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The male reproductive system is especially affected by dioxins, a group of
persistent environmental pollutants, resulting in irreversible abnormalities
including effects on sexual function and fertility in adult males and possibly on
the development of male offspring. The reproductive toxicity caused by
dioxins is mostly mediated by an aryl hydrocarbon receptor (AhR). In animals,
spermatogenesis is a highly sensitive and dynamic process that includes
proliferation and maturation of germ cells. Spermatogenesis is subject to
multiple endogenous and exogenous regulatory factors, including a wide
range of environmental toxicants such as dioxins. This review discusses the
toxicological effects of dioxins on spermatogenesis and their relevance to
male infertility. After a detailed categorization of the environmental
contaminants affecting the spermatogenesis, the exposure pathways and
bioavailability of dioxins in animals was briefly reviewed. The effects of dioxins
on spermatogenesis are then outlined in detail. The endocrine-disrupting
effects of dioxins in animals and humans are discussed with a particular focus
on their effects on the expression of spermatogenesis-related genes. Finally,
the impacts of dioxins on the ratio of X and Y chromosomes, the status of
serum sex hormones, the quality and fertility of sperm, and the
transgenerational effects of dioxins on male reproduction are reviewed.
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Introduction

Spermatogenesis is a biological process that includes a complex set of cellular events

consisting of main four stages, (i) the mitotic proliferation of spermatogonial cells; (ii)

the meiotic division to produce four haploid, round spermatids; (iii) the

transformation of round spermatids into elongated spermatids; and (iv) the release of

mature sperm into the seminiferous tubular lumen, a process referred to as

spermiation. The process leading to the transformation of a primordial germ cell into

a mature sperm varies among species, for example, one cycle of spermatogenesis takes

35 days in the mouse and hamster, 50 days in the rat, 45–65 days in various

nonhuman primates, and 70 days in humans (1).

Spermatogenesis is subjected to regulation by a group of hormones secreting via the

hypothalamus-pituitary-gonadal (HPG) axis. Firstly, gonadotropin releasing hormone
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formed in the hypothalamus stimulates the anterior lobe of

pituitary gland to produce Luteinizing hormone (LH) and

Follicle-stimulating hormone (FSH). The binding of LH to its

receptor on Leydig cells induces production of testosterone,

which binds to the androgen receptors located on Sertoli cells,

Leydig cells, and peritubular cells and therefore plays crucial

roles in sexual differentiation and spermatogenesis. FSH binds

to receptors that are exclusively present on Sertoli cells,

stimulating their proliferation, maturation and other

functions. Both FSH and testosterone can act either alone or

in concert during different stages of spermatogenesis,

confirming the vital roles of both Sertoli and Leydig cells in

the completion of spermatogenesis (2). Figure 1 summarizes

the hormonal regulation of spermatogenesis.

Sertoli cells play a fundamental role in the physical and

metabolic support of germ cells (3, 4), by nourishing the

developing cells, providing structural support and
FIGURE 1

Hormonal regulation of spermatogenesis. Male reproductive cycles
are controlled by interactions between secreted hormones from the
anterior pituitary gland, hypothalamus and testis. The hypothalamus
releases GnRH, hence stimulating the anterior pituitary gland to
secret LH and FSH into the circulatory system. FSH stimulates
Sertoli cells in the testis to begin spermatogenesis. Thus, when
sperm counts increase Sertoli cells secrete inhibitors (Inh) into the
blood that have a negative feedback on the hypothalamus,
inhibiting the release of GnRH. LH stimulates Leydig cells to
produce and secrete the hormone testosterone (T) into blood.
When testosterone levels increase, it affects hypothalamus/
pituitary gland by a negative feedback mechanism, thus inhibiting
the production of LH, FSH, and GnRH.
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phagocytosis of abnormal germ cells, and releasing spermatids

at spermiation (5). In addition, germ cells are involved in the

production of several proteins (activin, inhibin) that maintain

the release of pituitary hormones, thus indirectly controlling

the mitotic activity of spermatogonia (6). Sertoli cells also

protect the germ cells through their participation in formation

of the blood-testis barrier (BTB), which prevents the

destruction of germ cells by immune responses (7–9). Leydig

cells are located within the interstitial tissue of testis and

responsible for the production and secretion of the hormone

testosterone (T), which plays a major role in the maintenance

completion of spermatogenesis (10) and male secondary sex

characteristics (11).

Spermatogenesis is influenced by multiple factors, including

oxygen tension, temperature variation, radiation, and hormonal

status. Of these, hormonal status is considered the most

sensitive and important factor which is regulated through

(testis) steroid hormones, hypothalamic and pituitary

hormones. Many studies have reported that exposure to

environmental pollutants, such as dioxins, benzo[a]pyrene,

DTT, pesticides and heavy metals, causes disturbance of

spermatogenesis by disruption of endocrine system.

Supplementary Table S1 summarizes the toxicological effects

of some environmental contaminants on spermatogenesis.

Nowadays, there is increasing public concern about

reported increases in human infertility, that affect about 190

million people globally (12). Male infertility can be caused by

multiple factors but it is frequently attributed to unhealthy

lifestyles, including nutrition (13). In connection with this,

exposure to environmental and occupational hazards are also

thought to be responsible for the increasing incidence of

infertility (14). This could be attributed to industrial and

technical facilities releasing considerable quantities of gases

and chemical compounds into the environment with proven

toxicological impacts on human health in general and on the

reproductive system in particular (15). As a result, many

extraneous chemicals have been found to accumulate in

human bodies (16), even more in the umbilical cord blood of

infants (17). The group of chemical toxins that particularly

disrupts the endocrine system is referred to as endocrine-

disrupting chemicals (EDCs).

