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Since the first baby was born after in vitro fertilization, the female infertility treatment has

been well-developed, yielding successful outcomes. However, successful pregnancies

for patients with premature ovarian insufficiency and diminished ovarian reserve are

still difficult and diverse therapies have been suggested to improve the chances to

have their genetically linked offspring. Recent studies demonstrated that the activation

Akt pathway by using a phosphatase and tensin homolog enzyme inhibitor and a

phosphatidylinositol-3 kinase stimulator can activate dormant primordial follicles in both

mice and human ovaries. Subsequent researches suggested that the disruption of Hippo

signaling pathway by ovarian fragmentation increased the expression of downstream

growth factors and secondary follicle growth. Based on the combination of ovarian

fragmentation and Akt stimulation, the in vitro activation (IVA) approach has resulted

in successful follicle growth and live births in premature ovarian insufficiency patients.

The approach with disruption of Hippo signaling only was also shown to be effective for

treating poor ovarian responders with diminishing ovarian reserve, including advanced

age women and cancer patients undergoing sterilizing treatments. This review aims

to summarize the effectiveness of ovarian fragmentation and Akt stimulation on follicle

growth and the potential of IVA in extending female fertile lifespan.

Keywords: Akt stimulation, diminished ovarian reserve, in vitro activation, ovarian fragmentation, premature

ovarian insufficiency

INTRODUCTION

On July 25, 1978, the first baby was born after conception by in vitro fertilization (IVF), establishing
a new medical approach, giving the chance to achieve parenthood to more than 10 million
couples. Over the past decades, there have been remarkable advances in assisted reproductive
technologies, resulting in a higher successful live birth rate (1). However, the treatment outcomes
for patients with ovarian dysfunction including premature ovarian insufficiency (POI) and poor
ovarian response with diminishing ovarian reserve (POR-DOR) have limited success. Oocyte
donation or adoption which cannot help them to have their genetic children are often their only
options. Recently, there is a significant rise in the mean age of marriages, leading to a higher rate
of advanced age women seeking infertility treatment (2, 3). Since ovarian dysfunction cannot be
treated by conventional gonadotropin stimulation, new therapeutic interventions are needed to
stimulate follicle growth.
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Among the pathways modulating early folliculogenesis, the
phosphoinositide 3-kinase (PI3K)/Akt signaling pathway plays
a crucial role in the activation of primordial follicles (4–6).
Subsequent experiments suggested that the Hippo signaling
pathway is also important in the development of follicles
(7–9). The disruption of the Hippo signaling pathway by
ovarian fragmentation was demonstrated to increase the actin
polymerization, leading to the nuclear translocation of Yes-
associated protein (YAP), the increased downstream cysteine-
rich 61, connective tissue growth factor, nephroblastoma
overexpressed (CCN) growth factors, and baculoviral IAP repeat
containing (BIRC) apoptosis inhibitors (10), resulting in follicle
growth enhancement (5, 7–9). The combination of ovarian
fragmentation and incubation in the presence of Akt-stimulators
developed a new therapy named in vitro activation (IVA) for
treating POI patients by our group. Following the IVA treatment,
healthy live births have been reported (7, 11, 12). We also
developed drug-free IVA, a simplified approach of IVA, to treat
patients with POI at early stage and for POR-DOR patients
(13–15). In addition, we demonstrated that laparoscopic ovarian
incision could activate the follicles in vivo and was a potential
therapy for patients with resistant ovary syndrome (ROS) (16).

These results revealed that ovarian fragmentation and Akt
stimulation could improve the infertility treatment outcomes
for different categories of ovarian dysfunction. This review
summarized the knowledge of ovarian fragmentation and Akt
stimulation effectiveness on follicle growth and their potential in
female fertility expansion.

