to mitigate the
effects of class imbalance, especially when rare height classes
(e.g., tall emergent trees) are underrepresented in the data.

By leveraging this sparse training framework, our model remains
scalable to large-scale satellite imagery while effectively learning
from limited but high-quality GEDI supervision. This approach
significantly improves training stability and allows for a meaningful
generalization in forested landscapes with varying canopy structures
and data densities.

5 Experiments

To thoroughly assess the effectiveness of the proposed SenFus-
CHCNet architecture in the task of canopy height classification, we
conducted a comprehensive series of experiments aligned with the
core research questions presented in Section 0.10. These
experiments investigate the performance of the model across
different class discretization strategies and benchmark it against
established baseline methods.

5.1 Experimental setups

5.1.1 Data preprocessing

The initial dataset comprises multi-band satellite imagery from
both Sentinel-1 and Sentinel-2 missions, accompanied by canopy
height ground-truth annotations derived from GEDI footprints. As
a first step, we construct a label matrix matching the spatial extent
and resolution of the 10-m Sentinel-2 bands (10980 x 10980 pixels).
For each GEDI footprint, its height value is projected onto the
corresponding pixel location within this matrix. This alignment
process is carried out using geolocation metadata from both the
Sentinel-2 coordinate grid and GEDI footprint coordinates. The
resulting label matrix is sparse, with only approximately 0.1% of
pixels containing valid height values; all remaining pixels are set to
NaN. To facilitate effective learning, all input satellite bands are
normalized by rescaling pixel values to a fixed range prior to dataset
generation.
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TABLE 1 Dataset statistics.

Description Train Test
# image patches 11,118 1,963
# labeled pixels 104,264 18,400

5.1.1.1 Patch extraction and dataset composition

To construct the training dataset, we partition both the label
matrix and satellite imagery into smaller patches. Specifically,
patches of size 96 x 96 are extracted from the 10-m bands and
the label matrix. Correspondingly, patches of 48 x 48 and 16 x 16
are generated from the 20-m and 60-m bands, respectively, to
maintain consistent spatial alignment. This preprocessing yields a
total of 13,081 samples, which are then split into training and test
sets following an 85: 15 ratio. Table 1 provides a detailed summary
of the dataset composition, including the number of samples in each
subset and the count of valid labeled pixels per set.

5.1.2 Training configuration

The proposed model is trained on a multi-GPU setup comprising
six NVIDIA RTX A5000 GPUs, each equipped with 24 GB of VRAM.
Training is conducted for 1000 epochs with a batch size of 128. The
initial learning rate is set to 4 x 1074, and it is halved at epochs 200, 400,
and 700 to facilitate stable convergence. This schedule ensures both
rapid initial learning and fine-tuning in later stages of training.

In addition, we empirically explored different regularization
strategies and selected the configuration that yielded the most
stable optimization and robust generalization. Specifically,
dropout with a rate of p = 0.2 was applied in the decoder path,
and label smoothing was employed with a decreasing schedule: &€ =
0.1 for epochs 1-400, € = 0.075 for epochs 400-700, and ¢ = 0.05 for
epochs 700-1000. This combination proved effective in mitigating
overfitting under the long training regime on a single large scene,
while maintaining high predictive performance.

The proposed architecture is designed to achieve efficient
inference on satellite imagery without incurring excessive
computational cost. The total number of parameters amounts to
45.25 M with a computational complexity of 8.68 GFLOPs. Under
the hardware configuration described above, the model requires on
average 0.17 s to process a 96 x 96 input patch. For inference over
the entire ROI used in this study (with a batch size of 16), the total
runtime is approximately 3 min and 28 s, demonstrating the

practicality of the approach for large-scale applications.

5.1.3 Evaluation metrics

To rigorously evaluate the performance of the proposed SenFus-
CHCNet, especially in the context of discretized ordinal canopy
height classification, we adopt two complementary metrics: F1-score
and Relaxed Accuracy.

Fl-score is a standard classification metric that provides a
harmonic mean of precision and recall, capturing the balance
between false positives and false negatives. It is particularly
informative in imbalanced class distributions, where overall
accuracy may be misleading. For a given class k, the Fl-score is
defined as in Equation 7 below:
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_ 2+ Precisiony, - Recally

Fl = — (7)
Precision; + Recally,
with:
o Precisiony = %,
. ReCaHk = W{;Nk’

Where TPy, FP, and FN; denote the number of true positives,
false positives, and false negatives for class k, respectively. The
macro-averaged Fl-score, computed across all classes, is reported
as the final metric.

