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Male fertility potential can be influenced by a variety of conditions that frequently coincide.

Spermatozoa are particularly susceptible to oxidative damage due to their limited

antioxidant capacity and cell membrane rich in polyunsaturated fatty acids (PUFAs).

The role of oxidative stress (OS) in the etiology of male infertility has been the primary

focus of our Stellenbosch University Reproductive Research Group (SURRG) over the

last 10 years. This review aims to provide a novel insight into the impact of OS on

spermatozoa and male reproductive function by reviewing the OS-related findings from

a wide variety of studies conducted in our laboratory, along with those emerging from

other investigators. We will provide a concise overview of the production of reactive

oxygen species (ROS) and the development of OS in the male reproductive tract along

with the physiological and pathological effects thereof on male reproductive functions.

Recent advances in methods and techniques used for the assessment of OS will also be

highlighted. We will furthermore consider the current evidence regarding the association

between OS and ejaculatory abstinence period, as well as the potential mechanisms

involved in the pathophysiology of various systemic diseases such as obesity, insulin

resistance, hypertension, and certain mental health disorders which have been shown to

cause OS induced male infertility. Finally, special emphasis will be placed on the potential

for transferring and incorporating research findings emanating from different experimental

studies into clinical practice.
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INTRODUCTION

Infertility is one of the most complicated disorders of the reproductive system. It is characterized
by the inability to conceive after 1 year or longer of regular unprotected sexual intercourse (1).
Worldwide, about 8–12 % of couples of reproductive age have been reported to be affected by
infertility, with a widely divergent estimates of prevalence across regions and countries (2). Usually,
when the attributable causes of female infertility have been eliminated and/or semen analysis results
fail to meet the World Health Organization (WHO) criteria (3), male factor infertility is taken
into consideration as the potential etiological factor. Males are considered to be the sole cause of
infertility in almost 20% of all cases and are at least partly involved in another 30–40% (4). Despite
remarkable advances in the diagnosis and management of male infertility, almost one half of all
cases still idiopathic, for which no evident etiological factor has been identified (5).
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In recent years, an emerging concern has been raised
regarding the overall increase in male infertility rates, reflecting
a global time-related deterioration in semen quality with
concomitant increase in the incidence of male reproductive
abnormalities (6–9). Although the particular reason for the
increased incidence of male infertility remains elusive, various
environmental, nutritional and socioeconomic factors have been
suggested to contribute to the downward trend in semen
quality (10, 11). Furthermore, common complications including
obesity, dyslipidaemia, hypertension, insulin resistance as well
as psychological stress and anxiety have also been associated
with impaired fertility in males of reproductive potential (12–
14). The link between these comorbidities and male infertility
appears to be complicated and poorly understood. However,
these is research-based evidence demonstrating that oxidative
damage is one of the fundamental mechanisms involved in the
etiopathogenesis of these illnesses (15–20). Concurrently, the
critical role of oxidative stress (OS) in the development of male
reproductive dysfunction has continued to gain a great deal of
attention (21–24).

Redox equilibrium is essential for maintaining various
vital aspects of sperm functionality. However, an imbalance
in the generation and elimination of reactive oxygen species
(ROS) negatively affects sperm quality due to oxidative damage
(25). Owing to their imperfect antioxidant capacity and
cell membrane rich in polyunsaturated fatty acids (PUFAs),
spermatozoa are especially vulnerable to oxidative destruction.
Under certain pathological conditions, ROS can be converted
into highly reactive agents, causing dysregulation of various
cellular signaling pathways and extensive damage to multiple
biomolecules including nucleic acids, proteins, and lipids.
The subsequent series of adverse events includes loss of
membrane integrity, mitochondrial dysfunction, impaired
sperm motility as well as DNA damage and apoptosis
(23, 26).