THE IMPORTANT ROLE OF AKT
SIMULATION IN PRIMORDIAL FOLLICLE
ACTIVATION

The mammalian ovary is a complex organ containing follicles
as basic functional units (17). To develop preovulatory follicles
containingmature oocytes, a number of small primordial follicles
are periodically activated from the pool of primordial follicles to
undergo folliculogenesis. Although the mechanisms of selection
and activation of dormant primordial follicles are yet not fully
clarified, recent studies suggested several important intracellular
signaling mechanisms to activate dormant primordial follicles
(18). Among these pathways, the PI3K/Akt/forkhead box O3
(FOXO3) pathway is the principal one in primordial follicle
activation (8, 18, 19). This pathway is shown to be activated
by granulosa cell-produced Kit ligand (KL) (18). Meanwhile,
phosphatase and tensin homolog deleted on chromosome
10 (PTEN) and tuberin/tuberous sclerosis complex (TSC1/2)
negatively regulate this pathway (19). In addition, anti-Müllerian
hormone (AMH) was described to have inhibitory action to the
primordial follicles as it inhibits the KL (20–23). However, AMH
action of follicle growth varies by species and follicular stages
(24, 25).

Once Kit ligand binds its cognate tyrosine kinase
receptor (c-kit), the phosphorylation of the intracellular
region of c-kit enhances PI3K activity capable of
transforming phosphatidylinositol-4,5-bisphosphate (PIP2) into

phosphatidylinositol-3,4,5-triphosphate (PIP3). Subsequently,
PIP3 stimulates phosphatidylinositol-dependent kinase 1
(PDK1), followed by the increased phosphorylation of Akt and
nuclear exclusion of the transcriptional factor, FOXO3 (4, 19, 26).
FOXO3 suppresses the activation of primordial follicles (18, 27)
(Figure 1). Besides, Akt also stimulates cell growth through
inactivation of TSC2, which is achieved by phosphorylating
TSC2. The mammalian target of rapamycin (mTOR), the
downstream of TSC2, regulates the tissue proliferation (18).

Several studies using the mouse model highlighted the role
of the PI3K/Akt/FOXO3 pathway in activating the primordial
follicles. The incubation of 3-day aged mouse ovaries in vitro
with bpV (pic) (a PTEN inhibitor) with/without 740 YP (a
PI3K activator) followed by the transplantation of paired ovaries
(treated and untreated) under separate sides of the kidney capsule
was presented to activate dormant follicles. After incubating for
48 h, more than half of oocytes in primordial follicles exhibited
Foxo3 export. There was also an increased staining of anti-
Mullerian hormone (AMH), suggesting the growth of early
follicles (28). After the transplantation to hosts and stimulation
with gonadotropins, increases in ovarian sizes and the number
of antral follicles in the treated group were evident as compared
with paired control, resulting in the delivery of healthy progeny
(28). Besides, mutant mice with specific deletion of PTEN
was demonstrated to increase granulosa cell proliferation, and
ovulatory efficacy as well as to decrease follicle atresia (29). Other
studies presented that the deletion of PTEN, TSCI/2, or FOXO3
resulted in an extensive and precocious activation of primordial
follicles (30–32). In another work, mice’s ovaries cultured with
a different PTEN inhibitor, bpV (HOpic) alone for 24 h had
a higher number of follicles at preovulatory stage and slightly
higher numbers of pups compared to the controls (33). A recent
study represented that a long-term bpV (HOpic) treatment
alone for 6 days could promote the primordial follicle activation
in bovine ovaries without applying the air-liquid interface cell
culture, whereas the bpV (HOpic) treatment affected negatively
on the DNA structure and its repair competence (34).

In humans, the incubation of the ovarian tissue with a
PTEN inhibitor and/or a PI3K activator was reported to activate
primordial follicles (7, 28, 35). After the long-term incubation
with 1µM bpV (HOpic) for 6 days without applying the air-
liquid interface cell culture, the number of growing follicles in
the bpV (HOpic) exposed group increased remarkably. However,
the survival rate of secondary follicles from the control group
was significantly higher compared to one from the bpV (HOpic)
exposed group (59 vs. 27%) (36). Moreover, another work
revealed that a concentration of bpV (pic) as high as 100µM
caused an extensive deterioration to follicles (37). It is consistent
with a preliminary experiment in the aforementioned study
showing that high doses of bpV (HOpic) (10 and 100µM)
were associated with follicular deformity (36). Meanwhile, in a
subsequent experiment, incubation with 100µMbpV (pic) alone
for 25 h was showed to stimulate the follicle growth suggested by
a higher percentage of growing follicles in the bpV (pic) treated
group. The quantitative TUNEL assay demonstrated that the
follicular viability between bpV (pic) treated and control group
was not significantly different (35). As proposed in these studies,
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FIGURE 1 | The PI3K/AKT/FOXO3 pathway in oocytes regulates primordial follicle activation. Mouse models were used to investigate the regulation of primordial

follicle dormancy. The FOXO3 gene in primordial oocytes serves as a break to prevent the initiation of follicle growth. Activation of upstream RTKs by their cognate

ligands (kit ligand, IGF-1, EGF, platelet-derived growth factor [PDGF], VEGF, etc) stimulates the autophosphorylation of intracellular regions of these receptors.