Collectively known as dioxins, polychlorinated dibenzo-p-

dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs)

act as endocrine disruptor chemicals (EDCs). Such

halogenated chemicals are extremely lipophilic and highly

persistent in the environment, accumulating and therefore

readily transmitting through both human and animal food

chains. Dioxins are eventually taken up by humans,

principally via animal-origin fatty foods such as fish, meat

and eggs (18), and also possibly via vegetable oils (19–22).

The toxicity of dioxins in mammals including humans, is

well reported, and varies according to the health status and

age of exposed animals, the concentration, the duration and
frontiersin.org
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TABLE 1 Names, structure and toxicity equivalency factors (TEFs) of
the most toxic PCDDs, PCDFs and PCBs.

TEF Structure Congener

Group 1: polychlorinated dibenzo-p-dioxins (PCDD)

2,3,7,8-TCDD 1

1,2,3,7,8-PeCDD
1

1,2,3,4,7,8-HxCDD
0.1

1,2,3,6,7,8-HxCDD 0.1

1,2,3,7,8,9-HxCDD 0.1

1,2,3,4,6,7,8-HpCDD
0.01

1,2,3,4,5,6,7,8-OCDD 0.0001

Group 2: polychlorinated dibenzofurans (PCDF)

2,3,7,8-TCDF
0.1

1,2,3,7,8-PeCDF
0.05
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the route of exposure (23, 24). In experimental studies on

animals, oral exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin

(TCDD) led to loss of hair, reduction in body weight, and a

weakened immune system (25). Reports from the

International Agency for Research on Cancer (IARC) have

confirmed the ability of dioxins to promote carcinogenesis in

many organs such as skin, thyroid gland, liver, and the

lymphatic system (26). These cancers are related to wasting

syndrome (27), immunotoxicity due to the atrophy of some

lymphoid and thymus tissues and to a decrease in the

proportion of T cells and secreted cytokines, thus weakening

the body’s immunity defense against tumors (28),

teratogenicity (29), alternation in genes expression related to

lipid and glucose metabolism (30), dermal lesion including

hair loss, hyperkeratosis, and chloracne (31–34), dysfunctional

reproductive systems (35).

It is now well recognized that the reproductive toxicity of

dioxins is mediated by the Aryl hydrocarbon receptor (AhR)

pathway, and a transcription factor belonging to the basic

helix-loop-helix (bHLH)-PAS gene family that acts as a

receptor for many endogenous, including indigo, indirubin, 2-

(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl

ester (ITE) and certain arachidonic acid (36) and exogenous

ligands, including polycyclic aromatic hydrocarbons and

halogenated aromatic hydrocarbons (37, 38). AhR mediates

many processes essential for maintaining cellular homeostasis,

immunity, and responses to various stresses (39). Specifically

for male reproductive health, some of these effects include

hypospadias, cryptorchidism, testicular cancer, poor semen

quality, negative effects on the prostate and change in sex

ratio by decreasing the number of male births (40–42). In

addition, animals exposed to dioxins have shown alterations

in levels of sex hormones, reduction of sperm count, and

increased rates of miscarriages (43, 44).

Here we review the current knowledge of the most

significant effects of dioxins on male reproductive systems in

mammals. The sources, exposure pathways and bioavailability

of dioxins in mammals, plus the molecular mechanism by

which AhR mediates the toxicity of dioxins on

spermatogenesis are covered and the endocrine-disrupting

effects of dioxins in animals and human and their effects on

the ratio of X and Y chromosome-bearing are discussed.

2,3,4,7,8-PeCDF

0.5

1,2,3,4,7,8-HxCDF
0.1

1,2,3,6,7,8-HxCDF
0.1

2,3,4,6,7,8-HxCDF
0.1

(continued)
Definition, properties and sources of
dioxins

Dioxins, polychlorinated dibenzodioxins (PCDDs) and

polychlorinated dibenzofurans (PCDFs), are the most toxic

group of environmental pollutants that have been described to

date (45). Chemically, dioxins consist of two aromatic rings

linked via either one or two atoms of oxygen, and give rise,

respectively, to PCDFs or PCDDs. This extremely stable
Frontiers in Reproductive health 03
structure contains one to eight positions that can be

chlorinated, which confers both high structural stability and

extreme hydrophobicity. Depending on the number and

position of chlorination (P = 1–8), the dioxin group includes

75 PCDD and 135 PCDF congeners that vary significantly in

terms of their overall toxicity (46, 47). The number and

position of chlorines in dioxin molecules affect their toxicity

by modifying their shape, determining thus their binding

ability to the AhR receptor (48). Typically, congeners with

chlorine atoms substituted in the lateral 2, 3, 7 and 8

positions of the aromatic rings are considered as the most

toxic. Of these, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD),

with a toxic equivalency factor (TEF) of 1.0, is the most toxic

congener of all the dioxins (49, 50). Table 1 presents names,
frontiersin.org
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TABLE 1 Continued

TEF Structure Congener

1,2,3,4,6,7,8-HpCDF
0.01

1,2,3,4,7,8,9-HpCDF
0.01

OCDF
0.0001

Group 3: polychlorinated biphenyls (PCB)

