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Understanding vegetation Below Ground Biomass (BGB) dynamics is essential to
ensure long-term ecological functions such as carbon sequestration and
optimizing critical tuber crops productivity. Whereas the utility of remote
sensing in assessing vegetation Above Ground Biomass (AGB) is well
documented in literature, studies using this technology to estimate BGB have
become elusive due to technical challenges of direct underground sensing.
Therefore, this study aims to critically review the methods and challenges in
adopting remote sensing technology for estimating vegetation BGB, while
proposing a consolidated approach for improving the accuracy of subsurface
biomass assessment. The review indicates that although remote sensors do not
directly measure underground, variations in BGB can be inferred through deriving
canopy vegetation indices, where machine learning algorithms and empirical
relationships play a crucial role in extrapolating these indices to predict
subsurface biomass. While optical multispectral and hyperspectral sensors
provide critical canopy biophysical information, offering invaluable insights
about BGB status, these cameras are constrained by atmospheric interference
and inability to penetrate dense vegetation. Active remote sensing cameras such
as LiDAR do not provide biophysical information, however, they stand out for their
ability to penetrate atmospheric conditions, dense vegetation, and provide
topographic information, that can improve BGB estimation. Amongst the
challenges highlighted, the review raises concerns about the reliability of
using the remote sensing of vegetation AGB status and canopy spectral
reflectance for estimating BGB, considering the influence of seasonality in
crown cover fluctuations. Nevertheless, advances in Unmanned Aerial Vehicle
(UAV) platforms coupled with smart optical and active sensors remain promising
for accurately assessing vegetation BGB while overcoming various limitations
such as low spatial resolution, long revisit cycles, and atmospheric influence. This
review has consolidated methods for estimating vegetation and crop BGB,
allowing researchers to evaluate their choice of technique based on the
tradeoffs between sensors spectral characteristics, spatial coverages, and
practicality.
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1 Introduction

Sources of vegetation biomass that include forests, shrubs, and
grasslands play a crucial role in maintaining ecosystem health and
resilience, serving as vital components for carbon sequestration,
thereby mitigating climate change by prolonged storage of
underground carbon stocks (Bai et al, 2022; Thompson et al,
2009). Vegetation biomass also provides critical ecosystems
services such as regulating the water cycle, controlling floods,
stabilizing the climate, and providing habitats that sustain fauna
biodiversity (Abdullah et al., 2021). The accumulation of vegetation
biomass is vital for the development of strong and abundant root
systems, essential for supporting long-term adaptation to climate
change and continuous provision of ecosystem services (Butnor
et al,, 2003). Similarly, crop biomass is a critical indicator of yield,
reflecting the growth status, effectiveness of existing agricultural
practices, and providing early warning systems for timely
interventions to environmental stressors (Lecerf et al, 2019).
Crops with well-developed biomass are more effective at
capturing sunlight and absorbing nutrients and water from the
soil, which contributes to higher productivity and yields (Servia
et al., 2022). Therefore, monitoring vegetation biomass, including
crops, is crucial for maintaining ecosystem health and resilience to
ensure long-term ecological functions, and allowing timely
interventions to optimize yields (Thiffault et al., 2011; Battude
et al., 2016).

The characterization of vegetation biomass involves both Below-
Ground Biomass (BGB) and Above-Ground Biomass (AGB), that
includes the roots, leaves, stems, and vines (Singnar et al., 2021).
Vegetation BGB is particularly essential because it stabilizes soils,
reduces erosion, and optimizes water infiltrations, considerably
supporting above ground biodiversity and productivity (Gregory,
2022). Due to practical challenges related to digging well-established
roots and concerns regarding deforestation, ecosystem
fragmentation, and crop yield losses associated with destructive
sampling of field BGB data, most studies have extensively
focused on assessing the AGB (Barbosa et al.,, 2014). However,
this has significantly hindered understanding of subsurface biomass
dynamics, resulting in an underestimation of the full potential of
BGB; subsequently limiting the development of effective climate
change mitigation strategies and accurate tuber and nut crop yield
estimates (Streit et al., 2019). Therefore, adopting innovative
approaches to monitor BGB across diverse vegetation and
cropping systems is essential for achieving climate resilient
ecosystems and sustainable food systems at a global scale (Fidelis
et al.,, 2013).

Conventionally, BGB
destructive, laborious, and time-consuming approaches such as

vegetation assessment  involves
manual harvests, weighing, and extensive calculations (Neesset
and Gobakken, 2008). Although studies like Naesset and
Gobakken (2008), Sharma et al. (2022), Singh et al. (2022) have
deemed this approach accurate, concerns regarding its practicality
over large spatial extents and repeated observations remain (Tian
etal, 2021). Furthermore, yield losses due to continuous destructive
sampling for multitemporal biomass assessment is also regarded as
its major limitation (Zhang and Zhang, 2022). Therefore, cost-
effective and innovative approaches such as remote sensing
technology have been proposed to address these challenges
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(Sharma et al., 2022; Geng et al, 2021). Remotely sensed data
enables for the computation of optimal vegetation indices and
metrics, based on AGB status and canopy spectral characteristics,
ultimately allowing for BGB estimation (Bala and Islam, 2009).

Even though optical remote sensors do not directly measure
underground (Tian et al., 2023), estimating vegetation BGB from
these datasets typically relies on the assumption that subsurface
biomass accumulation relies on canopy biochemical and physical
characteristics such as photosynthetic rates (Gomez et al., 2019). The
variations in these characteristics can be inferred through deriving
canopy vegetation indices, where machine learning algorithms and
empirical relationships play a crucial role in extrapolating these
indices to predict BGB Suarez et al. (2020). Consequently, using
vegetation canopy reflectance, remote sensing technology remains a
promising solution for sustainably assessing BGB at large spatial
extents and repeated observations, without compromising yields
and ecosystem resilience (Abbas et al., 2020; Guerini Filho et al.,
2020). Advancements in optical remote sensing over the past
decades have led to the development of spaceborne multispectral
and hyperspectral sensors such as PlanetScope, Sentinel-2, and
Earth Observing-1 Hyperion (Bala and Islam, 2009; Suarez et al.,
2020; Baloloy et al., 2018; Kattenborn et al., 2015; Jacon et al., 2021).
These satellite sensors capture data across multiple spectral bands of
the electromagnetic spectrum, enabling the computation of
advanced vegetation indices that are optimized for estimating
vegetation BGB from canopy reflectance with greater accuracy
and precision (Xue and Su, 2017).

The relationship between canopy measured vegetation indices
such as the Enhanced Vegetation Index (EVI), and agronomic
characteristics such as BGB is well established in literature
(Chapungu et al,, 2020; Perry et al.,, 2022; Farias et al., 2023). For
instance, Gomez et al. (2019) successfully estimated potato yield
using spectral vegetation indices derived from the freely available
10-m-medium resolution Sentinel-2 dataset. The availability of these
freely accessible satellite datasets offer a leverage for long term and
large scale estimation of vegetation BGB at canopy reflectance level
(Ghaderizadeh et al, 2021). Despite this success, technological
limitations, such as surface information accuracy, mixed pixel
issues, cloud contamination, vegetation index saturation, and low
spatial resolution associated with satellite optical remote sensing
remain disputed (Xia and Jia, 2022). Alternatively, space-borne laser
and radar sensors, such as the Multi-Sensing Observation LiDAR
and Imager (MOLI), Sentinel-1 Synthetic Aperture Radar (SAR),
and BIOMASS P-band SAR, have been deployed to provide
atmospheric interface-free and 3-Dimensional (3D) datasets,
overcoming some of the limitations associated with optical
satellite data (Rodriguez-Veiga et al., 2017).

LiDAR and SAR sensors, with their powerful laser and radar
technology, respectively, penetrate the canopy and capture detailed
structural information about both the ground and vegetation,
enabling precise BGB estimations (Luo et al., 2017). For instance,
the weather independent Sentinel-1 SAR data uses the 54 GH
C-band to penetrate dense vegetation canopy, providing critical
information such as topography, AGB structure, and moisture
content, which convey subsurface biomass status through
allometric equations, subsequently allowing for accurate BGB
measurements (Suarez et al, 2024). Despite the potential of
satellite LiDAR and Sentinel-1 SAR based measurements in
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accurately estimating vegetation BGB, these approaches remain
limited by low spatial and temporal resolution. The emergence of
Unmanned Aerial Vehicles (UAVs) featuring customizable data
acquisition frequencies has presented an opportunity to integrate
high spatial resolution sensors, ultimately bridging the gap between
satellite remote sensing approaches and ground based
measurements (Abiodun, 2020). Unmanned aerial vehicles are
airborne platforms that can leverage advanced and high
resolution sensors, ranging from LiDAR, multispectral, and
hyperspectral cameras, allowing for close range vegetation and
crop BGB monitoring (Liu et al., 2020).

The advancements in high-precision UAV platforms and
satellite remote sensing have significantly enhanced the
estimation of vegetation BGB by broadening the range of
available data sources, offering varying spatial extents and
spectral resolutions (Abdullah et al, 2021). Unmanned aerial
vehicles can capture high resolution images over small spatial
extents, while satellite constellations provide broader coverage
with lower spatial resolution (Luo et al, 2017). Together, these
remote sensing platforms enable more comprehensive and precise
monitoring of vegetation BGB, supporting applications in various
fields including agriculture, forestry, and grasslands. Despite the
availability of various remote sensing datasets, few studies including
Chen et al. (2023), have extensively assessed vegetation BGB
compared to AGB (Nasset and Gobakken, 2008). This disparity
has considerably restricted understanding of the value of vegetation
BGB in climate change mitigation and the role of tuber crops in
combating food insecurity (Fidelis et al., 2013; Servia et al., 2022).
Whereas few studies, including Al-Gaadi et al. (2016), Bala and
Islam (2009), Bolinder et al. (2015), have utilized remotely sensed
data to estimate vegetation BGB, a comprehensive review of the
methods and challenges of remote sensing for subsurface biomass
estimation has remained elusive.