5.1.3.1 Relaxed accuracy (RA)

In classification tasks involving discretized continuous targets
(e.g., canopy height ranges), strict accuracy can harshly penalize
near-boundary misclassifications that are semantically insignificant.
To address this, we use a relaxed evaluation metric that tolerates
minor deviations from the true label.

Let the ground-truth and predicted class labels be denoted as in
Equation 8 below:

y=[yi 52 yn] €{0,1,...,K-1}¥,

V=909 95 €10,1,.. ., K=1}N (8)

where N is the number of pixels and K is the total number of classes.
The RA metric with a tolerance of 1 is computed as:

N

RA:%ZH(UI-—)?JSI) 9)

i=1

Here, 1(-) is the indicator function. Equation 9 provides the

following interpretation:

o Predictions that match the true class (y;=y;) are
considered correct.

o Predictions that deviate by only one class index (e.g.,
predicting class 3 when the ground truth is class 2 or 4)
are also accepted.

o Only predictions that differ by more than one index
are penalized.

This the of the
classification task and offers a more nuanced assessment of

metric  reflects ordinal structure

performance, especially when adjacent classes represent

similar height ranges.

5.2 Experimental results

In this section, we address five key research questions through a
series of carefully designed experiments aimed at providing
comprehensive insights:

« RQ1I: How can canopy height be discretized into classification

levels that enhance model training efficiency while preserving
ecological and practical relevance?
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Ablation study of SenFus-CHCNet. F1-score (top) and Accuracy (bottom) across coarse-, medium-, and fine-grained canopy height classification.
“w/o SEBlock” denotes removing SE from the Aggregation Block, while “w/o Upscaling” denotes replacing hierarchical convolutional upscaling with

bilinear interpolation.

« RQ2: How does the proposed SenFus-CHCNet model perform
in canopy height classification compared to existing methods
across different class configurations

o RQ3: How does the proposed SenFus-CHCNet perform in
comparison with established segmentation models across
different levels of canopy height class discretization?

o RQ4: To what extent does the visual output of the predicted
canopy height classification map reflect meaningful spatial
patterns of forest structure within different regions of
interest (ROIs)?
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5.2.1 Ablation study

To further elucidate the contribution of each key component in
the proposed SenFus-CHCNet, we performed ablation experiments
by selectively disabling or simplifying major modules. In the first
variant, the squeeze-and-excitation (SE) operation was removed
from the Aggregation Block, thereby discarding the channel-wise
recalibration mechanism. In the second variant, the hierarchical
convolutional upscaling was substituted with simple bilinear
interpolation without convolutional refinement, which reduced
the model's capacity to progressively fuse multi-resolution
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Height distribution over the ROI.

features. The full model retained both modules and served as
the reference.

The results of these experiments are presented in Figure 5, which
reports both F1-score and Accuracy across coarse-, medium-, and
fine-grained canopy height classification settings. Compared with
the full architecture, the removal of the SEBlock consistently led to a
decline in performance, particularly under fine-grained
classification where channel adaptivity plays a crucial role in
distinguishing subtle canopy height variations. On the other
hand, replacing hierarchical upscaling with bilinear interpolation
yielded a more pronounced reduction in accuracy at the coarse- and
medium-grained levels, indicating that progressive refinement is
vital for effectively preserving spatial detail and contextual
consistency.

Overall, the complete SenFus-CHCNet outperformed both
reduced variants by a clear margin in all scenarios, achieving the
best balance between structural representation and spectral
adaptivity. These findings confirm that the SEBlock and the
hierarchical upscaling module provide complementary benefits:
while SE enhances channel-level feature discrimination,
hierarchical upscaling improves spatial integration across
scales. Their joint integration is therefore indispensable for
maximizing the model’s performance in canopy height

estimation.
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5.2.2 Discretization strategies for canopy height
classification (RQ1)

The canopy height distribution Figure 6 for the ROI region
reveals a pronounced right-skewed pattern, with the majority of
samples concentrated within the 10-35 m range. The distribution
peaks around 20-22 m, reaching over 5,000 data points per meter of
height. This distribution reflects the typical stratification of
evergreen tropical forests in Vietnam, where most trees fall
within the mid to upper canopy layers, while trees exceeding
40 m in height are increasingly scarce. Beyond the 35-m
threshold, the number of samples declines sharply, indicating
that only a small fraction of GEDI-recorded points surpass this
height, consistent with the ecological reality that old-growth or
primary forests in the region contain relatively sparse occurrences of
emergent trees. This distribution also underscores the imbalance in
the training dataset, suggesting that height classification models
should incorporate carefully designed class intervals to account for
such asymmetry.