Activated receptors then stimulate PI3K activity, leading to increases in PIP3 levels and AKT stimulation. Activated AKT then migrates to the cell nucleus and

suppresses FOXO3 actions to promote primordial follicle growth.

the difference in employed PTEN inhibitor, the duration of
culture and its proceduremay induce different outcomes (35–37).

INDUCTION OF FOLLICLE GROWTH BY
FRAGMENTATION OF OVARIAN CORTICAL
TISSUES

The Hippo signaling pathway, initially identified in Drosophila
melanogaster, plays a critical role in mechanotransduction and
regulates mammalian organ size (38–40). It is modulated by
a network of upstream components involved in cell adhesion,
shape, and polarity (41). One of these components is actin, a
multifunctional protein that forms microfilaments maintaining
important cellular processes. The polymerization of globular
actin (G-actin) to the filamentous form (F-actin) in the
stress fiber has been shown to disrupt the Hippo signaling
(42). The Hippo signaling kinase cascade phosphorylates the
transcriptional coactivators YAP to promote its cytoplasmic
localization and degradation. The disruption of Hippo signaling
pathway decreases phosphorylation of YAP, thus increasing
nuclear YAP levels (43). Subsequently, increased nuclear YAP
interacts with transcription enhancer factor (TEF) to induce
transiently the expression of CCN growth factors and BIRC

apoptosis inhibitors that have positive effects on cell growth,
survival, and proliferation (10, 38, 43).

In the mammalian ovary, the fragmentation of ovary cortex
into small cubes was revealed to disrupt the Hippo signaling
pathway by increasing the polymerization of G-actin into F-actin.
Consequently, increases in YAP nuclear translocation stimulated
the expression of CCN growth factors and BIRC apoptosis
inhibitors, resulting eventually in follicle growth (5, 7, 44)
(Figure 2). Furthermore, other studies confirmed that the Hippo
signaling pathway works in concert with PI3K/Akt activators to
accelerate primordial follicle recruitment (6, 45, 46).

Using the animal model, several studies demonstrated
thoroughly the mechanism of this intracellular signaling
pathway. One hour after fragmentation of ovarian cortex from
10-day-aged mice, the ratios of F-actin to G-actin increased
transiently and the decrease of pYAP to total YAP ratios were
detected, indicating disruption of the Hippo pathway. The CCN2
transcripts in somatic cells were found to increase using real-
time RT-PCR. The ability of CCN proteins in the promotion of
follicle growth was also demonstrated based on a dose-dependent
increase in ovarian explant weights after culturing with CNN2,
3, 5, or 6. On the 5th day after grafting under hosts’ kidney
capsules, a remarkable difference in size was noted between
the treated ovaries compared to the paired intact ones. In the
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FIGURE 2 | Mechanical force disrupts ovarian Hippo signaling pathway and promotes follicle growth. Mechanical signals incurred by ovarian fragmentation, incision,

drilling, or wedge resection lead to actin polymerization that disrupted ovarian Hippo signaling, resulting in nuclear translocation of Yes-associated protein (YAP).

Nuclear YAP interacted with transcriptional enhanced associate domain (TEAD) transcriptional factors to increase the expression of downstream biochemical signals

(cystein-rich 61, connective tissue growth factor, and nephroblastoma overexpressed [CCN] growth factors and BIRC apoptosis inhibitors), resulting in follicle growth.

