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INTRODUCTION

The relatively “modern” assisted reproductive technology (ART) started with the first successful
induction of ovulation followed by a pregnancy with the use of menopausal urinary products in
1963 (1). At around the same time, the use of sperm that had been frozen with liquid nitrogen and
thawed resulted in the first successful pregnancy (2). The first in vitro fertilization (IVF) baby was
born in 1978 (3). Since then, ART has developed rapidly, resulting in the birth of millions of babies
worldwide and achieving international public acceptance. The introduction of trans vaginal oocyte
aspiration (4), the use of GnRH analogs—both agonist and antagonist (5, 6), and the development
of embryological laboratory facilities and technology (7) has improved the safety and success rates
of ART. In 1983, the first human pregnancy achieved using embryo cryopreservation was reported
(8). In 1990, preimplantation genetic diagnosis was introduced (9) and in 1992 the introduction
of intracytoplasmic sperm injection (ICSI) (10). ICSI has allowed men with obstructive and some
with non-obstructive azoospermia to have their own genetic children (11). Reproductive medicine
in general, and ART specifically, has integrated those and other important breakthroughs into daily
routine practice very quickly and further breakthroughs will open new strategies and opportunities
for better preventive, accurate, and personalized reproductive medicine.

Introducing new technology into reproductive medicine always creates moral debates. This is
not surprising since these technologies imply consequences not only for the gamete holders but
also for their offspring. On the other hand, some of those techniques, once ready safe and efficient,
might solve present ethical dilemmas such as gamete donation vs. artificial own gametes. The
moral challenge that obscures other moral issues is the very large issue of care disparity that varies
across the globe, with only a small proportion of infertile people currently able to access any care
beyond ovarian stimulation. Infertility and treatment with ART have been identified as a field with
a significant health disparity (12). Creation of a family is a basic human right. Economic, racial,
ethnic, geographic, social, and cultural disparities exist in access to fertility treatments as well as in
treatment outcomes. Global action and research are needed to understand disparities in treatment
success and to improve treatment methods to reduce those disparities. All assisted reproductive
technology (ART) stakeholders should address the existing barriers to infertility care. Clinicians
should engage in efforts to develop simplified and lower-cost methods of treatment so that the cost
burdens of infertility care can be reduced (13).

In this short communication I will try and bring up only some of the challenges and
breakthroughs that I expect to be ready in the relatively near future. I will shortly deal with
“artificial gametes,” “genetic engineering,” and non-invasive preimplantation genetic testing. These
technologies may create further dramatic changes in the field of assisted reproductive technology.
However, when reporting on challenges these days, one cannot ignore the great challenge that we
are facing globally due to the Covid-19 pandemic. Coronavirus disease (COVID-19) is caused by
a new strain of Coronavirus (SARS-CoV-2) discovered in 2019 and not previously identified in
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humans, and is probably now the greatest medical challenge
of the world (14–16). This global challenge affects millions
of people, including patients and staff dealing with ART.
Available data on the exact effects of COVID-19 on fertility and
pregnancy is scarce (17–27). According to recent publications,
a SARSCoV-2 infection is unlikely to have long-term effects
on male and female reproductive function, suggesting that the
risks of ART/IVF are not altered by the COVID-19 pandemic
(28–30). However, although reassuring, SARS-CoV-2 has been
detected in various secretions, such as saliva, stool, urine, and
the gastrointestinal tract, and thus further research is needed.
At the beginning of the outbreak, major reproductive societies
all over the world recommended suspension of initiation of
new treatment cycles, including ovulation induction, intrauterine
inseminations (IUIs), and in vitro fertilization (IVF) including
retrievals and frozen embryo transfers, as well as non-urgent
gamete cryopreservation. Furthermore, they suggested at that
time to consider cancellation of all embryo transfers, whether
fresh or frozen (31–35). However, with accumulating data and
based on the most recent epidemiologic data on COVID-19 and
pregnancy, there is no evidence to suggest increased risk for
mothers or fetuses. Recent evidence suggests no association of
vertical transmission andmalformations, and themanagement of
pregnant patients should be individualized based on obstetrical
indications and maternal/fetal health status.

ART treatments are gradually resuming globally, with
special caution and prevention actions which differ across
the globe but with the aim to reduce potential hazards
to the infertile couple, their potential offspring, and staff.
With emergence of effective vaccines, the challenge is coping
with the medical, social, and economic consequences of
this crisis and its impact on societies in general and ART
specifically (36).