The role of OS in the etiology of male infertility has been
the primary focus of our Stellenbosch University Reproductive
Research Group (SURRG) over the last 10 years. This review
aims to provide a novel insight into the impact of OS on
spermatozoa and male reproductive function by reviewing the
OS-related findings from a wide variety of studies conducted
in our laboratory, along with those emerging from other
investigators. We will provide a concise overview of the
production of ROS and the development of OS in the male
reproductive tract along with the physiological and pathological
effects thereof on male reproductive functions. Well-known
and recent advances in methods and techniques used for the
assessment of OS will also be highlighted. We will furthermore
consider the current evidence regarding the association between
OS and ejaculatory abstinence period, as well as the potential
mechanisms involved in the pathophysiology of various systemic
diseases such as obesity, insulin resistance, hypertension, and
certain mental health disorders which have been shown to
cause OS induced male infertility. Finally, special emphasis will
be placed on the potential for transferring and incorporating
research findings emanating from different experimental studies
into clinical practice.

CURRENT APPROACHES AND METHODS
IN THE ASSESSMENT OF OS MARKERS IN
SPERM AND SEMEN

There are several methods to measure ROS in the laboratory
setting. These include: the the indirect measurement of via
enzymatic antioxidant levels (CAT), superoxide dismutase
(SOD), glutathione peroxidase (GPx), reduced glutathione
(GSH) and Thiobarbituric Acid Reactive Substances (TBARS)
via by means of spectrophotometric measurement; the direct
measurement of total antioxidant capacity (TAC) via Mioxys;
the use of chemiluminescence to detect ROS species via the
membrane permeable reagent, luminol; and the assessment of
ROS and reactive nitrogen species (RNS) molecules via florescent
markers (27) which can be measured via using e.g., flow
cytometry and fluorescence microscopy.

Seminal plasma is well-endowed with various ROS and thus
the TAC of sperm is an example of an indirect method of
assessing ROS (28, 29). Antioxidant enzymes such as CAT, SOD,
GSH and GPx represent the TAC of sperm (29), and low levels
have been discovered in males with impeded fertility (29). Several
reagents are used per assay in order to measure the activity of
these antioxidant enzymes.

Superoxide Dismutase
• The SOD enzyme assay is dependent on the

spectrophotometric assessment of superoxide (O −•
2 ).

• The assay uses two chemicals, 6 hydroxydopamine (6HD) and
diethylenetriaminepentaacetic acid (DETAPAC), to generate
O−•
2 anions, which are reduced in the presence of SOD.

• The reaction yields a colorimetric signal where samples with
reduced amounts of SOD emit a lesser signal that can be
measured via colorimetry (30).

Catalase
• CAT is quantified by adding hydrogen peroxide (H2O2) to

the sample and analyzing the rate of decomposition of CAT,
which is proportional to a reduction in the absorbance reading
generated by the instrument (29, 31).

Reduced Glutathione
• GSH can be determined by adding 5,5′-dithiobis-2-

nitrobenzoic acid (Ellman’s reagent) to the sample.
• This reagent reacts with the thiol groups of GSHwhich convert

2-nitro-5-thiobenzoate (NTB−) to NTB2−, thereby producing
a yellow color, which can subsequently be quantified (29).

Glutathione Peroxidase
• GPx is measured by adding glutathione reductase (GR) to

the sample after which nicotinamide adenine dinucleotide
phosphate (NADPH) is transformed to a reduced state,
allowing a decrease in absorbance to be subsequently
measured (30, 32).

Lipid Peroxidation
• OS leads to cellular injury via several mechanisms, with lipid

peroxidation being a prominent one. Malondialdehyde
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(MDA) is a typical product of lipid peroxidation.
Polyunsaturated fats yield lipid peroxides, which, due to their
instability, disintegrate into several compounds including
reactive carbonyl compounds, e.g., MDA. In addition,
biological specimens undergoing OS contain TBARS such as
aldehydes and hydroperoxides, which increase with increasing
OS. MDA forms adducts with TBARS, thiobarbituric acid in
particular, with which it forms a 1:2 adduct. This MDA-TBA
complex, forming under acidic, high temperature (90–100◦C)
conditions, elicits a colorimetric reaction.