Reviewing the methods and challenges in the adoption of remote
sensing to estimate subsurface biomass is essential to provide
valuable insights and guidelines for future studies, allowing
researchers to identify suitable approaches that can overcome
challenges of wusing this technology for vegetation BGB
estimation. Hence, this study aims to conduct a critical review of
the utility of remote sensing technology in assessing vegetation and
crops BGB. This review evaluates the efficacy and limitations of
existing remote sensing methodologies, focusing on their
application to BGB estimation in various vegetation and crop
types. The review critically examines the progress accomplished
in remote sensing techniques, including advancements in sensor
technology, data acquisition, and analytical approaches. The study
further explores emerging trends and provides insights to guide the
development of innovative and scalable approaches for vegetation
and crops BGB estimation, contributing to both ecological research

and precision agriculture applications.

2 Literature search and inclusion

Relevant publications were retrieved from Google Scholar to
identify potential key terms for formulating the search string, as
suggested by Aromataris and Riitano (2014). Thereafter, the
following formulated: “Remote

string  was sensing” OR
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“Geographic information system” OR “Earth Observation” OR
“Satellite” AND “Below Ground Biomass” OR “Tuber Biomass”
OR “Root Biomass” OR “Subsurface Biomass” OR “Underground
OR “Subsoil Biomass”.
database was then conducted using the search string on the Web

Biomass” A comprehensive literature
of Science (WOS), Scopus, and Science Direct scientific databases on
19 August 2024 (Table 1). These scientific databases were chosen
based on pervious literature reviews conducted on similar topics
(Ndlovu et al., 2024; Sibiya et al., 2025). The literature search was
limited to the tittles, abstracts, and keywords of the publications
without restricting the year of publication and geographic location.
Furthermore, literature reviews were excluded in the literature
search, and only publications written in English were considered
for practicality and to avoid language discrepancies.

2.1 Data extraction and analysis

A total of 785 publications were initially retrieved from the
WOS, Scopus, and Science Direct databases (Figure 1). After
removing 326 duplicates and 67 non-full text articles, the
abstracts of the remaining publications were critically evaluated
to identify those focused on the remote sensing of vegetation BGB.
Subsequently, 43 publications were identified as suitable for
inclusion in the review. Thereafter, by examining the reference
lists of these 43 publications, 7 relevant articles were added,
resulting in a final total of 50 publications included.

The final 50 publications included in this review were critically
read from abstract through the results, discussion, and conclusion,
and data extracted and recorded in Microsoft Excel. The extracted
data included various aspects such as vegetation types, remote
sensing platforms and sensors, methodologies employed, key
findings, limitations, and recommendations. Therefore, the results
of this review reflect the in-depth analysis of the content of these
publications.

3 Progress in the application of remote
sensing in estimating vegetation BGB

3.1 Vegetation types identified in literature

The inception of remote sensing technology, offering a wide
variety of sensors including spaceborne, airborne, and proximal
remote sensing, has successfully enabled the assessment of
vegetation and crops BGB across various ecosystems. Amongst
others, this review noted extensive use of X-ray imaging,
magnetic  resonance,  electrical and  seismic  methods,
multispectral, hyperspectral sensors, and Red-Green-Blue (RGB)
sensors. Furthermore, as shown in Figure 2, remote sensing
technology has been used to estimate BGB across various
vegetation types, including tuber crops, vegetables, forests,
grasslands, orchards, and shrubs. This review further indicates
that remote sensing technology has been predominantly applied
in tuber crops, followed by forests and sand trees compared to other
vegetation.

The recent response to climate action has drawn more attention

to forest research to comprehensively optimize techniques on
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TABLE 1 Topical terms used in the literature search.

Search platform  Search criterion

10.3389/frsen.2025.1668676

Articles
retrieved

Scopus

(TITLE-ABS-KEY (remote AND sensing) OR TITLE-ABS-KEY (earth AND observation) OR TITLE-ABS-KEY 138

(satellite) OR TITLE-ABS-KEY (geographic AND information AND system) AND TITLE-ABS-KEY (below AND
ground AND biomass) OR TITLE-ABS-KEY (root AND biomass) OR TITLE-ABS-KEY (subsurface AND biomass) OR

TITLE-ABS-KEY (subsoil AND biomass))

Science direct

“Remote sensing OR Geographic information system OR Earth Observation OR Satellite AND Below Ground Biomass =~ 178

OR Tuber Biomass OR Root Biomass OR Subsurface Biomass OR underground Biomass OR Subsoil Biomass”

Web of science

Remote sensing (Abstract) OR Earth observation (Abstract) OR Geographic information system (Abstract) OR Satellite =~ 469

(Abstract) AND below ground biomass (Abstract) OR Root biomass (Abstract) OR subsurface biomass (Abstract) OR
tuber biomass (Abstract) OR Underground biomass (Abstract) OR subsoil biomass (Abstract) and Open Access and
Article (Document Types) and Open Access and Article (Document Types) and All Open Access (Open Access) and
REMOTE SENSING (Publication Titles) and English (Languages) and Remote Sensing or Imaging Science Photographic
Technology or Environmental Sciences Ecology (Research Areas)

carbon sequestration (Dainelli et al., 2021). In addition, forests
ecosystems are characterized by high economic value in revenue
as trees are predominantly used for various applications such as
timber (Fassnacht et al., 2024). Likewise, agricultural crops such as
the Neglected and Underutilized Crops (NUCs) have recently
gained popularity due to their high nutritive value and potential
to enhance food security (Mudau et al., 2022). Furthermore, the
recent population growth and high demand for food has brought
attention to agricultural crops research, aiming to optimize
production and meet the growing demand (Mabhaudhi et al,
2022). For instance, studies like Jewan et al. (2022) assessed the
utility of commercial UAV platforms and low cost cameras in
estimating Bambara groundnut yield to optimize its production.
Despite grasslands and shrubs forming an essential source of grazing
and browsing in large ecosystems such as rangelands and protected
areas as noted by Masenyama et al. (2022), very few publications
were recorded in this regard (Figure 2). Nevertheless, grasslands and
rangelands provide essential ecosystem and socioeconomic services
as reported by Chapungu et al. (2020), hence further research is
needed to fully assess and maintain their stability.

3.2 The evolution of remote sensing
technology in estimating vegetation BGB

The temporal distribution and frequency of sensors used in
literature for estimating vegetation BGB is shown in Figure 3. The
use of remote sensing technology in estimating vegetation BGB was
established over 2 decades ago, noting its durability and long-term
adoption. Notably, proximal remote sensing devices such as
Analytical ~ Spectral Devices (ASD), Electrical ~ Resistivity
Tomography (ERT), and Ground Penetrating Radar (GPR)
recorded the most publications for various reasons, including
their long-term existence since 1999, marking the beginning of
remote sensing adoption in vegetation BGB estimation. Proximal
remote sensing devices (Table 2) offer superior accuracy in
comparison to other remote sensing techniques because they are
employed close to the target vegetation, providing site-specific
measurements that are less affected by external factors such as
cloud cover, low spatial resolution, and temporal delays (Zhu
et al, 2014; Streit et al, 2019; Rossi et al, 2011). Despite this
prosperity, proximal remote sensing is considerably restricted by
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long term and frequent observations particularly in large spatial
extents due to manpower required to carry these devices (Suarez
et al,, 2020; Wang et al., 2023a). To address these, a decade later in
2009, spaceborne remote sensing platforms were adopted to assess
vegetation BGB at relatively lower spatial resolution and prolonged
revisit cycles. Despite satellite remote sensing having relatively lower
spatial and temporal resolution, many studies including Liao et al.
(2022), Bala and Islam (2009), Carbajal-Carrasco et al. (2024) have
successfully leveraged this dataset for more than a dozen years to
assess vegetation BGB. However, it is essential to note that majority
of optical satellite remote sensing datasets such as the Sentinel series,
have been accessible for over a decade at no cost, which has also
contributed to their increasing and widespread adoption for
estimating vegetation BGB (Bala and Islam, 2009; Middleton
et al.,, 2013).

Despite the wide and long term adoption of satellite remote
sensing, literature has proven this approach to be prone to
atmospheric interference, particularly in summer under limited
cloud free scenes (Chapungu et al, 2020). This approach is
further limited by prolonged revisit cycles and low spatial
resolution, considerably restricting its application in small spatial
extents, such as small-scale farming systems (Tedesco et al., 2021;
Bouasria et al., 2021). To address these challenges, remote sensing
cameras have been revolutionised and miniaturised to fit into aerial
vehicles such as drones, allowing hovering under cloud cover and
enabling acquisition of high spatial resolution datasets (Jewan et al.,
2022). This adaptation accounts for relatively larger spatial extents
while maintaining high spatial resolution datasets and user defined
frequency of observations (Saif et al, 2023). However, whereas
manned aircrafts systems were adopted from 2008 to 2015, only
two publications were retrieved during this period (Kristensen et al.,
2015; Neesset and Gobakken, 2008). This is because the operation of
manned aircraft systems demands extensive training and
significantly costly, thus raising concerns about their cost-
effectiveness and overall worthiness (Jang et al., 2020). Therefore,
in 2017, publications adopting cost effective UAV systems emerged,
signalling the revolution of vegetation BGB remote sensing (Luo
et al., 2017). This approach enabled the mounting of very small and
high-resolution sensors on UAV platforms such as LIDAR,
multispectral, and hyperspectral cameras, facilitating a cost-
effective, efficient data acquisition, subsequently bridging the gap
between satellite, proximal, and manned aircraft systems (ten Harkel
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FIGURE 2
The frequency of vegetation types used in below ground biomass estimation
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The temporal distribution of different sensor platforms used to estimate vegetation BGB.

et al,, 2020). Since then, most publications on vegetation BGB
estimations have been acquired using UAV remote sensing,
noting the efficiency and practicality of this approach.