Transforming a continuous canopy height regression
problem into a classification task requires the discretization
of height values into meaningful intervals. The strategy used
for binning directly affects not only model performance but also
the ecological interpretability and applicability of the results. In
this study, we evaluate three discretization schemes with
different granularities (as shown in Figure 7), aiming to
capture structural variation in forest canopies while
addressing challenges such as class imbalance and model
generalization. These strategies are inspired by both the
distribution of the data the

thresholds observed in prior research.

statistical and ecological

5.2.2.1 Fine-grained discretization (17 classes)

This scheme emphasizes higher resolution in the lower and mid-
canopy ranges (e.g., sub-30 m), which are typically the most
ecologically diverse strata in tropical forests. Such granularity
allows the model to capture subtle structural differences in young
or secondary forests, plantation areas, and undergrowth layers. This
is particularly useful in biodiversity-rich regions like Vietnam, where
small differences in canopy height can correspond to different forest
successional stages or species compositions (Asner et al., 2010; Clark
and Clark, 1994).

5.2.2.2 Medium-grained discretization (12 classes)

This strategy represents a compromise between classification
detail and model stability. It smooths the transitions between classes
while still preserving interpretability across ecological zones. By
adopting roughly uniform increments of 5 m in the 10-50 m range,
where most forest canopies in tropical Southeast Asia are
concentrated, it provides a stable yet sufficiently descriptive
breakdown of forest structure. This approach is particularly
useful for land management and REDD + applications (Gibbs
et al., 2007), where moderate-resolution classifications are often
sufficient for policy-level decision-making and reporting. Moreover,
reducing the number of classes decreases the risk of overfitting and
mitigates issues arising from noisy or sparse labels, especially at
canopy extremes.
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FIGURE 7

Histogram showing the distribution of pixel counts corresponding to each canopy height interval, under three different classification settings:

5 classes, 12 classes, and 17 classes.

5.2.2.3 Coarse-grained discretization (5 classes)

This simple and uniform binning strategy is designed for
scenarios that require efficient and robust model training,
particularly when the available ground-truth labels are sparse, as
is the case with GEDI footprints covering only 0.1% of the spatial
extent. Each class spans a 10-m height interval, consistent with
general forest classification standards that categorize vegetation into
low (<10 m), medium (10-20 m), tall (20-30 m), and very tall
(>30 m) canopies (Hansen et al., 2013). This configuration is
particularly advantageous in real-time mapping or large-area
monitoring systems, where computational cost and generalization
ability take priority over fine-resolution discrimination. It also aligns
with thematic mapping approaches used in global-scale canopy
height products derived from ICESat/GLAS or GEDI data
(Simard et al., 2011; Potapov et al., 2022).

These three discretization schemes, ranging from coarse to fine
granularity, not only reflect different ecological interpretations of
canopy structure but also offer varying levels of challenge in
classification. In the subsequent experiments, we train and
evaluate the proposed model under all three configurations to
assess its adaptability and robustness across diverse class
partitioning strategies.
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5.2.3 Comparative performance of SenFus-
CHCNet across class settings (RQ2)

In this section, we explore how different discretization
schemes-namely, 5-class, 12-class, and 17-class
configurations—impact the performance of the SenFus-CHCNet
model. The comparison is visualized using both absolute count
confusion matrices and their corresponding row-normalized
versions, offering insights into both the frequency and relative

accuracy of predicted class assignments.

5.2.3.1 Performance in the 5-class scenario

The model achieves its most robust performance under the
coarsest (5-class) setting. As evident in the count-based
confusion matrix (Figure 8a), a large portion of the predictions
concentrate along the diagonal, particularly in the mid-range class
(20-30 m), which corresponds to the dominant canopy height
range in the dataset. The row-normalized matrix (Figure 8b)
further supports this observation, with class-wise accuracy
peaking at approximately 64%. In contrast, boundary classes
such as 0-5 m and 40-70 m show slightly reduced precision,
reflecting greater misclassification into adjacent classes—an effect
likely driven by sample imbalance.
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Predicted results of our proposed model are presented in the form of confusion matrices. The left column shows count-based matrices, while the
right column shows row-normalized matrices. (a,b) Results for the 5-class configuration. (c,d) Results for the 12-class configuration. (e,f) Results for the
17-class configuration. In each matrix, the vertical axis represents ground-truth labels, and the horizontal axis represents predicted labels.