• Additionally, 4-hydroxy-nonenal (HNE) and Isoprostanes
(F2-isoprostane, 15-(S)-8-isoprostagladin F2α) are by-
products of PUFA, and are also considered as indices of
lipid peroxidation (33, 34). These products can be measured
via enzyme-linked immunosorbent assay (ELISA), gas
chromatography mass spectrometry (GC-MS) or by liquid
chromatography- mass spectrometry (LC-MS) (35).

Total Antioxidant Capacity
• TAC highlights the crucial role of antioxidant enzymes in

counterbalancing ROS generation and therefore can be a
powerful tool in determining the redox status of a sample
(36). However, the measurement of individual antioxidant
enzymes can be time consuming and costly. Additionally, it
does not generate a direct measure of the total level of ROS in
a system (37).

Oxidative Reduction Potential
• Oxidative reduction potential (ORP) is a direct analysis of OS

(38). It measures the transfer of electrons from a reductant to
an oxidant (38).

• ORP has been shown to be negatively correlated with sperm
concentration and total sperm count (38).

• This analysis does not rely on any biomarker for OS and allows
for the quantification of all oxidants and antioxidants in a
given sample (38).

• TheMale infertility Oxidation System (MiOXSYS) can be used
to accurately measure ORP (39).

• The system consists of an electrochemical cell with a
counter and a reference electrode, as well as an impedance
electrometer (39).

• It measures static ORP (sORP) which is indicative of the
existing balance between total oxidants and reductants in a
sample, and the antioxidant capacity reserve (cORP). Samples
of high sORP levels indicate an imbalance that suggests the
presence of OS (39).

• Unlike chemiluminescence (see later) where ROS levels have a
significantly short half-life, ORP measurements are stable for
up to 120min.

• Additionally, MiOXSYS sORP’s ability to measure all oxidants
and reductants makes it clinically meaningful in the diagnosis
of cases of male infertility that is associated with high ROS
levels (40).

Chemiluminescence
• Chemiluminescence measures light that is emitted in a

reaction when reagents are added to a biological sample (41).

• Membrane permeable probes such as luminol and lucigen
react with ROS and generate a luminescent signal. Luminol
measures H2O2, O

−•
2 and other ROS as these oxidants bind

to luminol and they become univalently oxidized luminol
radicals, or an oxidative event occurs which can be measured
by a chemiluminometer.

• The oxidative event is a one-electron reaction which occurs
due to the presence of e.g., endogenous H2O2 peroxidase.

• Unstable radicals are generated which react with oxygen
molecules in their ground state, producing O−•

2 . The O−•
2

additionally oxygenates luminol radical species, which then
creates an unstabe endoperoxide that degrades and causes a
light emission (41).

• Luminol and Lucigen are two probes that are used in
chemiluminescent assays to detect ROS. Lucigenin is best
suited to detect O−•

2 as it is positively charged, which renders
it membrane-impermeable and allows it to react with O−•

2 in
the extracellular space (29, 42). Unlike Lucigen, Luminol is
uncharged and is therefore membrane permeable. This allows
it to react with ROS in both the intra and extracellular spaces
(29). Luminol reacts with a variety of ROS including O−•

2 ,
H2O2 and hydroxyl radicals (OH•) (40). This probe, however,
is unable to differentiate between the types of ROS (40).

• Chemiluminescent assays have been used to show a
negative association between an increase in ROS levels
and sperm parameters. These parameters include sperm
motility, viability, morphology and concentration (29). A
variety of factors may influence the data generated by the
chemiluminescence assays, which include: the presence of
leukocytes in the sperm sample, sperm incubation time, the
pH, and contamination of the seminal plasma. It should also
be noted that both sample and probe concentrations also
affect luminescence, thus it is important to have a fixed probe
concentration for varying concentrations of sperm.