3.3 Remote sensing platforms, sensors, and
spectral features used to assess
vegetation BGB

Table 1 presents information on remote sensing platforms
and their associated sensor characteristics, including spatial
resolutions and spectral bands used to assess vegetation BGB.
The results highlight the growing adoption of proximal,
spaceborne, and airborne remote sensing over the recent
decades for assessing vegetation BGB (Table 2). These results
further indicate consolidated information that demonstrates the
effectiveness of various sensor spectral characteristics such as the
spatial resolution, spectral bands, and bandwidth in modelling
vegetation BGB, providing valuable insights and guidance on
suitable approaches for future research (Zhu et al., 2014; Streit
et al., 2019; Bala and Islam, 2009). The findings in table 1 only
show the spectral characteristics of sensors that have proven
proficient in accurately estimating vegetation BGB, rather than
focusing solely on the overall spectral characteristics of the
sensors themselves (Cui et al., 2012; Nesset and Gobakken,
2008). For example, while sensors like MODIS feature
Shortwave Infrared (SWIR) and thermal bands, these were not
included in this study due to lack of evidence in literature for
their utility in assessing vegetation BGB (Bala and Islam, 2009).
In this regard, a significant dominance of the visible, NIR, and red
edge bands in estimating vegetation BGB was noted for
prominence in enabling the computation of optimal vegetation
indices for BGB estimation such as the Normalised Difference
Vegetation Index (NDVI) (Bouasria et al., 2021; Pugh et al., 2024;
Li et al, 2021).

Frontiers in Remote Sensing

The visible portion of the electromagnetic spectrum ranges from
440 to 700 nm, consisting of the Red, Blue, and Green spectral bands,
is essential for reflecting light and subsequently contributing to the
detection of vegetation physical and colour characteristics (Teng
et al., 2019). The NIR portion ranging from 700 nm to 1,100 nm
section of the electromagnetic spectrum, plays an immense role in
estimating vegetation biomass and health (Sun et al., 2020). For
instance, vegetation chlorophyll primarily absorbs in the blue and
red portions of the visible spectrum, and reflects green light,
contributing to the green colour perceived by human eyes and
remote sensing cameras (Selvaraj et al., 2020). In addition to this,
Vegetation strongly reflects light in the NIR region, enabling the
quantification of biochemical and biophysical characteristics (Shahi
et al,, 2023). Typically, the variations in chlorophyll reflectance,
particularly in the Red and NIR band allows for the computation of
vegetation indices that can infer BGB such as NDVI (Praseartkul
et al., 2023). These indices are essential for assessing vegetation
health and, by extension, indicate the presence of a well-developed
BGB capable of absorbing adequate nutrients and water, supporting
the formation of healthy canopy and AGB (Bu et al., 2016).

The Red-Edge portion ranges from 690 nm to 750 nm in the
electromagnetic bands, marking the transition from the Red to NIR
section (Tahir et al., 2020). The Red-Edge portion is sensitive to
photosynthetic activity and is essential for computing advanced
vegetation indices such as the Normalized Difference Red Edge
(NDRE) Index for quantifying AGB productivity (Abdullah et al.,
2021). The quantification of AGB productivity is closely linked to
the development of BGB, as there is a strong relationship between
the two variables (Jewan et al., 2022). This relationship arises from
the fact that both AGB and BGB are influenced by similar edaphic
factors such as soil nutrients, soil moisture availability, and overall
plant health (Bala and Islam, 2009). A well-developed BGB typically
supports robust AGB growth by enhancing the ability of vegetation
to absorb water and nutrients, which in turn promotes higher
biomass production above ground (Al-Gaadi et al, 2016).
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TABLE 2 Specification of remote sensing technology used in assessing vegetation below ground biomass.

10.3389/frsen.2025.1668676

Platform  Sensor Category Spectral bands Spatial Vegetation/crop type References
used resolution
Airborne (OEM) 20-Megapixel RGB Red, Green, Blue 1.37 cm Peanuts Pugh et al. (2024)
RGB camera
GEMS Multispectral Multispectral = Red, Green, Blue, NIR 2 cm Potatoes Li et al. (2021)
camera
Headwall Nano- Hyperspectral = 273 bands 3 cm Potatoes Saif et al. (2023)
Hyperspec (400-1,000 nm)
Compact Airborne Hyperspectral = 350-1,050 nm 1m Forests Luo et al. (2017)
Spectrographic Imager
Leica Airborne Laser LiDAR Red, Blue, Green, 120 Hz | Acc- 0.14 m, Prec- = Forests Luo et al. (2017)
1 cm
LTM 3100C LiDAR LiDAR Red, Blue, Green, 4.5 m Forests Kristensen et al.
100 KHz (2015)
MicaSense Altum Multispectral Red, Blue, Green, NIR, 3-50 cm Sweet Potatoes Ramirez et al. (2023)
Red Edge, Thermal
MicaSense Red Edge Multispectral Red, Blue, Green, NIR, 2 cm Beet Roots, Cassava, and Wright et al. (2004)
Red Edge Potatoes
Tetracam p-MCA06 Multispectral = Red, Blue, Green, NIR 1.5 cm Onions Messina et al. (2021)
(land2), Red Edge
Optech ALTM1210 LiDAR Red, Blue, Green, 21 Hz | 21-48 cm Beet Roots Nesset and Gobakken
(2008)
Parrot Sequoia Multispectral = Green, Red, Red 11.3 cm Groundnuts and Shrubs Abdullah et al. (2021)
Edge, NIR
Canon S100 modified by = Multispectral =~ Green, Red, NIR 0.4 cm Bambara groundnuts Jewan et al. (2022)
MaxMax
Single-lens reflex camera | RGB Red, Green, Blue 14 cm Sweet Potatoes Teng et al. (2019)
VUX-SYS Laser Scanner LiDAR Red, Blue, Green, Acc-1 c¢cm, Prec- Sweet Potatoes and Sugar Beets  ten Harkel et al. (2020)
5,500 KHz 0.5 cm
Proximal ACS-470 Sensor Multispectral = Red, Green, Red - Sugar Beets Bu et al. (2016)
Edge, NIR
FieldSpec Handheld Hyperspectral = 350-1,100 nm <1.5 nm Onions and Potatoes Marino and Alvino
spectrometer (2015)
FTIR spectroscopy Hyperspectral = 400-4,500 cm 4 cm Faba Beans Streit et al. (2019)
Electrical Resistivity — — — Coffee Trees, Orchards, Sand Paglis (2013)
Tomography Trees, and Forests
Ground Penetrating — 10 MHz - 2.6 GHz — Cassava, Energy Cane, Forests, Zenone et al. (2008)
Radar Larch Trees, and Sand Trees
Spaceborne Landsat-8 Multispectral Red, Green, Blue, NIR 30 m Grasslands, Sugar Beets, Carbajal-Carrasco
Potatoes, and Sweet Potatoes et al. (2024)
RGB-RedEdgeM Sensor Multispectral = Red, Blue, Green, Yellow, = 4.6 cm Turmeric Plant Praseartkul et al.
Red edge, NIR (2023)
Sentinel-2 Multispectral = Red, Blue, Green, Red 10-20 m Sugar Beets, Carrots, Potatoes, Tedesco et al. (2021)
Edge, NIR and Sweet Potatoes
MODIS Multispectral  Red, Green, Blue, NIR 500 m Potatoes Bala and Islam (2009)
WorldView-2 Multispectral = Blue, Green, Yellow, Red, = 3 m Carrots Suarez et al. (2020)
Red Edge, NIR
Advanced Very High- Multispectral Red, Green, Blue, NIR 1.1 km Potatoes Kawsar et al. (2016)
Resolution Radiometer

(Continued on following page)
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TABLE 2 (Continued) Specification of remote sensing technology used in assessing vegetation below ground biomass.

Platform  Sensor Category

used

Spectral bands

References

Vegetation/crop type

Spatial
resolution

Landsat -7 Multispectral  Red, Green, Blue, Red
Edge
Landsat - 5 Multispectral ~ Red, Green, Blue, Red

Edge, NIR

Abbreviations: Prec, Precision; Acc, Accuracy; KHz, Kilohertz; Hz, Hertz, GHz, Gigahertz.