5.2.3.2 Performance in the 12-class scenario

Increasing the number of classes to 12 introduces more
detailed canopy height intervals. This added granularity, while
improving semantic representation, also raises the level of
prediction difficulty. As shown in Figure 8c, the model still
retains a strong diagonal pattern, particularly for mid-canopy
classes (e.g., 30-42 m), where prediction counts remain
concentrated. The row-normalized matrix (Figure 8d) shows
that despite increased confusion, a substantial portion of
correct predictions (up to 44%) remains in these mid-level
bins. Nevertheless, the matrix also reveals more dispersed off-
diagonal activity, signaling elevated inter-class confusion at both
lower and higher height ranges.
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5.2.3.3 Performance in the 17-class scenario

The 17-class configuration presents the most challenging setting
due to its narrow height intervals and high class count. As shown in
Figures 8E,F, while the model still captures the general canopy
height the
significantly more diffuse. Correct classification rates drop

structure, distribution of predictions becomes
markedly, and the presence of many classes with low support
leads to overfitting on dominant classes (e.g., 34-42 m) and
underperformance on sparse categories. The row-normalized
matrix, in particular, shows how prediction confidence is diluted
across multiple neighboring bins.

Overall, the model performs best when class granularity is
moderate or coarse, with the 5-class setting yielding the most

frontiersin.org


https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1666123

Bui-Quoc et al. 10.3389/frsen.2025.1666123

TABLE 2 Evaluation results across three levels of classification granularity (Coarse, Medium, Fine).

Coarse-grained

Medium-grained Fine-grained

RA1 Fl1-score RA,, Fi-score RA,> Fi-score
U-Net 0.6957 0.2564 0.4647 0.6899 0.1654 0.2756 0.5003 0.1076
ResUNet 0.7254 0.3094 0.4713 0.7075 0.1782 0.2934 0.4884 0.0975
SegFormer 0.7863 0.3325 0.5020 0.7405 0.1917 0.3242 0.5400 0.1206
DeepLabv3+ 0.7911 0.3587 0.4923 0.7421 0.1998 0.3368 0.5270 0.1010
SERNet-Former 0.8009 0.3674 0.5177 0.7389 0.2016 0.3548 0.5501 0.1155
SenFus-CHCNet 0.8210 0.3672 0.5417 0.7648 0.2020 03621 0.5572 0.1275

Bold values indicate the best performance in each column.

consistent predictions. As the number of classes increases,
prediction uncertainty also rises, particularly in underrepresented
classes. This analysis underscores the trade-off between semantic
resolution and predictive reliability, which should be considered
when designing classification schemes for canopy height mapping.
These observations will serve as a foundation for further region-
specific evaluations in subsequent sections.

5.2.4 Comparison of classification performance
against baseline models (RQ3)

This section presents a comprehensive comparative evaluation of
SenFus-CHCNet against several state-of-the-art semantic segmentation
models, including convolutional networks (U-Net, ResUNet) and
transformer-based architectures (SegFormer, DeepLabv3+, SERNet-
Former), with the summarized results as shown in Table 2. The
models tested under three different canopy height
discretization schemes—coarse (5 classes), medium (12 classes), and
fine (17 classes). Across all settings, SenFus-CHCNet consistently
outperformed the baselines. Under the 5-class configuration, it
achieved the highest relaxed accuracy (RA+1) of 0.821 and an F1-
score of 0.376, surpassing the best baseline by approximately 2.0 and

were

0.9 percentage points, respectively. Its advantage remained evident in
the more challenging 12-class and 17-class scenarios, where it
maintained the best performance in RA+1, RA+2, and macro F1-
score. These gains indicate SenFus-CHCNet’s superior ability to handle
the increased complexity and class imbalance inherent in finer
granularity classifications.

As expected, all models experienced declining performance as class
granularity increased. However, SenFus-CHCNet retained the highest
absolute performance at every level, suggesting that its fusion pipeline
and sparse learning strategy make it more robust to the loss of statistical
power associated with finer discretization. Transformer-based models
generally outperformed traditional CNNs in medium and fine settings,
thanks to their capacity for capturing long-range dependencies. Yet,
SenFus-CHCNet still outperformed them, highlighting the effectiveness
of its hierarchical, resolution-aware fusion design. This structure allows
for the progressive integration of coarse-resolution features (e.g., 60 m
and 20 m Sentinel bands) into high-resolution (10 m) outputs while
preserving local spatial detail-something standard self-attention
mechanisms achieve only with significantly higher computational cost.