Ovarian damage–induced follicle growth started with mechanical stimulation but ended with local biochemical changes to promote follicle growth.

histology results, there was an obvious increase in percentages of
late secondary and antral/preovulatory follicles, along with the
decline in early secondary/primordial follicles. After triggering
by an ovulating dose of human chorionic gonadotropin (hCG),
fragmented grafts had a 3.1-fold higher number of retrievable
oocytes compared to intact grafts (7). The development of
early embryos from fertilized mature oocytes retrieved from
fragmented grafts was comparable to controls. After ET, healthy
pups were delivered (7). An animal study demonstrated that
promoting the conversion of G-actin to F-actin by jasplakinolide
(JASP) or sphingosine-1-phosphate (S1P) in ovaries of 10-day-
old CD-1 mice also increased nuclear YAP and expression
of downstream CCN2, leading to the enhancement of follicle
growth in vitro and in vivo (44). Besides, the addition of S1P to the
culture medium also decreased the follicle atresia and improved
the primordial follicle quality (47–49). Similar to the ovarian
fragmentation approach, the enzymes degrading the extracellular
matrix secreted by granulosa cells were proposed to activate the
primordial follicles (50). In contrast, a recent study revealed
that S1P treatment could neither activate the primordial follicle
nor induce the follicle growth in both mice and human ovaries

though the CCN2 gene expression was increased. However, the
authors admitted that the longer renewal interval of S1P as
compared to one in the study of Cheng et al. (24 vs. 12 h,
respectively) could affect the result because the half-life of S1P is
as short as 15min (51). Genetic studies illustrated the importance
of Hippo signaling pathway in regulating folliculogenesis. In
mice model, a study indicated that YAP is dispensable for oocyte
survival, growth, and maturation (52). In humans, deletion
of suppressing actin depolymerization genes as well as other
related Hippo pathway genes was identified in subfertile or fertile
women (53–57).

THE IMPLEMENTATION OF OVARIAN
FRAGMENTATION AND AKT STIMULATION
IN INFERTILITY TREATMENT FOR POI
PATIENTS

POI, characterized by early exhaustion of ovarian function,
affecting 1–2% of the population (58, 59). Oocyte donation is
currently the popular option for infertility treatment in POI
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patients. However, several considerations need to be addressed
with oocyte donation. The principal concern is the fact that
patients cannot have their genetically related offspring, leading to
personal and ethical issues. In some countries, oocyte donation is
prohibited due to ethical issues and religious reasons (e.g., many
Islamic countries). According to the survey of the International
Federation of Infertility Society, 41 out of 215 countries do not
allow oocyte donation (60). Moreover, some papers reported that
oocyte donation resulted in high-risk pregnancies due to immune
compatibility (61, 62). A recent meta-analysis concluded that
oocyte donation is related to an increased risk of preeclampsia
in singleton pregnancies (63).

Given the current knowledge of the PI3K/Akt/FOXO3 and
Hippo pathways in follicle growth, IVA has been recently
introduced to treat POI women. In this approach, the ovarian
cortices are fragmented into small cubes (1–2mm) followed by
in vitro culture with a PI3K stimulator and a PTEN inhibitor
for 2 days and grafting beneath the serosa of the fallopian tubes
(Figure 3). Several clinical studies have reported the effectiveness
and safety of this treatment. The first pregnancy of this procedure
was reported in 27 POI patients with 37.3 ± 5.8 years of age,

and a long duration of amenorrhea (6.8 ± 2.1 years). Under
laparoscopic surgery, ovaries were removed and cut into strips
(1× 1 cm with 1–2mm thickness) before vitrification. Following
histological analyses, ovaries from 13 out of 27 patients were
found to contain residual follicles. Frozen ovarian strips were
thawed and fragmented into ∼100 cubes (1 × 1 × 1mm),
followed by the incubation with Akt stimulating drugs in 2
days. The ovarian cortical cubes were subsequently transplanted
beneath the serosa of the fallopian tubes. Following weekly
or biweekly transvaginal ultrasound monitoring under ovarian
stimulation, follicle growth was found in eight patients. In
five patients, mature oocytes were successfully retrieved for
intracytoplasmic sperm injection (ICSI) using the husband’s
sperm. A healthy male baby was delivered at term with normal
physical features (7). A subsequent study using the same
procedure was conducted on 37 POI patients. 54% (20/37) of
these patients were found to have residual follicles based on
histology. Nine out of these 20 women had follicle growth,
leading to 24 retrieved oocytes in six patients. After IVF-ET in
four patients, three clinical pregnancies were detected, followed
by one miscarriage and two healthy live births (11). Another