Therefore, assessing AGB using the aforementioned spectral
characteristics hold a great promise to provide invaluable insights
into the status of BGB development and vice versa. For example,
Streit et al. (2019) successfully assessed the contribution of the root
system to yielding potential of faba bean using a hyperspectral FTIR
spectroscopy. While the visible, NIR, and red-edge bands have
proven effective in estimating BGB, it is vital to note that their
sensitivity can vary across different vegetation types, growth stages,
and environmental conditions. For instance, in agricultural tuber
crops, these bands may strongly correlate with the BGB, however,
the same bands can be less effective in estimating forests and shrubs
subsurface biomass due to variability in leaf structures and canopy
densities (Dainelli et al., 2021; Deliry and Avdan, 2021).
Information on spatial resolution indicates how each sensor can
be adopted based on the spatial extent and vegetation types
monitored. For instance, farming

small-scale systems,

characterized by limited plot sizes, require high spatial
resolutions to ensure sufficient pixels for adequate sampling and
accurate BGB estimation. High resolution imagery allows for a better
of field heterogeneity,

differentiation of vegetation indicators that are directly linked to

representation enabling efficient
BGB, such as vegetation health and canopy structure. Conversely,
larger ecosystems, such as commercial farming and forest systems,
can be effectively monitored using low spatial resolution sensors like
Landsat-8, which offer advantage of broader spatial coverage and
minimal pixel contamination. For instance, Al-Gaadi et al. (2016)
used the freely available Landsat-8 dataset to predict potato yield
during the maturity stage in a 30 ha field, achieving the lowest
prediction error of 13.5% at most. Despite the noted characteristics
variations amongst the cameras, the choice of each sensor depends
on the trade-offs between sensors spectral characteristics, spatial
coverages, and practicality.

3.4 The utility of machine learning and
statistical approaches for vegetation BGB
estimation

A wide range of machine learning and traditional statistical
models have been used to estimate vegetation and crop BGB,
noticeable
predominant use of linear regression models (Paglis, 2013;

resulting in distinct prediction accuracies. A
Butnor et al., 2003), including multiple linear regression (Suarez
etal., 2024; Chancia et al., 2021), Ordinary Least Squares (OLS) (Liu
et al,, 2018; Sun et al., 2020), and stepwise regression (Kristensen
et al., 2015) have been widely adopted, with reported R* values
ranging from as low as 0.052 to 0.97. While some studies like Neesset

and Gobakken (2008) achieved high prediction accuracies (R* =
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30 m Sweet Potatoes Carbajal-Carrasco
et al. (2024)
60 m Sweet Potatoes Carbajal-Carrasco

et al. (2024)

0.85) estimating BGB in boreal forest zones, others using basic
linear, multiple and OLS regression have shown low prediction
accuracies. For instance, Suarez et al. (2020) used a linear regression
model to estimate carrot yield using proximal and satellite remote
sensing data and achieved prediction accuracies ranging from R* =
0.10-0.57. Liu et al. (2018) used a Ground Penetrating Radar with
OLS regression to detect fine roots in agricultural crops and achieved
prediction accuracies ranging from R* = 0.052 to 0.56. These
aforementioned studies, amongst others such as Teng et al.
(2019), Ramirez et al. (2023) and Wright et al. (2004), indicate
the inconsistency of these models in capturing the complexity of
vegetation and crop BGB.

In contrast, comparatively fewer studies used advanced and
potent machine learning algorithms such as Random Forest (Fan
et al, 2024; Madugundu et al,, 2024), Support Vector Machine
(SVM) (Sun et al., 20205 Li et al., 2021), Artificial Neural Networks
(ANN) (Akhand et al., 2016; Carbajal-Carrasco et al., 2024), and
eXtreme Gradient Boosting (XGBoost). Studies that have used these
models typically demonstrated strong performance, with Random
Forest achieving R* values up to 0.93 (Pugh et al., 2024) and ANN
models reporting prediction errors under 10% (Akhand et al., 2016).
Hybrid and ensemble models such as regression quantile lasso with
Random Forest (Gomez et al., 2019) also yielded high accuracies
(R*> = 0.88-0.89), yet remained relatively underexplored across the
literature. The use of empirical equations, including in a study by Al-
Gaadi et al. (2016) to estimate potato crop BGB also noted a dearth
in literature. In addition, the limited use of non-linear and
including AutoML
(Tedesco et al., 2021) indicated a methodological gap in current
vegetation and crop BGB prediction literature. Therefore, despite

automated modeling approaches, tools

the nature of linear models in offering ease of interpretation, their
widespread use may oversimplify the inherently complex nature of
BGB systems, which indicates the need for broader adoption of data-
driven and non-linear modeling strategies such as deep learning in
future studies.

3.5 Remote sensing methods and challenges
for estimating vegetation BGB

3.5.1 Ground penetrating radar (GPR)

Ground Penetrating Radar (GPR) system is the second most
frequently used remote sensing technology for estimating vegetation
and crop BGB after multispectral sensors (Figure 4). The GPR
system is a proximal remote sensing approach used for detecting
and localization of vegetation BGB up to 30 m belowground (Liu
et al,, 2018). The 30-m coverage of the GPR system allows for the
detection of most vegetation BGB, as the majority of plants typically
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do not extend deeper than 30 m belowground (Agbona et al., 2021).
Ground penetrating radar systems provide a 3-Dimesional (3D) full
resolution subsurface architecture using bow-tie antennas emitting a
frequency ranging from 10 MHz to 2.6 GHz (Agbona et al., 2021).
The GPR system can be integrated with the antenna, allowing easy
deploy and use in confined spaces such as small-scale farming
systems and dense forests (Barton and Montagu, 2004). The
antenna emits and receives radar waves and works closely with
the GPR unit that processes the signals and displays the data (Butnor
etal,, 2003). Alternatively, the GPR unit can be mounted on an aerial
vehicle or alternatively operated on the ground while the antenna is
positioned separately (Cui et al., 2011). This separation provides
more flexibility, especially for large-scale surveys and challenging
terrains such as dense natural forests (Cui et al., 2012). However,
Guo et al. (2013) emphasized the importance of ensuring correct
positioning of the antenna to the GPR system to effectively send and
receive electromagnetic waves from the soil. The GPR systems
heavily depends on soil permittivity such as conductivity and
dielectric constants, which is determined by calculating the Time
Domain Reflectometry (TDR) as explained by Hruska et al. (1999).
The TDR verifies the quality of signal paths, essential for
determining soil permittivity in allowing the GPR frequency to
directly detect subsurface biomass (Isaac and Anglaaere, 2013).
The GPR system includes two approaches: (1) Directly
estimating subsurface biomass using GPR indices such as the
pixels within threshold range, high amplitude area, and time
intervals between zeros (Hardiman et al., 2017). This approach is
suitable for agricultural crops and grasses due to their shallow and
well defined roots systems, enabling easy detection by the GPR
system (Teng et al, 2019). (2) Using prior information of root
density and indirectly sensing the root diameter using the GPR
(Barton and Montagu, 2004). The second approach is suitable for
trees and shrubs due to the challenges in detecting their roots by the
GPR system, while information about their root orientation is often
available through their taxonomic classification and nomenclature
(Barton and Montagu, 2004). The second approach is only limited to

Frontiers in Remote Sensing

09

cylindrical shaped roots, and based on the idea that root diameter is
directly proportional to the subsurface biomass (Barton and
Montagu, 2004). For example, using the second approach, a
study by Barton and Montagu (2004) demonstrated the potential
of a GPR system by burying nine tree roots at various depths in a
prepared soil medium, and discovered that using 800 MHz and
1 GHz antennas, all the roots were detected except for the smallest
(1 cm). Regardless of the approach used to sense subsurface biomass,
the GRP dataset preprocessing procedure remains the same, and
includes regularization, zero-time correlation, background removal,
band pass filtering, attenuation compensation, 3D migration, and
Hilbert transform, in that order (Cui et al., 2012).

The capability of RadExplorer v1.42 software to accurately
preprocess GPR radiograms is well documented in literature
(Zhu et al., 2014; Liu et al., 2018; Hruska et al., 1999). The first
stage is regularization, which involves the use of nearest neighbor
interpolation algorithm to interpolate the GPR acquired traces into
regular grids of data (Zhu et al., 2014). Thereafter, the second stage
where the arrival time of the reflection from ground surface is set to
zero, strong wave and coupling are removed as background noise
from the grids of data (Butnor et al., 2003). High frequency noise
and current offset are removed and suppressed respectively by
setting the low and high frequency (f; and fy) of the GPR data
through band-pass filtering approach in the third stage (Leucci,
2010). In instances where energy and signal strength are lost in less
permitting soils like clay and compacted mediums, attenuation
compensation is performed to rectify possible spectral distortions
(Zhu et al, 2014). Thereafter, in the fourth stage, the data is
transformed into a clear 3D subsurface architecture using
Frequency-Wavenumber (F-K) migration (Agbona et al., 2021).
The F-K migration approach adjusts coarse datasets to make it
sharp and clear for analysis (Agbona et al, 2021). The final
preprocessing steps involves generating magnitude information
rather than amplitude, to detect roots and extract GPR indices
from the profile as explained in detail by Zhu et al. (2014). After
collecting and preprocessing the data, GPR indices can be generated
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and combined with validation data to develop a subsurface biomass
prediction model using machine learning and statistical methods
(Liu et al., 2018).