ARTIFICIAL GAMETES

One of the big challenges in ART is the use of stem cells
to try and help infertile as well as same sex couples to
have biological children. Although success has been achieved
in mice, the use of “artificial gametes” to treat infertility
is still questionable, mainly due to the fact that embryonic
stem cells (ES) or induced pluripotent stem cells (iPS), while
converting into precursors germ cells (PGCs), undergo global
epigenetic reprogramming (37–39). Furthermore, during in vitro
differentiation of stem cells into gametes they have to undergo
meiosis which is another obstacle that makes the process even
more complicated (40). Hendriks et al. (41) were able to
develop a culture system in which PGC-like cells (PGCLCs)
were obtained successfully via epiblast like cells (EpiLCs),
starting with mice ES/iPS cells. These male PGCLCs were
then transplanted into the seminiferous tubules of genetically
infertile mice and contributed to sperm production. The sperm
was found to be functional and resulted in fertile offspring.
However, some of those iPS cell lines resulted in teratomas upon
transplantation. In another study, haploid spermatid-like cells
from PGCLCs co-cultured with neonatal testicular somatic cells

and exposed to morphogens and sex hormones produced fertile
offspring after using IVF-ICSI (42). Similarly, female PGCLCs
were aggregated with gonadal somatic cells and transplanted
in ovarian bursa of immuno-compromised mice, producing
healthy fertile offspring, although part of the eggs had epigenetic
defects (43).

To conclude, it seems that, in order to move from the bench to
the clinic, a lot more needs to be accomplished. Safety issues and
complex legal and ethical issues still remain when applying these
technologies (44–46).

An alternative approach to overcome some of the obstacles
is using very small embryonic-like stem cells (VSELs), however
the very existence of VSELs is not well-accepted. The researchers
that do believe in their existence assume that VSELs probably
maintain life-long tissue homeostasis, serve as a backup pool
for adult stem cells, and are mobilized under stress conditions.
Furthermore, an imbalance in VSELs function may result in
cancer (47). VSELs spontaneously differentiate in vitro into
oocyte- and sperm-like structures (48–51). In those studies,
only, the niche obtained by the somatic cells in the culture
dish was necessary to induce meiosis. These findings, however,
need confirmation. VSELs have been reported in chemoablated
mouse ovary (52) and testis (53) and some researchers claim
that transplanting mesenchymal cells (MSCs) in chemoablated
mouse ovary and testis resulted in the birth of offspring (54).
Preliminary results have also been obtained in women with
transplantation of autologous MSCs into POF ovaries (55, 56),
and the first baby was born to an idiopathic POF woman in
2016 (57).

GENETIC ENGEENIRING

Genetic engineering has been around for some time. However,
the first birth of two twin girls was reported only as recently
as 2018. This was the result of an “experiment” conducted by
He Jiankui with a couple undergoing IVF in which the male
was an HIV carrier. Using CRISPR technology, the CCR5 gene,
which enables HIV infection, was disabled. Despite its increased
precision, the risk of unexpected and undesired changes to a
gene that is able to carry unpredictable consequences cannot be
controlled and safety continues to be a pressing concern. Genetic
engineering raises once again the issue of using technology
without enough scientific evidence to support safety (58).

Furthermore, the procedure is only relevant nowadays for
single gene therapy while most of the existing disorders are
multigenetic. Further development of this technique in the
future will probably enable dealing with up to thousands of
genes at the same time and further research will make the
technique reliable, efficient, and safe. Using this technology in
somatic therapeutic interventions might overcome obstacles of
“conventional” medical treatments (59), however, dealing with
germ line interventions raise several technical and ethical issues
that must be addressed. CRISPR-Cas9, and/or other gene editing
technologies, might in the future evolve to be a very powerful tool
to deal with different health problems.
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NON-INVASIVE PREIMPLANTATION

GENETIC TESTING

Today it is possible to elucidate the entire single nucleotide-
(SNV), copy number-(CNV), and structural (SV) variation of the
human genome as well as comprehensive testing of the human
genome by integrating massively-parallel sequencing (“next
generation sequencing”) approaches together with advanced
bioinformatics. These technological advances are being used to
explore underlying causes of male and female infertility as well
as preimplantation genetic testing (PGT). In 2016, Reigstad et al.
(60) described obtaining and sequencing free DNA dripped by
embryos into the culture medium, creating a new non-invasive
and elegant perspective preimplantation genetic testing tool,
using non-invasive chromosomal screening (NICS). Recently
the results of three genetic analyzes were compared (61). NICS
were compared to invasive PGT-A blastocyst biopsy in the
same cultured blastocysts and the total DNA obtained from the
same blastocysts were donated for research. NICS had 20% false
positive results compared to 50% using PGT-A both compared
with total DNA blastocyst screening as a gold standard. Several
papers have recently described the births of healthy children
from euploid blastocysts selected by NICS in IVF programs
in couples carrying genetic alterations such as Robertsonian or
balanced translocations and chromosomal inversions (62, 63).
The validity of NICS in cases of repeated implantation failure,
recurrent miscarriage, or advanced age is yet to be attested. NICS
is a promising method that may provide another tool in our IVF
toolbox to further improve our “take home healthy babies” rates.