2,3,3′,4,4′-PeCB
(105)

Mono-ortho PCBs ranged
from 0.00001 to 0.0005

2,3,4,4′,5-PeCB (114)

2,3′,4,4′,5-PeCB
(118)

2′,3,4,4′,5-PeCB
(123)

2,3,3′,4,4′,5-HxCB
(156)

2,3,3′,4,4′,5′-HxCB
(157)

2,3′,4,4′,5,5′-HxCB
(167)

2,3,3′,4,4′,5,5′-HpCB
(189)

3,3′,4,4′-TCB (77) 0.0001

3,4,4′,5-TCB (81)
0.0001

3,3′,4,4′,5-PeCB
(126)

0.1

3,3′,4,4′,5,5′-HxCB
(169)

0.01
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structure and Toxicity Equivalency Factors (TEFs) of the most

potent congeners of dioxins. Atmospheric dioxins exist in

both gaseous or solid-bound phases depending on the

prevailing temperature degree (51). At high temperatures, the

less chlorinated dioxin congeners tend to be found free in the

vapor phase, while they are more likely found bound to other

molecules at lower temperatures (52–57).

Dioxins are emitted into the environment from two main

sources. The first one, which causes emission of only a small

proportion of these chemical contaminants, is due to natural

combustion-related process such as forest fires and volcanoes
Frontiers in Reproductive health 04
(58, 59). Over the last decade, the incidence of forest fires has

increased resulting in higher dioxin releases from this source

(60–62). Secondly, dioxins are released into the environment

from industrial sources, such as processes involving melting of

metals, production of PVC plastics, treatment of white paper

pulp with chlorine, the combustion of coal, natural gas and

petroleum products and wastes (63, 64), and the manufacture of

chlorinated pesticides and herbicides for agriculture. The

incineration of municipal and medical wastes as wastes from

fossil fuels and fly ash storage are also important sources of

dioxins (51). PCDD/Fs are also released from plastic bottles and

containers exposed to microwave radiation or freezing (65), and

from the vast and ever-increasing amounts of electronic wastes

that are estimated to reach 52.2 million tonnes by 2021 (66).

Ironically, recycling methods in processing of so-called e-waste,

such as manual disassembly, roasting, acid leaching and open

burning also result in the formation of PCDD/Fs (67–69).

Finally, road transport emissions due to the combustion of

carbon-based fuels are an important source of several

halogenated organic pollutant, like PCDD/Fs, PCBs and

polybrominated diphenyl ethers (PBDEs) (70–73).
Exposure pathways and
bioavailability of dioxins in animals

Although dioxin formation occurs at a local level in a given

region, the eventual environmental distribution of these toxins

can much wider. For example, once dioxins are released into

the atmosphere, they bind to other particulates, even as small

as PM2.5, such as incinerator ash or smoke and can remain

suspended and windborne for lengthy periods before settling

on terrestrial and/or aquatic surfaces at sites remote from their

original release (74, 75). They can then be taken up by

microbial organisms in aquatic environments and/or become

attached to grasses, vegetables, and other crops (19–22, 76–79).

Animals feeding on dioxin-contaminated grass such as cows,

buffalo, goats, ducks, and chickens can concentrate dioxin in

their tissues (especially in fat-storing liver and adipose tissues)

so that the toxins move up through the food chain eventually

entering humans via their diet (48, 80). The rate of absorption

of dioxins depends on the route of exposure, their molecular

size and solubility (81). For example, the absorption rate of

TCDD through the small intestine and the lungs is about 50%

and 90%, respectively (82, 83). This shows that the inhalation

route for dioxins is more important that ingestion via food in

such cases. Dermal absorption is much more limited, probably

less than 1%, according to experimental studies on mice (81–

83). Once dioxins are absorbed into the human body, they are

readily distributed through the bloodstream to all organs and

specifically tend to accumulate in liver and fatty tissues (84). In

the liver, dioxins are converted to less toxic compounds that

are water-soluble, but this detoxification process occurs very
frontiersin.org
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slowly. The rate of excretion and half-lives of dioxins differ

among species, ranging from 11 days in hamster (84), 17–31

days in rats (81), and a remarkable 7–11 years in humans (84).
Aryl hydrocarbon receptor (AhR)-
mediating effects of dioxins on
spermatogenesis

The AhR transcription factor has a strong affinity to a range

of endogenous and exogenous ligands including polycyclic

aromatic hydrocarbons and halogenated aromatic

hydrocarbons (37, 38). AhR mediates many biological

processes that are essential for maintaining cellular

homeostasis, immunity, and responses to various stresses (39).

Figure 2 summarizes the molecular mechanism by which

AhR mediates the reproductive toxicity pathway in animals.

In the dormant state, AhR is present in the cytosol as a

heteromeric complex with two molecules of the 90 kDa heat

shock protein (hsp90), and one molecule each of AhR-

associated protein-9, and p23 (85). Binding of dioxin, the

prototypical ligand, to AhR initiates series of events resulting

in dissociation of hsp90, translocation into the nucleus and

heterodimerization with an AhR-Nuclear Translocator

(ARNT). Subsequently, the AhR-ARNT complex binds to

specific DNA sequences, known as dioxin-response elements

(DRE). In response to this activation, the AhR signaling

pathway modifies expression levels of numerous genes
FIGURE 2

Schematic model of the action of dioxins in cell and aryl hydrocarbon recepto
the membrane cell by a high lipophilic driving force. 2. Once inside, the cell
found inactivated by complexing with Hsp90, XAP and P23 proteins. 3.
Translocation of dioxin/AhR into the nucleus occurred by dimerization of
heterodimer binds to dioxin responsive element (DRE), activating the expr
range of activities including detoxification of dioxins and spermatogenesis-re
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predominantly encoding drug-metabolizing enzymes such as

CYP1A1, growth factors such as EGF receptor and the

estrogen receptor (ERs) (86).