Despite the potential approach presented by the GPR system, its
challenges are well documented in literature (Zhu et al., 2014; Hruska
etal, 1999; Agbona et al., 2021). The GPR system is often site-specific
due to its requirements of connection to the antenna, which limits
long range and global earth observation (Agbona et al, 2021). In
addition, the GPR system faces challenges when used in densely
vegetated areas, as the radar waves can be absorbed and scattered,
reducing their ability to penetrate deeper into the soil (Liu et al., 2018).
To rectify this, studies like Zhu et al. (2014), Guo et al. (2013), Liu et al.
(2018) suggested methods like clearing vegetation canopy to minimize
interference, using lower frequency antennas to enhance penetration,
and applying advanced preprocessing techniques to filter out
scattering noise. Furthermore, Cui et al. (2012) recommended
cutting vegetation above the stump to allow radar signals to
penetrate more effectively to the underground biomass and reduce
soil interference. However, clearing vegetation remains a challenge, as
it can be time-consuming and labour intensive, particularly at large
spatial extents. In addition, clearing vegetation is destructive, which
may limit future sampling on the same study site, and raise concerns
regarding deforestation and yield losses. Moreover, the GPR system is
generally effective only for detecting coarse roots that are considerably
separate from each other as reported by Zhu et al. (2014). Liu et al.
(2018) also reported that in cases where fine roots overlap coarse
roots, the GPR system may fail to detect the latter. Despite these
challenges, advancements in remote sensing, such as aerial vehicles
equipped with modern GPR units, provide promising solutions for
assessing BGB in vegetated areas and croplands (Leucci, 2010). For
instance, leveraging the advances in GPR systems, Liu et al. (2018)
successfully used this approach to detect fine roots in agricultural
crops, which highlights improvements from the findings reported by
Butnor et al. (2003), deeming the method only applicable to coarse
roots. In addition, Wang et al. (2023b) introduced the upgraded
MAVIN GPR system that allows integration with drone platforms,
providing efficiency and access to hard-to-reach sites. Reich (2023)
further proved that the upgraded GPR systems are less prone to
vegetation interference, and can ultimately enhance vegetation
subsurface biomass.

3.5.2 Electrical resistivity tomography (ERT)

The fourth frequently used remote sensing concept for
estimating vegetation and crop BGB is Electrical Resistivity
Tomography (ERT) (Figure 4). The ERT is a proximal remote
sensing technique that involves the application of electrical
current in the soil through electrodes and measuring the
resulting potential difference in the selected positions (Paglis,
2013). Typically, electrical resistivity is the ability of any medium
to restrict the flow of electrical current (Rossi et al., 2011). The ability
of vegetation roots to significantly influence potential difference in
the soil is well documented in literature (Balwant et al., 2022).
Therefore, the use of ERT holds a great potential to estimate
vegetation and crop subsurface dynamics, thereby allowing
researchers to study variability in root size, distribution, and
density subsurface (Zenone et al., 2008). Similar to the GPR, the
ERT is based on the same approach and notion that roots are
cylindrically shaped. A complementary study by Zenone et al. (2008)
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combined ERT and GPR to estimate pine tree root biomass and
discovered that both 3D ERT and GPR variation soil map models
can be related to the shape and size of the roots, consequently
allowing BGB estimations.

Prior to using ERT to sense vegetation subsurface biomass, a
bare soil medium is used as a control to calibrate the electrodes
(Paglis, 2013). The calibration of sensors in the remote sensing as a
field is well documented in literature, essential for keeping
measurements within the accepted margin of error (Balwant
et al, 2022; Paglis, 2013; Rossi et al, 2011). Thereafter, two
electrodes defined as cathode and anode are inserted in a square
unit soil medium and electrical current applied (Messina et al.,
2021). The resulting potential difference in various sampling points
provide an estimate of vegetation subsurface biomass variability
across the experimental plot (Zenone et al., 2008). The potential
difference from the root systems indicates different sizes, density,
and water content. To validate ERT results, vegetation subsurface
biomass is destructively sampled, and oven dried to a constant mass
to eliminate water, and correlating ERT derived parameters
(Balwant et al., 2022). In addition, soil samples are oven dried to
get soil Dry Mass (DM), and subsequently, Root Mass Density
(RMD) is calculated (Paglis, 2013). Thereafter, the RMD is used to
create spatial variability maps of subsurface biomass across the study
area using relevant software such as the surfer.V.10.

This review indicates that ERT has only been used four times
based on the assessed literature to quantify vegetation and crop BGB
as illustrated in Figure 4. The spatial coverage of the ERT approach is
similar to the GPR system, hence it shares most of downsides such as
labour intensity, since inserting and removing the electrodes in
different locations across an experimental site can be challenging
(Paglis, 2013). Rossi et al. (2011) noted that calibrating the electrodes
across different soil types can be challenging as an experimental plot
may exhibit different soil types, including porosity, moisture
content, available elements, and nutrients. Zenone et al. (2008)
further pointed out that the availability of foreign material in soil
may cause significant distinctions in the flow of electrical current,
and potentially be sensed as vegetation roots, thereby resulting in
measurement errors. Furthermore, Zenone et al. (2008) argued that
in forests and shrublands, various root systems of different
vegetation types may exist below surface and potentially interfere
with the targeted root systems. These limitations may raise serious
concerns regarding the universal applicability of this approach;
hence few publications are available in literature. However, its
potential can significantly contribute to crop BGB estimations,
particularly in small-holder and commercial farming systems,
where soil is cultivated and there is limited foreign root
interference. In addition, small holder systems are usually
characterized by small farming plots, usually less than 1.5 ha,
and operating the ERT systems may be logistically and practically
feasible (Amede et al., 2023). Despite these concerns, technological
improvements such as root architecture calibration on the ERT
systems can potentially enhance the estimation of vegetation and
crop BGB, thereby facilitating the detection of diverse roots
detection and distinction from foreign materials.

3.5.3 Proximal hyperspectral remote sensing

Hyperspectral sensors feature various narrow bands, enabling
acquisition of detailed and more nuanced vegetation and crop
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characteristics of the canopy such as health and pest infestation (Saif
et al,, 2023). This study noted 20 publications that utilized proximal
hyperspectral remote sensing devices such as the Analytical Spectral
Devices (ASD) to assess vegetation and crop BGB (Luo et al., 2017;
Marino and Alvino, 2015; Sun et al, 2020; Suarez et al., 2020)
(Figure 4). For instance, Streit et al. (2019) used the Fourier
Transform Infrared (FTIR) spectrometer to determine how winter
faba bean genotype roots systems can influence its AGB. The findings
of the study indicated the significant value of vegetation BGB
estimation in predicting AGB, providing insights into the strong
positive relationship between the two variables. Furthermore, given
the well-established relationship between vegetation health and its
BGB in literature, spectral characteristics including optimized
vegetation indices of the canopy can potentially accurately map
subsurface biomass as reported by Wright et al. (2004), Sun et al.
(2020), Middleton et al. (2013).

Despite the wide range of the electromagnetic portion
spectrometers cover, it has been noted that only specific bands
are selected for certain applications (Suarez et al, 2020). For
instance, Suarez et al. (2020) combined proximal hyperspectral
remote sensing with spaceborne multispectral data to estimate
carrot yield, and only used a spectrum portion corresponding
with the multispectral imagery. Following preprocessing, the
collected data is averaged to a mean value, and vegetation indices
computed by assigning the spectral reflectance to corresponding
band reflectance such as the RGB, NIR, and Red edge (Streit et al.,
2019). Machine learning techniques have proven prosperity in
processing dense and complex datasets such as hyperspectral data
over traditional statistical approaches (Li et al., 2021; Carbajal-
Carrasco et al,, 2024). Therefore, machine learning algorithms are
then employed to analyze the data (Sun et al, 2020), and
subsequently map vegetation BGB using field collected and
converted validation data as explained by Dogra et al. (2025).

Despite the potential of hyperspectral remote sensing in
assessing vegetation BGB, some studies have reported a poor
prediction performance of this approach over other existing
methods like multispectral. For instance, Suarez et al. (2020) used
multispectral remote sensing (Sentinel-2 and WorldView-3), and a
handheld spectrometer to assess carrot yield. The study indicated
that satellite multispectral remote sensing reported a significantly
0.57) than the proximal
hyperspectral spectrometer (R* = 0.29). The study further

higher prediction accuracy (R*> =
identified a poor relationship between the measured AGB and
carrot yield and reported that without destructively sampling the
canopy and subsequently performing chemical analysis, validating
the exact spectral variations can be challenging. Consequently,
vegetation and crop BGB estimations cannot be based solely on
the correlation with AGB, it is essential to include canopy spectral
characteristics such as optimized vegetation indices and validation
subsurface measurements.

Proximal remote sensing data collections can be challenging, as
they involve a series of requirements, including a specific time frame
and weather conditions (Crocombe, 2008). Field spectrometers are
explicitly operated on clear sky conditions between 08:00-14:
00 GMT, and repeated readings on the same sampling point
(Burkart et al, 2013). The user should wear dark colored
clothing to prevent light reflection, and possibly attaining wrong
spectral reflectance values (Marino and Alvino, 2015). Field
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spectrometers, in particular require frequent calibrations across
various lighting conditions, and can be heavy to carry,
particularly in larger spatial extents (Streit et al., 2019). The
battery life of some spectrometers may not last the entire
duration of measurements, and given the restricted operating
window, serious concerns regarding the practicality of this
approach for prolonged observation and large spatial extents
persist. Furthermore, field spectrometers are generally only
suitable for low-growing vegetation such as shrubs, crops, grass,
and orchards due to several practical limitations, including their
requirement for close proximity to the target surface to capture
accurate spectral measurements, making them ideal for vegetation
that is easily accessible at ground level.

Similarly, lab spectrometers require samples to be destructively
sampled from the field and transported to a dark laboratory room for
spectral measurements (Marino and Alvino, 2015). However, delays
between field data collection and laboratory analysis can lead to
sample degradation, potentially resulting in spectral measurements
that do not accurately reflect the true properties of the measured
vegetation. Furthermore, background measurements for Carbon
Dioxide (CO,) compensations are required in every 20 min to
account for the absorption of light by CO,, which can interfere
with the accuracy of reflectance (Suarez et al, 2020). Carbon
dioxide can absorb specific wavelengths of light, leading to biased
reflectance results (Wang et al., 2020). Nevertheless, given that field
spectrometers are operated by humans, their application of forest and
other tall vegetation can be challenging. In addition, spectrometer data
is usually dense and complex, potentially requiring extensive
preprocessing and high computational power. Considering that
vegetation BGB can be accurately estimated from detailed canopy
reflectance information, hyperspectral spectrometers can provide
invaluable spectral resolution datasets, enabling precise subsurface
biomass assessment, despite these challenges (Suarez et al., 2020).