• Chemiluminescence assays are sensitive, which is ideal as
sperm generally produce low concentrations of ROS (40, 43).
The results of the assay may be reliable in samples with sperm
of a concentration ±1 million/mL, as the sensitivity of the
assay declines significantly at greater concentrations (44).

Flow Cytometry
• Flow cytometry involves the use of florescent markers

to measure ROS and RNS (45, 46). Contradictory to
chemiluminescence, florescent techniques have a higher
accuracy, specificity and reproducibility rate.

• Flow cytometry allows for the exclusive focus on spermatozoa
(46). Additionally, a large number of cells can be analyzed
at once.

• However, the utilization of florescent probes requires
expensive equipment. The data generated does not quantify
ROS but rather is indicative of the percentage of cells
displaying a high ROS activity.

• A florescent probe like 2,7-dichlorofluorescein diacetate
(H2DCFDA) penetrates the spermatozoa and indicates H2O2

concentrations, as H2O2 de-esterifies in the presence of DCFH
and forms fluorescent 2,7-dichlorofluorescein (DCF) (47).
DCF fluoresces and this can be measured.

Frontiers in Reproductive Health | www.frontiersin.org 3 February 2022 | Volume 4 | Article 822257

https://www.frontiersin.org/journals/reproductive-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/reproductive-health#articles


Ayad et al. Oxidative Stress and Male Infertility: A Research Perspective

• Dihydroethidium/hydroethidine (DHE) is a non-florescent
probe that is oxidized by a variety of reactive oxygen and
nitrogen species. This probe is primarily used to visualize
O−•
2 production. The probe allows for hydroxylation which

generates a red florescent emission that, in turn, stains the
mitochondrial and nuclear DNA of sperm. Utilizing DHE is
advantageous as it allows for a clearer insight into the frontier
role of the mitochondria in ROS production (48).

ORIGINS OF ROS IN SEMEN

Leukocytes often exist throughout the male genital tract and
the presence of small quantities in the ejaculate represents a
normal finding. However, when the level of the peroxidase-
positive leukocytes goes beyond 1× 106/mL, leukocytospermia is
present (3). Polymorphonuclear neutrophils, the most common
type of seminal leukocytes, represent a primary endogenous
source of ROS in semen. Stimulation of these leukocytes
during an accessory gland or genitourinary infections triggers a
prominent increase in oxygen consumption and ROS generation
(49, 50), which impose OS on the engulfed pathogens as
part of the defense mechanisms. In patients with genital tract
infection, the presence of elevated levels of leukocytes in
semen has been associated with suboptimal semen quality and
impaired fertility potential (51–54). Several hypotheses have
been suggested to elucidate the role of leukocytospermia in
enhancing the generation of ROS by human spermatozoa, but
the precise molecular mechanism remains unclear. However, the
direct sperm-leukocyte interaction, as well as the inflammatory
mediators released by infiltrating leukocytes and bacteria
have been proposed to be implicated in altering the aerobic
metabolism of spermatozoa (55, 56). Furthermore, the presence
of bacteria in semen has been suggested to attenuate the ROS
scavenging capacity of spermatozoa. Such effect may vary widely
depending on the virulence of the pathogen as well as the sperm
subpopulation (56, 57).