In the respect of AhR roles in spermatogenesis, it is safe to

say that there are multiple lines of biochemical and molecular

evidence that confirm the vital roles of AhR in animal

reproduction in both sexes. For example, AhR is actively

expressed in the male reproductive tracts of mice (87, 88),

and localized to germ and interstitial cells including round

spermatids, elongating spermatids, and Leydig cells in the

testis of mice (89). However, tissue differential expression of

AhR was observed in the rat, where epididymis express AhR

in a higher level than its level in the testis (90). In sharp

contrast, the deletion of AhR is predominantly associated with

defects in these functions, where the AhR-knockout mice had

low sperm counts in the epididymis, a low fertility, a low level

of serum testosterone and greatly reduced levels of

steroidogenic 3-hydroxysteroid dehydrogenase (3-HSD) and

steroidogenic acute regulatory protein (StAR) expression in

testicular Leydig cells of AhR (–/–) males (87). In an indirect

fashion, the activation of AhR by exogenous and/or

endogenous ligands has been shown to have pronounced

feedback on the various functions of reproductive system.

AhR is therefore involved in mediating the toxicological

effects of dioxin on the reproductive system. In this regard, a

correlation between TCDD-activation of AhR and an

alteration in the change of offspring sex ratio in mice was

reported. Thus, wild type male mice exposed to TCDD had a
r dependent toxic effect on Male reproductive system. 1. Dioxins pass
activates the aryl hydrocarbon receptor (AhR) receptor that normally
Binding of dioxin to AhR results in the release of other proteins.
AhR with receptor nuclear translocator (ARNT). 4. The AhR-ARNT
ession of certain isoforms of cyp1a and cyp1b genes resulting in a
lated disorders.
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14% lower male:female sex ratio compared to AhR-knockout

male mice that did not show any change in offspring sex ratio

when exposed to the same dose of TCDD and their sex ratio

was close to that of control mice (89).

More recently, histopathological studies showed that the

exposure of male mice to dioxin-like compounds decreased

the number of spermatogonia, sperm and Sertoli cells.

Additionally, the percentage of testicular apoptotic cells was

significantly raised, which was related to the downregulation

of the GDNF/PI3K/AKT signaling pathway, suppressing the

self-renewal and differentiation of spermatogonial stem cells

(91, 92). Meanwhile, such exposure inhibited the genes

expression of Sertoli cell markers (Fshr, WT1, Sox9) and the

Leydig cell marker CYP11A1, impairing thus the function of

Sertoli cells and Leydig cells (91). In line with this, it was

reported that in mouse testicular TM4 Sertoli cells the

tolerance to dioxin-like cytotoxicity is associated with

insufficient AhR and CYP1A1 expression (93). Here, it is

worthy to note that the ligand-activation of AhR and its

subsequent consequences for reproductive system functions

are largely dependent on the genetic background of individual

(94). The large number of studies demonstrating the role of

ligand-activation of AhR, mainly by TCDD, in the

dysfunction of animal reproductively has led some to suggest

that certain natural compounds could be used to prevent the

anti-reproductive toxicity by targeting the AHR pathway (95).

Involvement of the AhR signaling pathway in the normal

development of accessory sex organs including prostate and

seminal vesicles has also been reported (96). The requirement of

the AhR signaling pathway for normal accessory sex organ

development such as prostate and seminal vesicles raises the

question of the subsequent effects of AhR activation by dioxin

on the development of such organs. In this context, it was

shown that in utero and lactational exposure to TCDD of AhR

wild type mice reduced the anterior, ventral and dorsolateral

lobe weight of prostate and seminal vesicle. In addition, an

alternation in gene expression of prostatic secretory protein 94

(PSP94) and a prostatic secretory glycoprotein (p25), both has

androgen-dependent expression. In contrast, such defects were

absent in AhR knockout C57/BL6mice exposed to TCDD (96, 97).

Activation of the AhR pathway by TCDD was mediated via an

increase of mitochondrial reactive oxygen species (ROS) in many

tissues including sexual organs (98, 99). While spermatozoa from

AhR knockout mice are completely resistant to TCDD-induced

loss of mitochondrial membrane potential, after either an in vivo

or in vitro treatment, TCDD exposed WT mice showed

increasing levels of ROS (100). However, contradictory results on

humans showed no alteration in human sperm mitochondrial

function following 24 h of in vitro exposure to similar and higher

TCDD doses (101). These conflicting results could be explained

by the relative high resistance of humans to dioxins compared

with many other animals, including laboratory rodents (102).

Also, a comparative set of data on the transcriptional levels
Frontiers in Reproductive health 06
between normal and abnormal semen of men showed that no

correlations between the AhR and ARNT transcripts levels and

sperm concentration, morphology and motility (103). In human,

all seminiferous tubule stages of testes express AhR (104) that is

localized in acrosomes that contain degradative enzymes

(including hyaluronidase and acrosin) involving in the

breakdown of the zona pellucida during fertilization (88).