3.5.4 Satellite multispectral remote sensing

Satellite multispectral remote sensing offers a broad-scale
approach to indirectly estimate vegetation BGB by analysing
spectral canopy indicators, reflecting subsurface conditions across
large spatial extents (Al-Gaadi et al., 2016). The use of satellite
multispectral remote sensing to characterize vegetation BGB has
gained popularity over the last decade (Figure 3). Satellite mounted
sensors cover a broad array of the electromagnetic bands, ranging
from the visible, NIR, Red edge, SWI, thermal, and microwave
sections (Suarez et al., 2020). This wide range allows computation of
optimal vegetation indices for various applications including
assessing vegetation and crop BGB (Bala and Islam, 2009). This
study indicates that satellite mounted sensors are the third mostly
used cameras to characterize vegetation BGB, noting their
significant contribution towards assessing vegetation subsurface
biomass (Figure 3). This popularity is attributed to the critical
characteristics offered by satellite remote sensing such as wide
spatial coverage, free availability of the data, reasonable revisits
cycles, and critical spectral bands for estimating vegetation and crop
BGB (Chapungu et al., 2020). For example, the NIR band available in
the majority of satellite remote sensing cameras, has demonstrated
effectiveness in calculating vegetation indices such as the NDVI,
which literature has proven to strongly correlate to BGB (Baloloy
et al,, 2018; Suarez et al., 2024; Carbajal-Carrasco et al., 2024).
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The principle of satellite remote sensing for estimating vegetation
BGB is based on the idea that canopy reflectance fluctuations and
AGB provide valuable insights into underground conditions
(Madugundu et al, 2024). For instance, healthy and developed
canopy indicates well-established root systems, reflecting the
capability of the vegetation to absorb water and essential nutrients
from the soil for productivity (Pugh et al., 2024). The variations in
reflectance between well and poorly developed vegetation canopy
offer invaluable insights into the differences of the BGB (Kawsar et al.,
2016). Various vegetation indices such as NDVI, have been developed
to indicate variations in canopy metrics, aiming to estimate the
diversity of biophysical characteristics, which in turn, indicate the
status of the root systems (Bala and Islam, 2009). Therefore,
leveraging satellite remote sensing capabilities has proven efficiency
in characterizing variations in vegetation AGB and canopy
reflectance, subsequently enabling researchers to estimate the status
of BGB (Tedesco et al., 2021; Bouasria et al., 2021). However, various
debates prevail around the complexities involved in accurately
estimating vegetation BGB using satellite remote sensing
techniques. For instance, studies like Madugundu et al. (2024),
Carbajal-Carrasco et al. (2024) argued that ecological factors such
as different vegetation species exhibiting diverse roots systems and
biomass allocation strategies, have led to serious debates regarding the
appropriateness of applying a one size fits all approach for estimating
BGB from canopy reflectance across various ecosystems.

Nonetheless, studies like Gomez et al. (2019), Sassu et al. (2021),
Huylenbroeck et al. (2020) argued that remote sensing is a versatile
tool capable of incorporating various ecological dynamics, proving
its effectiveness when applied in well-established frameworks. For
instance, Chapungu et al. (2020) used the freely available
LANDSAT-8 dataset to estimate grasslands BGB in a Savannah
biome based on the assumption that grass roots typically do not
extend over 40 cm below the surface, achieving R*> = 0.352. In
addition, the complexities related to manually digging vegetation
root systems as validation data, has led to serious concerns regarding
the accuracy and practicality of using satellite remote sensing to
assess BGB (Huynh et al., 2021). Abdulmanov et al. (2021) argued
that remote sensing coupled with Geographic Information Systems
(GIS) capabilities provide the luxury for minimal destructive
sampling, requiring only few samples for validation, while
sophisticated modelling techniques allow for estimates of the
vegetation BGB. Furthermore, vegetation AGB and canopy
experiences significant annual seasonal fluctuations, while the
BGB tends to remain relatively stable (Liao et al, 2022). This
raises concerns about the capability of satellite remote sensing
capacity to accurately account for these temporal changes, which
could result in potential underestimation of BGB over time. Despite
the advancements in satellite remote sensing technology, there are
still concerns over limitations in temporal and spatial resolutions,
which significantly disregard quick changes in vegetation and spatial
coverage for small spatial extents, respectively (Baloloy et al., 2018).
Furthermore, concerns persist regarding satellite remote sensing
being prone to atmospheric interference, particularly in summer
where there are limited cloud free scenes (Bala and Islam, 2009).

3.5.5 UAV optical and active remote sensing

The concept behind UAV-remote sensing is the same as
spaceborne multispectral and hyperspectral remote sensing,

Frontiers in Remote Sensing

12

10.3389/frsen.2025.1668676

however, UAV systems feature more advanced technological
improvements systems, facilitating a more precise and accurate
vegetation and crop BGB estimation, by overcoming limitations
associated with satellite remote sensing (Jewan et al., 2022; Saif et al.,
2023). The recent revolution of remote sensing technology such as
miniaturization of cameras has allowed leveraging of the new drone
technology to overcome limitations such as low spatial resolution,
long revisit cycles, and atmospheric interference (Sassu et al., 2021).
Unmanned aerial vehicle-remote sensing attributed to the recent
miniaturization of sensors has allowed affixation of various sensors
including RGB, multispectral, hyperspectral and LiDAR sensors
(Wallace et al., 2012; Adéo et al, 2017; Gang et al., 2018; Diez
et al, 2021). Chancia et al. (2021) leveraged the DJI Matrice
M600 coupled with a multispectral sensor to predict table
beetroot yield, achieving a high prediction accuracy (R* = 0.70)
and a 24% estimation error. This recent development of new cutting-
edge UAV-technology has allowed a swift response to climate
change adaptation, such as provision of real time data,
facilitation of precision agriculture for sustainable resource
management, and high resolution datasets to enhance the
precision of vegetation and crop BGB estimation (ten Harkel
et al, 2020). This review indicates that UAV systems are the
second most used platforms, with crops being the predominant
type of vegetation assessed for BGB (Figures 2, 3). These results
indicate a greater adoption of UAV-acquired datasets for crop BGB
assessment compared to other vegetation types. For example, Tahir
etal. (2020) derived NDVI using the NIR and Red band from the DJI
Phantom 4 Pro UAV system to estimate groundnuts yield at the
maturity stage and achieved a high prediction accuracy (R* = 0.92).

The advent UAV remote sensing has gained various
technological advancements facilitating more comprehensive and
improved vegetation BGB estimation (Praseartkul et al., 2023). For
instance, the development of dual gimbal connectors, allowing the
operation of two different sensors simultaneously, thereby reducing
time taken for field surveying (Shen et al., 2020). High resolution
datasets obtained from UAV remotely sensed data also allow for
advanced image preprocessing such as soil background removal to
improve vegetation BGB estimation. For instance, Wright et al.
(2004) used Green Ratio Vegetation Index (GRVI) from a UAV-
remotely sensed image to eliminate background interference, where
values lower than 0.12 were classified as soil background and were
subsequently removed to enhance the prediction accuracy of
peanuts. In addition, UAV acquired datasets along with
preprocessing software allow for derivation of a high-resolution
Digital Elevation Model
topographic analysis aspect, slope, Topographic
Roughness Index (TRI), elevation, and Topographic Wetness
Index (TWI) (Uysal et al, 2015). For example, the MicaSense
Altum multispectral and DJI Zenmuse L1 LiDAR cameras offer

(DEM), facilitating comprehensive

such as

resolutions of at least 33 cm per pixel and 5 cm per pixel for DEMs,
respectively. The DEM derived variables analyses allow for more
comprehensive insights of the topographic influence in roots
dynamics, facilitating valuable insights on vegetation and crop BGB.

UAV technology features three varieties, including the rotary
wings, fixed wing, and hybrid drone (Wong et al., 2021). The rotary
wing is characterized by rotating blades that allows advanced
features, such as Vertical Takeoff And Landing (VTOL),
facilitating efficient operation in confined spaces, making them
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versatile and capable of hovering in small spatial extents (Kocamer
et al, 2023). The rotary wing UAV systems are conventionally
utilized for aerial photography, inspections, and more precise
maneuvers such as precision agricultural applications (Ucgun
et al, 2021). This review indicates that the fixed wing UAV
system is particularly predominant in assessing vegetation BGB
at smaller spatial extents, such as agricultural farms (Ye et al,
2020). Rotary-wing UAV systems are characterized by their
adjustable flight speed and rapid maneuverability, enabling the
acquisition of high spatial resolution images (Wang et al., 2021b).
High resolution sensors have proven to perform optimally at lower
UAV flight speeds, as this reduces the likelihood of motion blur,
allowing for more detailed image capture, and subsequently
enhancing the overall resolution of the data (Awais et al., 2021).
In addition, lower speeds lead to more stable UAV flight conditions
by reducing the impact of extreme winds, thereby facilitating high
resolution imagery acquisition (Dessing et al, 2021). However,
literature has proven that slower speeds are at an expense of
longer flights durations (Raj and Murray, 2020; Tamke and
Buscher, 2023; Chin et al., 2020).