Additionally, spermatozoa with excess residual cytoplasm
retaining along the midpiece are considered immature and
functionally defected cells. Cytoplasmic residues contain an
increased amount of enzymes particularly glucose-6-phosphate
dehydrogenase (G6PD) and NADPH oxidase (25). The excessive
presence of G6PD results in the generation of a significant
amounts of NADPH, which represents a primary source of
electrons essential for the reduction of molecular oxygen to
O−•
2 (50).
Mature spermatozoa themselves have also been suggested

to play a critical role in the production of ROS, probably
as an end-product of cellular metabolism (26). Mitochondria
play a key role in the synthesis of ROS via the activation
of the electron transport mechanism at the inner surface of
the mitochondrial membrane during oxidative phosphorylation
process. This crucial cellular process involves the transfer of
electrons and the reduction of oxygen molecules, producing O−•

2
(58). Furthermore, mitochondrial membranes are highly rich in
PUFAs which are primary substrates for ROS attack and lipid
peroxidation. This concurrently triggers the production of highly
reactive lipid aldehydes which covalently interact with electron

transport chain proteins, initiating vicious cycles of increased
rates of mitochondrial ROS generation (59).

Another source of OS is a varicocele testis. Varicocele is an
abnormal distention of the testicular veins in the pampiniform
plexus within the spermatic cord. Clinical varicocele is a major
contributor to male infertility, affecting as many as 40% of men
with primary infertility and up to 80% of men with secondary
infertility (60–62). There is considerable evidence that suggest the
implication of OS in the underlying mechanism of infertility in
varicocele patients. Numerous studies have reported significantly
increased levels of ROS in the semen of varicocele patients (63–
65). Varicocele patients have further shown considerably elevated
levels of 8-hydroxy-2′- deoxyguanosine, which is a sensitive
biomarker of oxidative DNA damage (66). These findings are
supported by the recent evidence highlighting the effectiveness
of varicocelectomy in improving sperm motility, DNA integrity,
antioxidant capacity and pregnancy rates (67–70) in infertile men
with varicocele.

Besides the above-mentioned endogenous sources of ROS,
a growing list of potential lifestyles and environmental factors
have been suggested to contribute to the extreme generation of
ROS in semen. These include cigarette smoking (71), alcohol
consumption (72) and electromagnetic radiations (73).

PHYSIOLOGICAL ROLES OF ROS

During spermatogenesis and epididymal transit, appropriate
amounts of ROS are required for the oxidation of cystein-thiol
groups essential for chromatin compaction and stabilization in
spermatozoa (25). As shown in Figure 1A, ROS are furthermore
implicated in the production of the mitochondrial capsule
through the oxidation of protein thiols catalyzed by phospholipid
hydroperoxide glutathione peroxidise. This enzyme is finally
converted to a cross-linked structural protein, comprising a
significant component of the mitochondrial sheath of mature
spermatozoa (26, 74).

Hyperactivation is a sperm motility pattern characterized
by an extremely vigorous whiplash-like flagellar beating, which
enhances the ability of the sperm to penetrate the cumulus
cell layer surrounding the oocyte (75, 76). The exact molecular
mechanism underlying sperm hyperactivation has not been fully
elucidated. However, a mild, constant generation of O−•

2 has
been shown to be crucial not only for the initiation, but also
the preservation of the hyperactivated state (75). Furthermore, a
significant increase in the proportion of spermatozoa displaying
hyperactivated motility was observed when the incubation
medium had been supplemented with an optimum concentration
of H2O2 (77).

Capacitation is a crucial physiological process of sperm
maturation occurs during its passage through the female
reproductive tract to enable sperm-oocyte interaction (78).
During this process, ROS act as essential intracellular messengers
to activate downstream signaling molecules mediating significant
changes in the membrane architecture (i.e., membrane
destabilization, permeability and lipid redistribution), which are
prerequisite for successful fertilization (79). Furthermore, the
established role of ROS in modulating tyrosine phosphorylation
during capacitation and other relevant processes is tightly
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FIGURE 1 | Role of reactive oxygen species (ROS) in sperm function. (A)

Physiological role of ROS, (B) Pathological effect of ROS on sperm function.

regulated by complex cross-talks between various signaling
pathways, including the cAMP/PKA and the extracellular
signal-regulated kinase pathways (79–81).