Alternatively, new molecular mechanism of TCDD’s action in

human Sertoli cells has been suggested. This was through

interrogating the expression profile of small non-coding RNAs

(sncRNAs), known also as microRNAs, that can modulate

testicular function during spermatogenesis and that their altered

expression may be factors involved in male infertility (105, 106).
Endocrine-disrupting effects of
dioxins in animals and humans

Dioxins are known as endocrine-disrupting chemicals

(EDCs) that can interfere with hormonal systems and cause

toxic effects on both male and female reproductive systems,

developmental disorders and birth defects (107). Such

chemicals are structurally similar to endogenous hormones

and usually bind to their receptors and act through multiple

mechanisms, such as mimicking endogenous hormones via an

agonistic effect, blocking their action via an antagonistic

effect, or interfering with their metabolic activity exerts

estrogenic, anti-estrogenic and anti-androgenic activities,

depending on dose and time of exposure (108).

The effects of TCDD on the male reproductive system are

found whether due to the exposure of male occurs during

adulthood or in the late fetal and early postnatal developmental

periods. These effects vary depending on dose, duration of

exposure (acute or chronic), and animal species. Experimentally,

mice, rat, zebra fish, guinea pig, cock and monkey have shown

diverse toxicological effects towards TCDD. For example, while a

reduction in the size of testes and in the weight of sex glands

(prostate, seminal vesicle) were reported in mice (96), a decrease

in motility and count of sperm and an increase in the number

of abnormal sperm in adult rats (109). In addition, in utero-

exposure of the male rats to TCDD reduces epididymal and

ejaculated sperm numbers (110). Furthermore, prenatal exposure

to dioxins caused abnormalities of sperm with increased

abnormal morphology, reduced motility, and reduced capacity to

penetrate hamster oocytes (111). However, the histological

studies showed a decrease of tubule diameter and maturation

arrest at different stages of seminiferous tubule epithelium,

increasing the intracellular spaces between Sertoli cells and germ

cells and resulting in destruction the blood:testis barrier in

TCDD exposed guinea pigs (112). Furthermore, a decreased

intercellular contact in the germinal epithelium with Sertoli cells

containing high levels of lipids, phagolysosomes, and vacuoles in

their cytoplasm was observed in TCDD exposed marmoset
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(Callithrix jacchus) (113). Moreover, structural and functional

damages in the cell membrane and necrosis of germ cells,

disorders in contacts between Sertoli and spermatogenic cells,

impairment of Sertoli cell function were detected in TCDD-

exposed common marmosets (113–115).

In adult rats, TCDD reduces Leydig cell volume, leading to

androgen deficiency (116), with a set of biochemical and

molecular alterations including an increasing level of reactive

oxygen species (ROS) and oxidative status, and affected

antioxidant enzymatic activities, e.g., from superoxide dismutase

(SOD) and catalase (CAT) (115). In contrast, adult rats exposed

to high concentrations of TCDD showed reduced levels of

circulating testosterone and dihydrotestosterone (DHT) (117).

Also, TCDD-exposed rats have highly suppressed expression of

glutamic acid decarboxylase 67, an enzyme involved in Gamma-

Aminobutyric acid (GABA) synthesis in the brain, that

potentially prevents the perinatal surges of LH and testosterone

and compromising sperm counts (118). This was accompanied

with a net reduction in ejaculated and epididymal sperm count,

a lowering in sex accessory gland weights, and demasculinized

and feminized morphology of prenatal TCDD exposed male rat

offspring without a reduction in serum testosterone or androgen

receptor (AR) levels (119). At the biochemical level, dioxin-

exposed mice show alternations in spermatogenic markers such

as acid phosphatase, alkaline phosphatase and lactate

dehydrogenase (120). Similarly, the exposure of male chickens

(cocks) to PCBs provoked a significant decrease in the testicular

weight, serum testosterone level, damage in seminiferous tubule

and reduce in the number of germ cells (121).

In line with effects of dioxins in animals, it was reported that

semen quality in TCDD-exposed humans was seriously affected

and this depended on the age at time of exposure. For

example, boys aged of 1–9 years who were exposed to TCDD

showed a decreased concentration of sperm in their adulthood,

suggesting therefore that exposure to dioxin in infancy has

critical effects on spermatogenesis (122–124). Also, adults who

exposed to dioxin in infancy showed spermatozoa damage with

reduced motility (125–127). Histological studies also revealed

impaired steroidogenesis mediated by reducing the expression

of certain steroidogenic markers such as StAR protein, 3-β-

HSD, and 17-3-β-HSD. Further, maternal exposure to TCDD

resulting in failure of testosterone production in Leydig cells of

their adult male offspring, affecting therefore the testosterone-

bound androgen receptor-mediated gene transcription which

play a key role in spermatogenesis (128).
Effects of dioxins on the expression
of spermatogenesis related genes