Another important strength of SenFus-CHCNet lies in its
robustness to near-miss classification errors. The relatively small
gap between RA+1 and RA+2, compared to other models, indicates
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that its predictions tend to cluster around the correct classes, rather
than diverging wildly. This behavior suggests tighter calibration and
more accurate modeling of ordinal boundaries, especially in sparse-
label scenarios. Three factors appear critical to this performance:
first, the resolution-aware fusion and progressive upscaling strategy,
which allows the model to utilize both fine spatial detail and coarse
contextual information; second, the use of squeeze-and-excitation
(SE) blocks in the aggregation module, which dynamically enhances
useful spectral features and suppresses irrelevant noise across
different bands; and third, the sparse supervision strategy that
focuses learning on valid GEDI footprint locations, mitigating the
negative effects of the extreme label sparsity.

In practical terms, even modest improvements in relaxed
accuracy-2 to 4 percentage points—translate into substantial
benefits when scaled to large geographic areas, such as provincial
or national forest maps. Such improvements improve the reliability
of biomass estimates and can directly influence REDD + reporting
and policy planning. Overall, the experimental results in this section
validate that SenFus-CHCNet not only achieves superior numerical
performance but also offers stronger generalization, better semantic
consistency, and improved ecological realism in canopy height
classification tasks.

5.2.5 Qualitative evaluation of predicted forest
height structure (RQ4)

This section provides a qualitative assessment of the spatial
realism and ecological plausibility of the canopy height maps
predicted by SenFus-CHCNet under different discretization
strategies. This analysis is crucial for evaluating the model’s
utility beyond raw accuracy metrics, particularly in real-world
forest monitoring applications where spatial coherence and
ecological interpretability are essential.

The results, visualized in Figure 9a, demonstrate that SenFus-
CHCNet effectively captures the spatial heterogeneity of forest
structure across the Cuc Phuong-Pu Luong region, a highly
diverse and topographically complex landscape in northern
Vietnam. Under the coarse-grained (5-class) configuration, the
model produces clear and coherent spatial patterns that align
well with major ecological and topographic features. For instance,
taller canopy classes (30-40 m and 40-70 m) are prominently
localized along ridgelines and mountainous zones, while shorter
canopy classes (0-10 m, 10-20 m) dominate the valley floors,
disturbed areas, and lowland agricultural interfaces. These results
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Qualitative visualization of predicted canopy height classification maps over the Cuc Phuong-Pu Luong region under different discretization
strategies. Each subfigure shows the full-region prediction (left) and a zoomed-in view of a selected local area (right). (a) Coarse-grained; (b) Medium-
grained; (c) Fine-grained classification. The color bars represent the corresponding canopy height intervals in meters.

demonstrate the model’s ability to distinguish macro-scale forest
structure and reflect general ecosystem stratification. However, the
spatial transitions between classes appear blocky, with abrupt
boundaries that may oversimplify the complex gradients of
natural forest canopies. While useful for large-scale assessment
and REDD + applications, the 5-class maps risk overlooking
subtle
biodiversity modeling.

structural changes important for conservation or

In contrast, the medium-grained (12-class) classification results
shown in Figure 9b demonstrate offers a more refined and
ecologically nuanced representation. Canopy height intervals such

as 24-29 m, 29-34 m, and 34-39 m are visibly distinct in the map,
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especially in mid-elevation zones and transitional forest stands. The
model maintains smooth and continuous class boundaries,
reflecting gradual vertical changes in forest succession or age
classes. This finer delineation is particularly evident in the
zoomed-in subregions, where the height gradients follow natural
terrain undulations and canopy layering more closely than in the
coarse-grained map. The medium-grained output strikes a favorable
balance between interpretability and spatial detail, making it highly
suitable for land-use planning, forest restoration monitoring, and
ecosystem services evaluation.

With the fine-grained (17-class) setting, whose visual results are
shown in Figure 9c, SenFus-CHCNet delivers the most detailed
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canopy height maps, capturing subtle variations in vertical forest
structure, including local disturbances, gaps, and successional
mosaics. This high resolution enables identification of micro-
patterns such as plantation edges, regrowth patches, and
potentially even forest degradation signals. In highly diverse
regions like Cuc Phuong, such precision is invaluable for
ecological modeling, habitat suitability assessment, and species
distribution analysis.