In contrast to sperm capacitation, acrosome reaction is an
irreversible process which involves the release of acrosomal
hydrolytic enzymes to attain sperm oocyte fusion (82). In
vivo, the sperm-zona pellucida binding triggers a cascade of
signal transduction reactions that culminates in an significant
increase in intracellular Ca2+ levels required for acrosomal
exocytosis (83). The generation of both O−•

2 and H2O2 within
physiological limits is essential to elicit acrosome reaction
through the activation of tyrosine phosphorylation of potential
target proteins particularly on the pre-equatorial region of the
sperm head surface (84). The biochemical cascade of events
involved in triggering the acrosome reaction appears to share
some underlying features with those identified for capacitation,
such as Ca2+ influx and the activation of adenylate cyclase and
cAMP as well as the phosphorylation of reasonably similar target
substrates (25, 81, 85).

PATHOLOGICAL EFFECTS OF ROS ON
SPERMATOZOA

Remarkably increased ROS levels have been detected in 25–
40% of semen samples of infertile patients (28, 86, 87). The
extent of oxidative damage to spermatozoa may vary significantly
among infertile men depending on the concentrations and
properties of reactive molecules, length of exposure, antioxidant
efficiency as well as surrounding temperature and oxygen
tension. High concentrations and prolonged exposure to
ROS causes extensive damage to various integral cellular
biomolecules (Figure 1B), including proteins, lipids and nucleic
acids, which ultimately hampers multiple cellular functions
(25, 26, 49, 88).

Sperm plasma membrane contains larger amounts of PUFAs,
particularly docosahexaenoic acids, which are required to
maintain optimal fluidity essential for multiple membrane fusion
events. However, theses fatty acids act as potential substrates
for peroxidation as they comprise methylene groups with highly
reactive hydrogen atoms, thereby enhancing the susceptibility of
sperm to oxidative damage (89). Lipid peroxidation is a chain
reaction initiated when ROS, particularly OH• andHydroperoxyl
(HO2) generated fromO−•

2 , combine with a hydrogen atom from
a fatty acid to produce a lipid radical. These unstable radicals
react rapidly with oxygen molecules to form peroxy fatty acid
radicals, which are thereafter converted into lipid peroxides. In
the presence of a transitional metal ion, lipid peroxide is catalyzed
into OH• (90), which have the ability to attract electrons from
other PUFAs to generate new radicals and thereby propagating
the lipid peroxidation chain reaction (25). This chain reaction
is halted when the radicals react with each other to create a
non-reactive product called MDA. This by-product is widely
used as a biomarker to estimate the extent of peroxidation
damage to spermatozoa (91). Another product of interest in the
assessment of lipid peroxidation in any biological sample are the
Isoprostanes (IsoPs).

The sustained lipid peroxidation chain reaction results in
progressive loss of membrane fatty acids, with consequent
decrease in membrane fluidity, increased non-specific
permeability to ions, and inhibition of membrane bound
receptors and enzymes (23).

Besides their role in mediating lipid peroxidation, ROS
especially nitric oxide (NO•), O−•

2 and OH• (92), have also
been shown to attach to sperm DNAmolecules causing excessive
modifications and deletions in their nucleotide bases and strand
breakages, along with other multiple genotoxic effects (93).
Sperm DNA is especially prone to oxidative damage owing to
its poor chromatin compaction and incomplete protamination
(55, 94). The role of ROS in sperm DNA damaging has further
been supported by the significant and positive correlations
observed between the levels seminal ROS and the proportions of
spermatozoa with fragmented DNA (95, 96).

ROS has also been implicated as an apoptotic stimulus that
triggers the mitochondria to release some signaling molecules
crucial for the activation of programmed cell death (97).
Mature spermatozoa from ROS-positive infertile patients showed
substantially elevated levels of apoptosis compared with the
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control group (98). However, antioxidant therapy has recently
shown to reduce the apoptotic response to OS (99).