FIGURE 3 | Ovarian fragmentation/AKT stimulation followed by autografting promotes follicle growth in POI patients to generate mature oocytes for IVF embryo

transfer, pregnancy, and delivery. Under laparoscopic surgery, one or both ovaries from POI patients were removed and cut into strips before vitrification. After

thawing, strips were fragmented into 1–2 mm2 mm cubes, before incubation with AKT stimulators (a PTEN inhibitors and a PI3K stimulator). Two days later, cubes

were autografted under laparoscopic surgery beneath the serosa of Fallopian tubes. Follicle growth was monitored weekly or biweekly via transvaginal ultrasound and

based on serum estrogen levels. After detection of antral follicles, patients were treated with FSH followed by human chorionic gonadotropin when preovulatory

follicles were found. Mature oocytes were then retrieved and fertilized with husbands’ sperm in vitro before cyropreservation of 4-cell-stage embryos. Patients then

received hormonal treatments to prepare the endometrium for implantation followed by transferring of thawed embryos.
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study performed IVA treatment in 14 POI patients with a
mean duration since the last menses of 3.8 years. Eleven of the
14 patients had undetectable AMH levels. During the 1-year
follow-up period after the IVA procedure, a total of 15 follicle
developmental waves were detected in six of the 14 patients
(43%), resulting in six oocytes from four patients. After IVF-ET of
retrieved oocytes, one patient delivered a healthy baby boy, with
three other frozen embryos (12).

Furthermore, drug-free IVA, the simplified procedure of IVA,
was also demonstrated to be successful in treating POI patients
at the early stage. In this approach, ovarian cortex is fragmented
to disrupt ovarian Hippo signaling followed by the grafting
back into remaining ovaries and beneath serosa of Fallopian
tubes without tissue culture. Several studies reported successful
outcomes by using the drug-free IVA procedure. A case report
from Spanish group represented that a 32-year old patient with
elevated FSH levels (89.9 mIU/mL) and undetectable AMH
levels (<0.02 ng/ml) became pregnant after the drug-free IVA
procedure followed by 20 days of ovarian stimulation (13).
Another study from the same group carried out in 14 POI women
demonstrated the positive outcome of drug-free IVA. These
patients were at the early stage of POI withmedian age of 33 years
(29–36 years), a median length of amenorrhoea of 1.5 years (1–11
years), and a median AMH level of 0.02 ng/ml (0.01–0.1 ng/ml).
After the drug–free IVA procedure, follicle development was
detected in seven patients, and five women achieved successful
oocyte retrieval. These five women had six embryo transfers,
resulting in four pregnancies (14). Furthermore, a large trial
from Chinese group described the promising outcome of the
disruption of Hippo signaling pathway by ovarian biopsy and
scratching in 80 POI women. Eleven (13.75%) patients presented
with spontaneously ovarian function resumption or follicle
growth after human menopausal gonadotropin stimulation. Ten
patients underwent oocyte retrieval and IVF, two embryos
were transferred to one patient, and one healthy baby was
delivered (64).

Although POI patients can achieve pregnancy spontaneously
or by other ART therapies (65), these above data demonstrated
that IVA yielded better infertility treatment outcomes for POI
patients. In a cohort study enrolling 358 young POI patients
(mean age: 26.6± 7.9 years), the spontaneous pregnancy rate was
4.4% during 13 years (66). In other studies conducted in young
POI patients (median age: 30.36–32.5 years of age), the pregnancy
rates ranged from 3.6 to 6.8% after hormonal therapy with or
without ART (67–70). In the second report of IVA study (11),
among 37 older POI patients (37.6 ± 4.6 years of age), twenty
patients had residual follicles by the histological analysis, 15.0%
(3/20) of patients conceived after the IVA procedure within 1
year and two more patients had cryopreserved embryos pending
ET (11). However, these included studies are case series with a
limited number of patients, lacking the control group with sham
operation. Moreover, long-term neonatal safety is still limitedly
examined by genetics examinations. Additional investigations
are essential to confirm these findings and ensure the safety of
this approach.