Conversely, the fixed wing UAV system features a rigid wing
structure, relying on forward motion with runway or launch system
to takeoff, making it efficient for long-range flights and large area
coverage (Shi et al., 2023). Fixed wing UAV systems are powered by
high speed, durability, and adaptability for relatively larger spatial
extents, such as forests to facilitate quick vegetation monitoring
(Zhang et al,, 2022). Abdullah et al. (2021) leveraged the Parrot
Disco Pro fixed wing UAV with a multispectral sensor to assess BGB
and carbon stock in a large commercial forest. However, the fixed
wing faces challenges for monitoring small spatial extents such as
farms, and can considerably hinder high spatial resolution dataset
acquisition due its high speed (Song and Park, 2020). Nevertheless,
the hybrid UAV system integrates features of both rotary-wing and
fixed-wing drones, enabling VTOL capabilities similar to a
helicopter while also allowing for transition to fixed-wing flight
(Muslimov and Munasypov, 2021). This versatility makes hybrid
UAV systems the most adaptable, as they can operate across a wide
range of spatial extents including short and long range flights,
thereby balancing efficiency and flexibility (Dtndar et al., 2020).

3.5.6 Satellite and UAV-radar and laser
remote sensing

The BIOMASS P-band Synthetic Aperture Radar (SAR) was
deployed to address limitations associated with multispectral 2D
optical satellite data (Rodriguez-Veiga et al., 2017). This approach
uses SAR technology, which allows for capture of images regardless
of weather conditions, including cloud cover and darkness (Wallace
etal., 2012). Unlike optical imaging systems that rely on visible light,
SAR uses microwave signals to penetrate clouds and rain,
subsequently sensing surface roughness, moisture content, and
vegetation structure, which can provide indirect insights into
BGB (Mandal et al., 2020). In addition, Sentinel-1 SAR offers
higher spatial resolution (5 m), which significantly improves the
estimation of vegetation BGB compared to Sentinel-2 (10 m) optical
sensors (Villarroya-Carpio et al., 2022; Guerini Filho et al., 2020; dos
Santos et al., 2022). However, despite these capabilities, radar
sensors such as SAR are significantly affected by noise and
require extensive preprocessing, including spatial speckle filtering
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and the aggregation of data to coarser resolutions (Zou et al., 2022;
Deng et al., 2024). This limitation further implicates poor estimation
of vegetation and crop BGB, particularly in small spatial extents due
to low spatial resolution (Koley and Chockalingam, 2022).
LiDAR remote sensing has emerged as one of the most
promising technology to characterize vegetation and crop AGB,
surpassing the existing optical reflectance methods (Wallace et al.,
2012). LiDAR is an active sensor that utilizes pulse ranging
instruments to emit laser pulses, record multiple returns of the
laser beams, and digitize the full amplitude of the backscattered
energy (Kristensen et al., 2015). Typically, LIDAR emits rapid laser
beams directly to the vegetation canopy and analyses the time taken
for the light to return, and subsequently create highly accurate 3D
representations of the terrain and vegetation structure (Luo et al.,
2017). The captured detailed 3D LiDAR data representing the full
vegetation canopy is used to analyse the structure and density, which
correlates with AGB status, subsequently allowing for an indirect
estimation of BGB (Luo et al., 2017). LIDAR-derived point clouds
typically provide data on canopy height, tree volume, and density,
which are used to extract AGB information, including the Canopy
Height Model (CHM), vegetation density, structure, and tree
2015). Thereafter, the AGB
information is then applied to known allometric equations, such
as those detailed by Kuyah et al. (2012) and Dogra et al. (2025) which
are calibrated to estimate BGB from AGB and other LIiDAR-derived
metrics. However, LIDAR data alone does not account for essential

metrics (Kristensen et al,

factors like soil type, moisture, root distribution, and biophysical
variables essential for accurate BGB estimation (Luo et al., 2017).
Therefore, empirical models, including machine learning
approaches, can be used to combine LiDAR-data with other
datasets, such as field measured biophysical and topographic
variables, as well as other remote sensing dataset, to effectively
model vegetation and crop BGB (Salas, 2021; ten Harkel et al., 2020).

Typically, LIDAR units calculate the azimuth and zenith angles
between the sensor and vegetation to determine their relative x, v,
and z coordinates (Eitel et al., 2014). This process occurs at a rapid
rate of over 280,000 points per second, facilitating more detailed and
noise-free point clouds for accurate BGB estimation (Raj et al,
2020). The utility of LIDAR point clouds to estimate vegetation BGB
is also motivated by the idea that denser canopies often indicate
healthier and developed root systems (Wang et al., 2020). Although
LiDAR sensors such as spaceborne Multi-Sensing Observation
LiDAR and Imager (MOLI) are invaluable for capturing detailed
vegetation above ground structural information, they do not provide
direct biophysical data such as vegetation health, which are typically
assessed through its integration with multispectral or hyperspectral
sensors (Salas, 2021).The recent miniaturization of LIDAR sensors
including low weights and dimensions, has allowed compatibility
with  UAV technology, enhancing the spatial and temporal
resolution of the dataset (ten Harkel et al., 2020).

The emergence of advanced UAV equipped with high-
resolution LiDAR sensors represents a significant leap forward in
remote sensing technology, effectively bridging the gap between
conventional vegetation BGB estimation approaches and the inferior
satellite optical remote sensing (Olson and Anderson, 2021; Wang
et al,, 2021a). For instance, DJI developed the UAV-mountable
Zenmuse L1 LiDAR camera, capable of covering up to 2 km” in a

single flight and achieving vertical and horizontal accuracies of 5 cm
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and 10 cm, respectively (Gaffey and Bhardwaj, 2020). The DJI
Zenmuse L1 is an active sensor that features both LiDAR and
RGB camera, enabling up to three returns of data at
240,000 points per second (Butters et al., 2021). Therefore, DJI
Zenmuse L1 and similar LIDAR remote sensing capabilities can
effectively provide accurate and critical datasets for the estimation of
vegetation BGB (Butters et al., 2021). Despite these capabilities,
UAV-LiDAR remote sensing capabilities can be limited by their
costs, including external expensive components like the Real-Time
Kinematic (RTK) base station required for Global Navigation
Satellite System (GNSS) data, which enables the highest level of
accuracy (Wen and Hsu, 2021). In addition, LiDAR dataset can
effectively estimate vegetation and crop BGB when integrated with
other datasets such as multispectral, hyperspectral, topographic, and
in-situ biophysical variables (Salas, 2021).

3.5.7 The integration of multivariate datasets, and
use of surface from motion (SfM) approach

Remote sensing technology has been identified as the versatile
tool, and proven efficiency when applied in well-established
phenomenon (Praseartkul et al, 2023). In circumstances where
two distinct datasets have a potential to provide a valuable and
comprehensive assessment, the integration of both dataset can be
performed (Wagner and Egerer, 2022). Combining various datasets
such as derived vegetation indices, topographic information, and
biophysical characteristics has proven invaluable in providing a
more comprehensive BGB estimation (Furlan et al., 2023). For
example, Zenone et al. (2008) integrated GPR and ERT dataset
to understand pine tree forests roots, and Luo et al. (2017) fused
hyperspectral imagery with LiDAR data to map forest BGB. Briefly,
Saif et al. (2023) also combined spectral vegetation and textural
indices from a UAV-hyperspectral image to provide a more
comprehensive table beet root yield prediction. The hyperspectral
data was preprocessed with headwall hyper spec III spectral view
V3.1 software (Zhi et al., 2022). Subsequently, the hyperspectral
radiance was converted to reflectance due to radiance being
susceptible to illumination conditions (Li et al., 2020). Texture
indices involved the calculation of Gray-Level Co-occurrence
Matrix (GLCM) followed by the extraction of its descriptive stats
(Wang et al.,, 2023a). The textural indices can be calculated over the
240 narrow hyperspectral derived spectral bands (Saif et al., 2023).
For textural analysis, a smaller kernel is preferred because a larger
kernel tends to cause over smoothing (Xu et al., 2022). Quantization
levels are employed to evaluate the GLCM means of each kernel,
after which the average of GLCM means is regarded the texture for
each sample plot (Fu et al., 2021). The study by Saif et al. (2023)
reported that hyperspectral data is prone to thermal, quantization,
and shot noise. However, principal component can be used to de-
noise the data, and this approach lies on the idea that most noise is
contained in the principal component with lower eigen values
(Greenacre et al., 2022).

Despite the proven capabilities of UAV remote sensing in
providing high resolution and comprehensive datasets for
vegetation BGB estimation, this approach only captures 2D
datasets from the canopy (Deliry and Avdan, 2021). To
overcome this limitation, Surface from Motion (SfM) techniques
combine vertical and horizontal 2D images to create a 3D dataset,
facilitating a more detail information about the vegetation above
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ground structure, and subsequently improving BGB estimation
(Prior et al, 2021). For example, Teng et al. (2019) leveraged
SfM  image processing to construct 3D point clouds using
multiple 2D images from a UAV-digital single-lens reflex camera
system to assess sweet potatoes yield. Using relevant software such as
Agisoft Photo scan, these 2D images can be transformed into a 3D
SfIM  dataset, with Bundle-Adjustment approaches minimizing
errors in point cloud generation (Al Khalil, 2020). Thereafter,
these point clouds are used to generate Digital Surface Models
(DSM), which use terrain information for estimating vegetation
and crop BGB (Iheaturu et al., 2020). Despite the effectiveness of this
approach, concerns remain about the potential for vegetation in the
middle of the experimental plot to go undetected by the ground
moving platform. In addition, this approach does not consider
landscape variations within the plot, where certain vegetation
may be taller due to their positioning, resulting in higher
elevation compared to others. Therefore, it is essential to
incorporate topographic variables such as aspect, slope, and
elevation to account for these variations and subsequently
improve vegetation and crop BGB estimation.