OS-INDUCED CHANGES IN
CONVENTIONAL SEMEN PARAMETERS

Several studies have been undertaken correlating various
OS markers with fertility status (100–102) and also basic
sperm quality parameters including morphology (103, 104)
and motility (24, 105, 106). In this regard, the SURRG has
published the most recent and comprehensive study aiming
at establishing statistical correlations between conventional
semen parameters obtained with Computer-aided sperm analysis
(CASA) and a set of OS and membrane lipid peroxidation
variables. The insight gained from this study complement
those of previous investigations and contribute additional
evidence with respect to the significance of detailed CASA
motility, velocity and kinematic parameters in bridging the gap
between conventional semen analysis and the oxidative status
(107). Results obtained from this study indicates that rapid
progressive motility should prove to be particularly valuable
sensitive indicator of lipid peroxidation that could be impaired
prior to any detectable deterioration in other sperm motion
characteristics. In addition, the observed inverse relationship
between intracellular sperm O−•

2 levels and average-path velocity
(VAP) is important in furthering our understanding of the
possible role of free radicals in constraining the actual rate
of sperm forward movement within the female reproductive
tract, which is vital for successful fertilization. Similarly, the
strong positive correlations between SOD activity and both
curvilinear velocity (VCL) and amplitude of lateral head
displacement (ALH) established a quantitative framework for
detecting the role of OS in the development of spontaneous
and premature hyperactivated motility of spermatozoa in
the ejaculate.

Continuing along these lines, it is recommended for future
studies the predicting of OS markers from conventional basic
parameters through the building of linear regression models
assist in indicating the extent to which changes in each individual
measurement of basic semen analysis are related to changes
in the oxidative status. Indeed, OS markers provide valuable
clinical insight into vital aspects of sperm functions. However, the
prediction of these markers from the core basic parameters could
possibly assist in limiting the necessity for these assays, which
are complex, highly expensive and lack universal standardization.
This would also enhance the applicability of basic semen analysis,
which remains the bedrock of any semen diagnosis, as a
more cost-effective and efficient approach for the diagnosis of
idiopathic and unexplained male infertility.

ALTERATIONS IN OS STATUS DURING
DIFFERENT SEXUAL ABSTINENCE
PERIODS

According to the most recent WHO manual for processing and
examining human semen (108) and guidelines for the same by

other associations such as Nordic Association for Andrology
(NAFA) and the European Society of Human Reproduction
and Embryology (ESHRE) (109), subjects must remain abstinent
for a minimum period of 2 days, but not longer than seven
days before collecting a sample for a standard semen analysis.
While the NAFA and ESHRE further added that abstinence
intervals of 3–4 days is preferred for analyzing human semen.
These variations in ejaculatory abstinence periods suggested by
different regulatory bodies has instigated a growing concern as
to what the precise period of ejaculatory abstinence ought to
be for an optimal semen sample. This has prompted several
studies to examine the influence of abstinence periods on
various semen quality parameters; however, the results are
not conclusive.

Given the gap of evidence, members of our SURRG recently
published a comprehensive systematic review of literature
assessing the relationship between sexual abstinence and a range
of semen/sperm quality parameters (110). This review included a
total of 30 studies published between January 1979 andDecember
2016, where the periods of sexual abstinence were categorized
into≤1 day, 2–3 days, 4–5 days, 6–7 days and>7 days. Ayad et al.
displayed that three studies had considered intracellular ROS
concentration as a quality parameter of sperm when evaluating
the effect of the abstinence period (38, 111, 112), whereas
only one study investigated the relationship with respect to
seminal ROS levels (113). These studies collectively showed a
general trend of decrease in ROS levels after short abstinence
compared with long abstinence. Additionally, only one study
(114) had evaluated the relationship in terms of seminal plasma
antioxidants and sperm lipid peroxidation. Marshburn et al.
reported a considerable improvement in the TAC of seminal
plasma after 1 day of sexual abstinence compared to 4 days,
whereas lipid peroxidation of the sperm membrane remained
unchanged. Furthermore, a study conducted in our laboratory
included a hundred normospermic individuals revealed that only
4 h of sexual abstinence could significant increase seminal plasma
SOD activity, but did not change the CAT activity or TBARS
levels (115). More recently, shortening the abstinence duration
from >4 to ≤2 days resulted in a significant reduction in the
levels of ROS in semen samples collected from 90 patients with
unexplained male factor infertility (116). Similar findings were
also shown by Okada et al. (117), who collected semen samples
from 50 normospermic men each abstaining sequentially for 1
and 4 days. They reported a significant decline in seminal plasma
TBARS levels and intracellular oxidative activity after only 1 day
of sexual abstinence (117).