A recent study challenged the effectiveness of IVA by
xenografting human ovarian cortical tissues to immunodeficient

mice. In this study, ovarian tissues from 18 young women were
divided into three groups (fresh, slow-frozen, and vitrified).
These cortical tissues were fragmented into small cubes followed
by with or without culture in Akt stimulators, before xenografting
to the peritoneal pockets. The investigators concluded that
ovarian fragmentation and Akt stimulation yielded no significant
benefits in terms of growing follicle percentages or follicle
proliferation rates (71).

However, this study described the follicle density (follicles
per mm2) which is not highly valid to investigate the benefit of
IVA. Since the fundamental mechanism of Hippo pathways and
Akt stimulation is improving the development of the primordial
follicle with a smaller size to the later stage follicles with a larger
size, the follicles density is supposed to not be higher (but even
lower) after grafting. Indeed, a significant decrease in follicle
density after transplantation was found in this study (71). In
terms of the percentage of growing follicles, the duration of 28
days after xenografting is fairly short for evaluating the transition
of the primordial follicles to the later stages. Furthermore,
the peritoneal pockets as the grafting site may supply a lower
blood stream compared to the site under kidney capsule with
high vascularization (72). This can have negative impacts on
follicle growth.

PERSPECTIVES OF HIPPO SIGNALING
PATHWAY AND AKT STIMULATION FOR
EXTENDING FERTILE DURATION

POR With DOR
Women have been progressively delaying their childbirth until
the third and fourth decades of life, especially in Western
countries (2, 3, 73). This leads to POR with DOR, a natural
depletion of oocyte quantity as well as decreases in egg quality,
representing unsolved problems in reproductive medicine. The
successful outcome of IVA approach in POI patients suggested
that this treatment was also beneficial for POR patients
with advanced age and severe ovarian dysfunction. Since the
activation of primordial follicles could happen spontaneously in
DOR condition, the drug-free IVA procedure likely promoted
secondary follicle growth. A recent case series study in 11 POR
with DOR women at advanced age (30–45) and a median AMH
level of 0.04 (0–0.8) reported that this procedure increased the
number of antral follicles following FSH treatment and the
number of mature retrieved oocytes per cycle. The fertilization
rate and high quality embryo rate were 68.7 and 56.9%,
respectively. In consequence, five patients achieved pregnancies,
resulting in one live birth, two ongoing pregnancies, and one
miscarriage. Moreover, three patients and the miscarriage patient
could have cryopreserved embryos (15). Another case series
study reported that 13 out of 15 POI and POR with DOR
patients who were treated with the drug-free IVA achieved a
higher number of antral follicle numbers as well as a higher
number of retrieved oocytes as compared to previous IVF
outcomes before the IVA treatment. One spontaneous pregnancy
and embryo transfer allowed four live births and one ongoing
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pregnancy. Five additional patients and one miscarriage patient
have cryopreserved embryos for future transfer (16).

On the other hand, one report recently from Denmark
raised questions regarding the effectiveness of IVA. Firstly, they
conducted a similar drug-free IVA in 20 POI patients. There
were no recorded complications and 12 patients could achieve
pregnancies (74, 75). There was no significant difference in the
number of mature follicles and the AMH levels between the
treated group and the control one during 10 weeks of observation
(75). Despite high pregnancy rate (60%) after IVA, an editorial
suggested the ovarian fragmentation should be eliminated to treat
for DOR patients (76). However, 10 weeks was supposed to be
rather short duration for monitoring follicle growth and serum
AMH levels (9). In this study, seven out of 20 patients presented
an increase in AMH level and antral follicle counts, indicating
the effectiveness of ovarian fragmentation. It is important to
note that our earlier publication indicated that serum AMH
levels remained undetectable after IVA treatment when only few
follicles reached the preovulatory stage (12).

Fertility Preservation
As the cancer survival rate among young women has significantly
increased recently, efforts to preserve fertility have received
significant attention (77). Fertility preservation (FP) by ovarian
cryopreservation and autologous transplantation has been
practiced in the last two decades and resulted in more than
130 healthy children worldwide (78, 79). Because sectioning
is essential during the ovarian tissue cryopreservation, in vitro
fragmentation and IVA drug treatment can be introduced during
the ovarian cryopreservation to enhance the outcome of FP. A
study from a Spanish group using 18 human ovarian cortex
biopsies from cancer women demonstrated that short term
incubation with PTEN inhibitor enhanced the development of
growing follicles as well as the surrounding stroma populations
without inducing apoptosis. The AMH concentration in the
fresh activated samples was significantly higher compared to
the control group (35). In consistence, a recently published
study from a Belgium group indicated that fragmentation
increased the number of secondary follicles in oncological
patients (80).