It is now well recognized that the exposure of animals to dioxins

causes alterations on transcriptomic level of multiple genes which

contribute to vitamin and lipid metabolism, hormone synthesis
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and trafficking of molecules inside cells (92, 129). Exposure of

zebrafish to TCDD alters the expression of apolipoprotein Bb

(apobb) with a role in lipid transport, an uncoupling protein 1

(ucp1) that is involved in estrogen-stimulated cellular response, a

steroidogenic acute regulatory protein (STAR) responsible for

cholesterol and steroid synthesis, and the inhibition of DNA

binding 2 (ID2) which regulates Sertoli cell function and meiotic

cell divisions (129). Similarly, it was reported that the Leydig cells

of TCDD-exposed rats showed reduction in gene expression of

P450scc (CYP11A1), which mediates biosynthesis of progesterone

and testosterone-related hormones (130). In line with this, TCDD-

exposed male mice showed a significant decreases in expression

levels of P450scc and LH receptor encoding genes (131). A similar

increase was also reported for the aromatase gene that transforms

testosterone to estradiol hormone in TCDD-exposed Sertoli cell

(132). Additionally, TCDD-exposed rats showed changes in the

expression of six testicular proteins including testis-specific heat

shock protein 70 (Hsp70), protein disulfide isomerase A3

precursor, 3-phosphoglycerate dehydrogenase, non-muscle myosin

heavy-chain type B-like protein, and superoxide dismutase 1

that were significantly up-regulated, while the fertility protein SP22

and phosphatidylethanolamine-binding protein were down-

regulated (133).
Effect of dioxins on the ratio of X and
Y chromosome-bearing live
spermatozoa

Although equal numbers of X and Y spermatozoa are

produced during spermatogenesis, environmental and

occupational exposure to toxic pollutants can change the sex

chromosome ratio in ejaculated spermatozoa. This can be

reflected by an altered sex ratio at birth (SRB) and mostly

occurs through the disruption of the hormonal system (134).

The sex selection involves different events, from

spermatogenesis and different Y:X sperm ratios before

ejaculation, the differential behavior of Y and X sperm in the

female reproductive tract, differential conception and

implantation rates, and differential fetal loss. In normal

situations, Y-bearing sperm have a higher chance of fertilizing

an oocyte because they are smaller and more mobile than X-

bearing sperm (135). However, environmental factors can

change sperm characteristics, therefore remove the Y sperm

advantage and this alone can alter SRB (41). Several studies

have shown changes in the ratio of males to females at birth

for human and animals in connection with environmental

hazards, causing an effective reduce in the male/female ratio

offspring (136, 137), suggesting therefore a possible decrease in

the viability of Y spermatozoa than X (41, 134). These studies

indicate that, in most cases, the altered male/female ratio

offspring is coming from fathers who had been exposed to

environmental hazards.
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The effect of exposure to certain hazards was experimentally

evaluated, and the ability of X spermatozoa to survive longer

than Y spermatozoa under stressful conditions in vitro was

reported (138). From these studies it was hypothesized that

environmental pollutants can seriously affect sperm

characteristics in terms of morphology, quantity, motility and Y:

X ratio. It has been reported that paternal exposure to high

levels of TCDD is associated with the birth of more females

(139). Thus, TCDD concentrations in the serum of potentially

exposed fathers were linked to a lower male/female sex ratio in

their offspring and this effect can persist for several years after

exposure (136, 137). Epidemiological studies suggest that

exposure to TCDD can lower the male/female ratio of human

offspring (113). One of the most important studies on humans

was performed on local inhabitants who had been exposed to

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a result of

chemical plant accident in Seveso, Italy in 1976, where the high

TCDD exposure in both parents was significantly associated

with an excess of female offspring (140, 137) Similar effects were

reported in a study conducted on people who exposed to

dioxins during herbicide and pesticide manufacturing in Russia

and New Zealand, where a decrease of SRB was related to the

paternal exposure to dioxins (137, 139, 141). Additionally, the in

vitro exposure of human spermatozoa to TCDD affected sperm

fertilization-associated abilities through their deleterious effects

on motility, overall viability, capacitation, as well as differential

viability of X and Y sperm (134). However, the effects of dioxin-

like compounds, polychlorinated biphenyls (PCBs), on SRB

showed conflicting results between exposed males and females.

For example, men in Yucheng city in Taiwan who ingested

PCB-contaminated cooking oils fathered fewer boys, but no

effects were observed for exposed mothers (40). Contrary to this,

no effect of PCBs on SRB was observed after a high exposure of

people to PCBs during the Yusho disease incident in Kyushu,

Japan (142). Furthermore, eating PCBs-contaminated fish

lowered SRB for mothers (143), but increased SRB for fathers

(144). Similarly, maternal exposure to PCBs was associated with

lower SRB in a sample of San Francisco Bay area women (145).

Otherwise, the SRB decreased when both parents were exposed

to PCBs (146). In a comparative study on the impact of PCB

contaminants on human sperm Y:X chromosome ratio between

three European populations, Swedish, Polish and Ukrainian, and

the Inuit population in Greenland, the authors found that the

Greenlandic and Swedish men had higher Y:X ratio and higher

levels of PCB-153 in blood than the Polish and Ukrainians, and

the level of Y spermatozoa was positively correlated with PCB in

the Swedish cohort, while a negative relationship was observed

in the Polish cohort (147).

In mice, short-term exposure to TCDD affects the sperm

motility and viability, and increases acrosome reaction.

Interestingly, Y spermatozoa has lower survival times than X

spermatozoa at high concentrations of TCDD resulting in a

low fertilization rate (148). Furthermore, in vitro exposure of
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mouse spermatozoa to TCDD significantly decreased the

fertilizing ability of Y-bearing spermatozoa and consequently

reduced the proportion of embryos with XY chromosomes

(148). Also, the in vivo exposure of mice to TCDD showed

reduced the sex ratio of two-cell embryos (149), although the

direct paternal or in utero exposure of rats to TCDD decreased

the proportion of male offspring (149, 150).