3.6 Overall progress and future research
opportunities

Remote sensing has proven effective in assessing vegetation BGB
across various ecosystems, including forests, grasslands, and
agricultural landscapes (Wright et al., 2004; Chapungu et al,
2020). The utility of vegetation canopy spectral information and
metrics acquired from multispectral, RGB, hyperspectral, and
LiDAR has proven invaluable to provide insights into the status
of BGB biomass, subsequently allowing its assessment (Abdullah
etal., 2021; Bala and Islam, 2009). However, several challenges have
been presented in literature. One of the major challenges in assessing
vegetation and crop BGB is the difficulty associated with digging up
roots for validating remote sensing datasets, hence fewer studies
have been published in this topic (Marino and Alvino, 2015). This
challenge has led to insufficient validation data, significantly raising
questions about the reliability and validity of assessing vegetation
BGB estimation using remote sensing (Al-Gaadi et al,, 2016). The
current reliance on destructive sampling for ground-truth validation
presents practical and ecological limitations, which are labor-
disturb the
ecosystem processes, thereby limiting their scalability across large

intensive, time-consuming, soil structure, and
spatial and temporal scales. In practice, this restricts the size and
diversity of training datasets available for model development, which
affects robustness of remote sensing models for vegetation and crop
BGB estimation.

To address this limitation, future research should explore
possible and promising non-invasive and minimal invasive
ground-truthing techniques, which may include minirhizotron
imaging systems that enable repeated in-situ root observations
without excavation, and stable isotope tracing, which provides
insights into root dynamics and carbon allocation patterns over
These

representative

time. technologies can offer continuous,

that
observations and reduce dependence on destructive methods.

spatially

datasets complement remote sensing

Integrating such non-invasive techniques into the model-building
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workflow presents the potential to enhance validation, improve
model accuracy, and expand the applicability of vegetation and
crop BGB estimation across broader ecological and agricultural
contexts. Furthermoe, the advent of cloud computing techniques
like deep transfer learning models such as Long Short-Term
Memory-based Recurrent Neural Networks (LSTM-based RNN),
AlexNet, Visual Geometry Group (VGG), and Residual Network
(ResNet) facilitating models’ calibrations to build models for
accurately predicting vegetation and crop BGB using less field
validation data (Wang et al, 2023c; Wang et al, 2018; Yang
et al.,, 2021; Alom et al., 2018).

Seasonal changes in vegetation canopy like forests have a potential
to misrepresent the true state of BGB, thereby raising questions about
the reliability of using the remote sensing AGB as an indicator for
assessing BGB (Carbajal-Carrasco et al,, 2024). During the winter
season, vegetation sheds its green leaves, exposing a significant area of
soil background, hence this seasonal change of the canopy raises
concerns about the effectiveness of optical remote sensing to detect
these variations, especially for perennial vegetation, such as forests,
that persist across seasons (Wright et al., 2004). The integration of
active remote sensing, such as LIDAR technology and field measured
variables, is strongly recommended, as this approach can accurately
assess vegetation structure and other critical information without
depending on the green canopy, thereby enhancing prediction
accuracy of BGB (Luo et al, 2017). In addition, future studies
should also consider the application of advanced SAR sensors such
as Phased Array L-Band SAR-2 (PALSAR-2), PALSAR-4, and NASA-
ISRO SAR (NISAR), which use the L and S bands for improved
canopy penetration and structural insights (Yu and Saatchi, 2016;
Hayashi et al., 2019). Furthermore, the application of representative
spaceborne LiDAR missions, such as Ice, Cloud, and Elevation
Satellite-2 ~ (ICESat-2), and Global Ecosystem Dynamics
Investigation (GEDI) (Urbazaev et al, 2022), which have been
widely used for AGB estimation remains elusive in literature for
vegetation and crop BGB predictions. These missions provide critical
structural metrics such as canopy height and vertical foliage profiles
that can serve as indirect indicators of BGB when integrated with
other remote sensing datasets.

Despite the success of site specific handheld hyperspectral
spectrometers, ERT, and GPR in assessing vegetation BGB, these
devices often require significant fieldwork to gather data, which can be
labor-intensive, time consuming, and logistically challenging (Butnor
et al, 2003; Leucci, 2010). Regardless the proven potential of
integrating various datasets such as SfM to enhance understanding
of vegetation biomass dynamics, few studies have successfully adopted
this approach (Teng et al., 2019). Furthermore, the incorporation of
landscape variables remains underexplored, indicating a gap that must
be addressed to advance the accuracy and applicability of remote
sensing techniques in vegetation BGB assessments, considering the
significant topographic variations (Teng et al., 2019).

The integration of new UAV cutting-edge technology in assessing
vegetation BGB across various diverse ecosystems ranging from forestry
to agriculture has proven efficiency by subduing limitations associated
with the inferior satellite remote sensing (Wright et al., 2004). This new
innovation allows sensor miniaturization, facilitating the acquisition of
high spatial resolution data, with user defined revisit cycles and cloud
free datasets (ten Harkel et al, 2020). The integration of new UAV
technology has been deemed the future of remote sensing, facilitating
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precision agriculture, particularly in assessing neglected and
underutilized crops such as sweet potatoes, taro, and cassava (Shahi
et al,, 2023; Madugundu et al,, 2024). In addition, this approach has
provided invaluable insights into forest management, facilitating
climate change related mitigation strategies, such as the impact of
root systems in carbon sequestration (Abdullah et al., 2021). However,
issues related to high costs associated with the purchase, maintenance,
and specialized training and operational expertise for advanced UAV
systems can be prohibitive for many regions, such as the global south
(Pugh et al,, 2024). The global south is currently characterized by low
investments and funding opportunities, significantly restricting the
adoption of this innovation (Jewan et al, 2022). Considering the
high population density in the global south compared to other
regions, increased adoption of UAV technology is required to
optimize crop production and mitigate climate change risks. Despite
this potential, only 50 studies have been published on the utility of
remote sensing technology to evaluate vegetation BGB over the past
25 vyears, noting a considerable need for further exploration of this
technology. The limited number of publications indicates that
researchers are yet to fully explore the potential of this approach for
estimating vegetation BGB.

3.7 Limitations of the study

This study reviewed the applications, methods, and challenges of
remote sensing technology for vegetation and crop BGB estimation;
however, several limitations including methodological, evidence
based,
encountered during the study. The method of this study was
limited by the availability of publications specifically focusing on

and intrinsic to emerging technologies, have been

vegetation and crop BGB estimation using remote sensing technology,
with only 50 relevant papers identified from the initial pool of 785.
This the relatively
underexplored nature of vegetation and crop BGB research

low number of publications indicates
compared to AGB studies, which constrained the analysis depth of
the findings. Furthermore, evidence-based limitation encountered was
that the few reviewed publications exhibited substantial heterogeneity
in terms of vegetation types, geographic location, remote sensing
platforms, and analytical approaches, which limited the ability to draw
deep understanding of the existing methodologies and challenges.
Finally, limitations intrinsic to emerging approaches were that most
advanced remote sensing technologies such as PALSAR-4, NISAR,
and newer UAV-based active sensors are either newly launched and
some still in early phases of application, which as a result, empirical
evidence of their effectiveness for vegetation and crop BGB estimation
remains scarce, and current discussions about their potential are
largely speculative.

4 Conclusion

This review indicates a significant leap forward in using remote
sensing technology to assess vegetation and crop BGB, providing
valuable insights on the methodologies, various platforms, and
sensor spectral characteristics. While approaches like GPR and
ERT provide valuable and accurate direct insights to BGB, their
limited spatial coverage restricts their application to large spatial

frontiersin.org


https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1668676

Dlamini et al.

extents. Advances in remote sensing have resulted in the
development of sophisticated optical sensors that, although
unable to directly measure subsurface biomass, leverage canopy
spectral reflectance to estimate BGB. Among these advancements,
active LiDAR sensors stand out for their ability to capture the full
vegetation volume using point clouds, subsequently improving BGB
estimations by subduing atmospheric interference, pixel
contamination, and saturation. Meanwhile, satellite multispectral
and hyperspectral sensors, despite facing certain limitations such as
atmospheric interference, low spatial and temporal resolution,
provide critical vegetation biophysical information, which offers
valuable insights to canopy health and biomass, subsequently
allowing for BGB estimation. The advent of UAV platforms
presents an advanced and unique opportunity to attach
miniaturized smart and high spatial resolution sensors, such as
LiDAR for accurately estimating vegetation and crop BGB, while
combatting satellite remote sensing challenges. Despite the potential
of this innovation, very few studies have adopted it, necessitating a
need for future studies to explore its full potential in assessing
vegetation and crop BGB in this ever-changing climate, coupled by
high food demands. Nonetheless, the assessment of vegetation BGB
has been steadily improving with advancements in remote sensing
technologies. Collectively, these advancements have provided a wide
range of remote sensing approaches to monitor vegetation BGB,
allowing researchers to evaluate their choices based on tradeoffs
between spatial coverages and spectral sensors characteristics.
Furthermore, these advancements offer a more comprehensive
and reliable approach to understanding vegetation BGB, paving
the way for reliable assessments of ecosystem health and tuber crops

productivity.
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