However, this granularity also increases the sensitivity of the
map to prediction noise, particularly in sparsely labeled or
geospatially complex regions. Some fine-class transitions appear
less spatially stable, and occasional misclassifications are visible,
especially at sharp terrain transitions or where GEDI coverage is
sparse. Nevertheless, the structural richness preserved in these
outputs illustrates the model’s strong capacity to learn fine-scale
spatial patterns and generate ecologically meaningful predictions,
despite the challenges of label sparsity and class imbalance.

Importantly, across all discretization settings, the predicted
maps show strong alignment with known environmental
in the

particularly within the core zones of Cuc Phuong National Park,

gradients region. Areas of dense tropical forest,
are consistently mapped with higher canopy classes, while

anthropogenically influenced buffer zones and agricultural
encroachments are marked with lower canopy categories. This
consistency underscores the model’s ability to generalize its
learning beyond the GEDI footprint locations and extrapolate
accurate forest structure predictions across the broader landscape.

In summary, the qualitative evaluation confirms that SenFus-
CHCNet not only achieves high numerical accuracy but also
preserves spatial structure, captures ecologically relevant vertical
gradients, and adapts to varying levels of classification granularity.
These characteristics make it a compelling tool for operational forest
monitoring, where the interplay between resolution, realism, and
reliability is critical. Depending on the use case-whether national-
biodiversity
restoration—the appropriate level of classification granularity can
be with  SenFus-CHCNet

performance across the spectrum.

scale  reporting, conservation, or precision

selected, demonstrating  robust

6 Future work and limitations

Despite the promising results achieved by the proposed SenFus-
CHCNet, several limitations remain and open avenues for future
research. First, our model currently does not incorporate any form
of uncertainty estimation, which is particularly important given the
sparse and potentially noisy nature of the footprint data used for
training. Without uncertainty quantification, the model may
produce unreliable predictions in certain regions where the forest
structure is highly complex or where the quality of the satellite
imagery is suboptimal. Future work will explore integrating
uncertainty modeling techniques such as Monte Carlo dropout,
deep ensembles, or ordinal-to-continuous variance propagation to
provide reliable confidence estimates alongside canopy height
predictions.

Second, the classification-based formulation used in this study,
while offering strong ecological interpretability and robustness
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under sparse-label conditions, inherently limits the granularity of
the predictions to predefined height bins. Although the current
binning strategy (5, 12, and 17 classes) was informed by both the
data distribution and expert knowledge from local forest specialists,
it still relies largely on empirical experience rather than standardized
ecological criteria. We plan to further investigate biologically
grounded class boundaries based on ecological succession and
forest structural studies, and to explore multi-task extensions
where a single model can jointly perform both classification and
regression to balance interpretability and precision.

Addressing these limitations will not only enhance the
robustness and reliability of the proposed approach but also
extend its applicability to broader forest monitoring and
ecological assessment tasks.

7 Conclusion

In this study, we introduced SenFus-CHCNet, a novel deep learning
framework for high-resolution forest canopy height classification
through the fusion of multi-source satellite imagery-Sentinel-1 SAR,
Sentinel-2 multispectral data, and GEDI LiDAR observations.
Addressing the challenges of multi-resolution input integration, label
sparsity, and ecological interpretability, our architecture combines
resolution-aware embedding, progressive feature upscaling, and sparse
supervision within a U-Net-based semantic segmentation pipeline.

We three
strategies—coarse, and fine-grained-that

proposed and  evaluated discretization

medium, translate
continuous canopy height values into ecologically meaningful
classification labels. Across all configurations, SenFus-CHCNet
demonstrated superior performance compared to state-of-the-art
convolutional and transformer-based baselines, achieving up to
4.5% improvement in relaxed accuracy and 10% gain in F1-score.
Beyond quantitative results, qualitative analyses confirmed that our
model preserves fine-scale spatial structure, aligns with known
ecological and  topographic  patterns, and  maintains
generalizability across heterogeneous landscapes.

By leveraging sparse GEDI supervision, enhancing spectral
feature integration with SE-based fusion modules, and adopting a
multi-resolution processing strategy, SenFus-CHCNet offers a
scalable, robust, and ecologically informed solution for canopy
height classification. Its strong performance across diverse forest
conditions in northern Vietnam underscores its potential for large-
scale deployment in tropical forest monitoring, biodiversity
assessment, and carbon stock estimation-particularly in data-
limited or resource-constrained settings.

Future work will explore extending the model to global forest
ecosystems, incorporating temporal dynamics for change detection,
and integrating uncertainty quantification to support decision-
making in climate policy, conservation planning, and ecosystem

management.
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