The ovarian tissue cryopreservation and IVA approach are
also likely beneficial to other populations, including women
about to be treated with gonadotoxic agents as well as for women
with other non-malignant diseases including endometriosis or
immune disorders (79, 81). Additionally, FP is a favorable
option for either unmarried women with severe ovarian
dysfunction or women wishing to postpone childbearing for
various personal reasons. Of note, some studies reported that
the activation of primordial follicle could occur spontaneously
after transplantation of frozen-thawed ovarian tissues using the
conventional cryopreservation method (82–84) and transient
incubation with mTOR inhibitors extended the graft lifespan by
preventing the massive activation (45, 85). Although the IVA
procedure can activate more dormant primordial follicles in
frozen-thawed ovarian samples (28), others raised the concern
about ovarian endocrine function and reproduction capacity

after IVA at long-term goal since the conventional IVA approach
provokes an immediate follicular activation (86).

Resistant Ovary Syndrome and Polycystic
Ovarian Syndrome
In addition to the aforementioned perspectives, the application
of Hippo signaling pathway can be beneficial to other ovulatory
disorders. In detail, some women represent with ovaries
unresponsive to endogenous and exogenous gonadotropins, in
spite of normal ovarian reserve. This condition has been referred
to as ROS, a rare disorder that could not be treated with routine
ovarian stimulation (87). Based on the successful outcomes
after in vitro fragmentation in POI and DOR patients, it is
hypothesized that the incision of ovarian cortex in vivo to
disrupt Hippo pathway can stimulate arrested follicles in ROS
patients. Interestingly, ovarian incision through laparoscopic
surgery was found to promote follicle growth and yield successful
oocyte retrieval in seven of 11 ROS patients (16). Although this
approach could be a better option compared to IVA, there are
no published studies comparing the clinical outcome between
IVA and ovarian incision in patients with ovarian dysfunction.
Future comparative studies might develop a more efficient and
less invasive treatment.

Another ovulatory disorder is polycystic ovarian syndrome
(PCOS), the common endocrinopathy affecting approximately
8.7–17% of women in the reproductive age group (88). Although
PCOS patients could achieve pregnancies through current
ART practice, some PCOS women faced multiple challenges
including poor to an exaggerated response, poor oocyte quality,
poor fertilization rate, poor blastocyst conversion, and ovarian
hyperstimulation syndrome (88). Ovarian wedge resection and
ovarian drilling have been shown to induce follicle growth
in PCOS patients, especially in clomiphene citrate-resistant
cases (89, 90), suggesting induction of follicle growth by
alterations in mechanical tensions. There have been several
studies that indicated the association between the expression
of genes related to Hippo pathway and PCOS condition
(91–93). Besides, hypomethylation of the YAP promoter was
found to be a key pathogenesis of PCOS (94). Consequently,
it is logical to suppose that Hippo signaling pathway is
correlated with PCOS. Hippo gene-targeted therapeutics would
be effective on fertility and systemic symptoms of PCOS (91).
The incision of ovarian cortex or the use of pharmacologic
agents targeting this pathway could be applied to PCOS patients
to normalize follicle growth and ovulation while minimizing
the damage to ovarian reserve. Further studies are necessary
to evaluate the safety and efficacy of the ovarian incision in
PCOS patients.

CONCLUSION

In conclusion, social changes and the increasing desire for
parenthood of infertile couples have increased the range of
ART. The implementation of ovarian fragmentation and Akt
stimulators can increase the chance to conceive genetically
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related children for various types of poor prognostic infertile
women, leading to the expansion of modern infertility treatment.
However, the discussed studies involve a small group of patients,
further confirmation by better designed studies is essential for
the wide clinical implementation of IVA therapy. The necessity
of preparation of a control group with sham operation of IVA
makes it difficult and ethically unjustified. Besides, it is necessary
to develop a less invasive method to predict the presence of
residual follicles before ovariectomy as well as an alternative
approach to disrupt Hippo signaling pathway (e.g., actin
polymerization-enhancing reagents) to improve the efficiency
of IVA.
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