A similar scenario was reported in zebrafish (151). Although

many studies found that the lower SRB coincided with changes

in sperm characteristics, e.g., morphological abnormality,

reduced viability and motility and capacitation) (148), some of

studies revealed that the abnormality of sperm characteristics

had no effects on SRB (152). However, these inconsistent

results could be due to several factors, e.g., type and duration

of exposure, sample size, demographic characteristics of the

exposed cohort and possibly the presence of other chemicals

than those in question. We can conclude that exposure to

TCDD affects the sex ratio, and this is likely mediated by a

high level of testosterone/gonadotropin in men and a high

level of estrogen in women, thus leading to production of

more male offspring (153). In line with this, many reports

identified dioxins as disruptors of sex hormonal systems,

causing disorders in steroidogenic hormone synthesis and

possibly a failure of testosterone synthesis. This critical point

is reviewed in the next paragraph.
Effects of dioxins on serum sex
hormones

Reports on the effects of TCDD on hormonal levels are

conflicting. Some studies show that the exposure of animals to

TCDD led to a net decrease in LH and testosterone levels

while other studies show no such changes. However, these

contradictory data could be due to the dose and the route of

exposure, the animal species, and its developmental stage as

well as to how long after exposure the hormones were

measured (115, 154, 155).. Regarding the dose, while exposure

of rat female to a low dose of dioxin during pregnancy led to

a reduction of testosterone in testes of offspring in the

embryonic stage, exposure to high doses of dioxins led to

reduced levels of LH hormones (156, 157). Regarding the

route of exposure, Choi et al., demonstrated that injection of

rat intraperitoneally with TCDD (50 µg/kg body weight)

caused a significant decrease in serum testosterone levels and

a significant increase in serum FSH, LH and estradiol levels

(133). Regarding the animal species, adult male C57BL/6J

mice that were intraperitoneally administered TCDD (100 µg/

kg body weight) had reductions in intratesticular testosterone

but no change in expression of LH hormone in the pituitary

gland (131). Regarding the developmental stage, in utero and

lactational exposure studies on rats have shown that

gestational exposure to TCDD did not affect testosterone
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TABLE 2 Summarizes the information on the models, species, molecules used and effects of dioxins on animals.

Models species Dose/age Compound Route of
exposure

Toxic effects Reference

Zebrafish AB strain 50 pg/ml at both 3 and 7
weeks post fertilization
(during sexual
differentiation and gonad
maturation)

TCDD waterborne TCDD Decreased spermatozoa with
concurrent increase in
spermatogonia, and decreased
germinal epithelium thickness, alter
expression of genes associated with
testis development, steroidogenesis,
spermatogenesis, hormone
metabolism and xenobiotic response

Baker et al. (2016)

Guninea
pig

4–5 week old 1 µg/kg TCDD Intraperitoneal
injection

Dissolution of germinal epithelium,
disruption of tight junction between
adjacent sertoli cell and altered germ
cell at all developmental stages

Kim et al. (1999).

Hyline
cocks

Ten-month-old Hyline
cocks. 50 mg/kg for six
consecutive weeks.

PCBs (Aroclor 1,254 Oral administration Decreased testicular weight and
serum testosterone, damage of the
seminiferous tubules

Cai-qiao and Hui-
li (2004)

Marmoset
Monky

CALLITHRIX
JACCHUS

mature marmosets 1 to
10 µg/kg

TCDD Subcutaneous
injection

Decreased intercellular contact in the
germinal epithelium. The Sertoli’s
cells exhibited an increased amount
of lipids, phagolysosomes, and
vacuoles in their cytoplasm. Leydig’s
cells also exhibited a decrease in
activity of 3β-hydroxysteroid
dehydrogenase (3β-HSD) resulting
in failure T synthesis

Rune et al. (1991)

Mice C57BL6 8-week-old. PCB99 (10)
and PCB153 (100)mg/kg

PCB99 and PCB153 Puberty/oral gavage Showed a significant increase in
Leydig cell apoptosis

Oskam et al.
(2004)

Mice C57BL6 Pregnant female on
gestation day 13 (In utero
and lactational exposure)
5 μg/kg

TCDD In utero and
lactational
exposure/oral
administration

reduced ventral, dorsolateral, and
anterior lobe of prostate and seminal
vesicle weight

Lin et al. (2002)

Mice C57BL Adult male (0.8 to
100 µg/kg)

TCDD Intraperitoneal
injection

reduction of P450scc and LHR in the
testis which play essential role in T
hormone

Mai et al. (2020)

Rat Wistar Maternal Exposure/ (0.5
to 2 µg/kg)

TCDD maternal Exposure decrease in reproductive organ
weight, reduction in epididymal
sperm reserves, percent motile and
viable sperm with an increase in
percent morphological abnormal
sperm

Mai et al. (2020)

Rat Albino Adult male (90 days old)
27.5 µg/kg

TCDD oral administration
via gavage for four
weeks

caused degeneration of seminiferous
tubules, tubular necrosis,
intratubular vacuolization, widened
lumen and deshaped germ cells,
induced testicular damage via
creation disorders in oxidative stress
parameters, serum hormone Level,
and sperm parameters.