Maternal and Fetal Implications of Art
Assisted reproduction cycles usually involve exposure to supra
physiological levels of estradiol, exogenous gonadotropins, and
multiple ovarian punctures, all potentially carcinogenic. Most
concern surrounds the risks of breast, endometrial, and ovarian
cancers after such exposure.

Studies investigating breast cancer risks in women who
underwent assisted reproduction are inconsistent. Although
some studies have shown an increased breast cancer risk (64),
most studies do not show an overall increase of breast cancer in
exposed women (65, 66). Another study suggested an increased
risk of in situ breast cancer (67) and another suggested a possible
increased risk within subgroups of patients (68).

Most studies investigating endometrial cancer risk in exposed
populations to ART have not found a significant increased risk
(67), besides patients who have been exposed to unopposed
estrogens for long periods.

A recent Swedish study, as well as a British study (67, 69) have
suggested that women who have gone through ART have a higher
risk of ovarian cancer and borderline ovarian tumors. However,
they claim that at least part of the risk seems to be due to the
underlying infertility and not the treatment.

Others (66), found no association between fertility drugs and
ovarian cancer risk.

Due to those ongoing inconsistency cancer risk results of
patients undergoing ART treatments, further large scale and
long-term analysis are still needed.

An increasing number of children worldwide are born after
the use of fertility treatments. However, it remains unclear
whether the treatment affects the risk of childhood diseases and
whether any associations observed are due to the use of specific
drugs, the use of specific procedures, or the underlying infertility.

Multiple birth rates after fertility treatment are still high in
many countries. Multiple births are associated with increased
rates of preterm birth and low birth weight babies, in turn
increasing the risk of severe morbidity for the children.
Elective single-embryo transfer, particularly in combination with
frozen-embryo transfer and milder stimulation in ovulation
induction/intrauterine insemination, to avoid multi follicular
development are effective strategies to decrease multiple birth
rates while still achieving acceptable live-birth rates (67).
However, ART singletons are also at increased risk of adverse
obstetric and perinatal outcomes. A meta-analysis of 11 studies
demonstrated that singletons born after the transfer of frozen
thawed embryos had better obstetric and perinatal outcome as
compared with those after the transfer of fresh IVF embryos (68).

On the contrary to the studies on adverse obstetric and
perinatal outcome, in a recent retrospective cohort study looking
at pediatric cancer and ART, based on a Danish population-based
registry data and the Danish Infertility Cohort that included
1,085,172 children born in Denmark between 1996 and 2012 (69),
they found that only the use of frozen embryo transfer, compared
with children born to fertile women, was associated with a small
but statistically significant increased risk of childhood cancer. In
this particular study, the use of other types of fertility treatment
examined was not found to be associated with increased risk of
childhood cancer.

Thus, large scale, well-controlled epidemiological studies are
necessary. Greater work is also necessary to identify whether the
increase in obstetric, perinatal, and health impacts observed in
ART children are the direct result of the ART procedure itself,
or a result of the underlying subfertility of the parents. Although
evidence suggests that altered DNA methylation and impaired
placental development may contribute to the adverse outcomes
in ART children, more studies are needed to examine whether
altered epigenetic regulations are the underlying mechanism or
the consequence of aberrant embryo development. As genetics
and many parental characteristics cannot be altered, careful
further studies to identify the optimal ART procedures that
maximize both perinatal and long-term maternal and offspring
health outcomes are necessary.

CONCLUSIONS

To conclude, reproductive medicine in general and ART
particularly are one of the leading dynamic developing fields
in human medicine. However, many questions still remain
unanswered and new concerns and challenges constantly
arise. We clinicians, embryologists, and scientists dealing
with our patients are very much privileged to stand on
the “shoulders of our ancestors” and it is our obligation
to approach new scientific outbreaks with caution and
discuss the moral dilemmas of introducing those new
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technologies on behalf of the potential benefit to our patients
while also ensuring that moral objections are not based on
misunderstanding of the technique and prejudice as opposed to
substantive arguments.
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