El-Gerbed et al.
(2015)

Rat Sprague–
Dawley

Maternal Exposure (on
gestational day 15)/(0.5–
2 μg/kg)

PCB mixture Aroclor
1,221 (A1221):
PCB138, PCB153,
and PCB180

Prenatal exposure
on gestational days
16 and 18,

Showed that prenatal exposure to
PCB’s caused significantly altered
gene expression of nine genes in the
preoptic area of the hypothalamus,
indicating that changes due to
endocrine disruption are obvious as
early as at birth.

Dickerson et al.
(2011)

Rat Sprague-Dawley Maternal Exposure on
GD15/ (0.064 to 1 µg/kg)

TCDD oral dose/maternal
Exposure

decreased of testis, seminal vesicle,
and prostate weight, decreased sperm
count, especially the epididymal
sperm counts

Wilker et al. (1996)

(continued)
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TABLE 2 Continued

Models species Dose/age Compound Route of
exposure

Toxic effects Reference

RAT Holtzman 50 pg/ml at both 3 and 7
weeks post fertilization
(during sexual
differentiation and gonad
maturation)

TCDD oral dose/perinatal
Exposure on GD15

reduced anogenital distance, reduced
weight of accessory sexual organs,
reduced spermatogenesis, and caused
remasculinization or feminization of
male sexual behavior

Mably et al. (1992),
Mably et al. (1992)
and Mably et al.
(1992)

Faiad et al. 10.3389/frph.2022.1009090
concentration in male rat offspring (119). This study conflicted

with another study which reported 50% reduction of

testosterone was observed in adult male offspring whose

mothers had been exposed to TCDD during pregnancy and

lactation (158), whereas circulating testosterone, DHT

(dihydrotestosterone) decreased in adults rat exposed to

TCDD (117). Chaffin et al. reported decreased circulating

estrogen levels in female offspring of Holtzman rats exposed

to 1 µg/kg of TCDD on gestational day GD15 (159). However,

the results of this study conflicted with previous choi’s study

on TCDD exposed adult Sprague-Dawley rats (50 µg/kg)

which reported an increase in estradiol levels, this

disagreement can be explained by the difference of dose and

exposure period and route of exposure.
Effects of dioxins on sperm count,
quality and fertility

Dioxins have proven deleterious effects on sperm

characteristics such as their motility, quality, count and

capacitation. Such effects were demonstrated in rats, where

sperm quality and fertility were considerably reduced after

exposure to TCDD (160). Exposure to TCDD also reduced

sperm count and motility in the epididymis (161). Similarly,

the exposure of Rhesus monkeys to TCDD in prenatal or in

lactation periods led to reduction of sperm quality (162). In

humans, it was reported that the high level of PCBs in the

seminal plasma was correlated with a decrease of sperm

motility (163). Similarly, a correlation between presence of

PCB 126 in serum and viability in men with low semen

quality was found (164). More recent results showed that

TCDD exposure reduced the mice testis weight, sperm count

and blood testosterone concentration, suggesting therefore

that TCDD can cause damage to the male reproductive

system of rodents through direct or indirect exposure (165).
Transgenerational effects of dioxins
on male reproduction

There are several lines of evidence confirming that the

effects of TCDD exposure on animals and humans can persist
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into the next generation (166, 167). This was shown in

humans exposed to TCDD as a result of the 1976 chemical

explosion in Seveso, Italy, where a reduced motility and a low

count of sperm of their male offspring during puberty was

reported (122, 168). These effects are considered multi-

generational when it is confined to TCDD-exposed adult

males or the F1 generation of exposed mothers, or trans

generational effects while it transmitted to F2 and F3

generations (169). In this context, it was reported that the

ancestral exposure of Sprague-Dawley rats to TCDD (100 ng/

kg BW/d) via intraperitoneal (IP) injections from gestational

days 8–14 caused a net increase in the level of testosterone in

1-year-old Sprague-Dawley rats of the F3 generation (170).

Similarly, it was found that TCDD promoted alterations in

sperm morphology, lowered the level of serum testosterone

and reduced the transit time of sperm in the epididymis in

F1, F2 and F3 generations of male Wistar rats that were

ancestrally exposed to TCDD (1 mg/kg) via oral gavage on

gestational day 15 only (160). Similar ancestral consequences

were showed in C57BL/6 mice following the exposure to

TCDD (10 mg/kg) on embryonic day 15.5, where

abnormalities in sperm morphology were observed as far as

the F3 generation (171). More recently, male fertility

assessment in adult rats, borne form adult female Wistar rats

exposed to TCDD during the critical stage of organogenesis,

revealed a significant decline in mating and fertility indices

(124). Table 2 presents information on the models, species,

dose, animal age, route of exposure, congeners used and the

effects of dioxins on animals.
Conclusion and future prospects

It is recognized that dioxins represent a serious and

persistent threat to the reproductive health of mankind and

other living organisms. Animal experimental and human

epidemiological studies have established that exposure to

dioxins is associated with irreversible and transgenerational

multiple adverse effects on male reproductive systems, which

are mediated by AHR. These effects include hormonal

disrupting, alteration in male/female ratios, production of

poor semen quality, and obstructing the development of

sexual glands. However, to further investigate these effects, it
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will be necessary to generate more comprehensive data at the

molecular, cellular, and biochemical levels. Future studies

should therefore focus on understanding the effects of dioxins

on the cellular and molecular levels of germ cells, and the

lesions in signaling pathways that are responsible for the

dysfunction of spermatogenesis. Understanding the molecular

mechanism of dioxins influence may enable researchers to

develop novel treatments and strategies for the early

prevention of the deleterious effects of dioxins on male fertility.
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