Despite the limited data available, the weight of evidence
indicates that decreasing the ejaculatory abstinence period may
minimize the adverse effects of OS on sperm quality and function.
In addition to their limited intracellular antioxidant capacity
spermatozoa, during their epididymis maturation and storage,
are constantly exposed to ROS damage by lipid peroxidation
through their PUFA rich plasma membranes. Accordingly, the
release of spermatozoa through more frequent ejaculations
might be a potential strategy to attenuate the detrimental
effects of ROS and improve perm quality (Figure 2) (115,
118).
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FIGURE 2 | Effect of short abstinence on sperm function. Decrease in the

length of abstinence (short abstinence) leads to a reduction in ROS levels and

an increased antioxidant level, which consequently reduces the rate of sperm

membrane lipid peroxidation.

HYPERTENSION-INDUCED OS IN MALE
INFERTILITY

Hypertension, also referred to as elevated blood pressure
is estimated to affect about 1.28 billion adults aged 30–79
globally (119), indicating that 16.4% of the world’s population
is hypertensive. Studies have associated hypertension to some
aspects of sperm function (120–123). A group from Brazil that
utilized a rat model for renovascular hypertension to investigate
the link between hypertension and male infertility observed a
decreased sexual behavior and impaired spermatogenesis, which
was attributed to imbalances in prolactin, testosterone and
follicle-stimulating hormone (FSH) levels (122). Additionally,
a group from Italy found elevated levels of clusterin, a
glycoprotein linked with abnormal sperm morphology, in a
cohort of hypertensive men when compared to normotensive
men (123). In the United States, Guo et al. investigated the
association between hypertension and semen quality (121). They
reported that men with hypertension have one or more semen
abnormalities (reduced semen volume (2.1 vs. 3.0mL, p< 0.001),
sperm motility (41.0 vs. 47.0%, p = 0.008), total sperm count
(103.8 vs. 147.0, p = 0.005) and total motile sperm count (43.1
vs. 65.9, p= 0.003) compared to normotensive men.

Kasman et al. investigated whether the association between
male infertility and occurrence of cardiometabolic disease
(diabetes, hypertension, hyperlipidemia, and heart disease)
is modified by socioeconomics, race, or geographic region
(16). They reported that infertile men had a higher risk
of incident for hypertension, diabetes, hyperlipidemia, and
heart disease regardless of race, region or socioeconomic
status. The prevalence and effects of medical comorbidities

(hypertension, hyperlipidemia, hyperuricemia and skin disease)
on spermatogenesis was determined by Shiraishi andMatsuyama
(124) in a group of fertile and infertile men. The prevalence
of comorbidities was significantly higher in the infertile men
(21.7%) than in the fertile men (9.1%), particularly for
hypertension (17.8%), hyperlipidemia (5.9%), hyperuricemia
(5.2%), and skin disease (3.0%). Among the infertile men,
the reproductive functions were abnormal in the men with
comorbidity compared with those without comorbidity. The
authors concluded that medical comorbidities are associated
with impaired sperm production and suggested that male
infertility evaluation offers not only specific therapy to improve
semen parameters but also treatment for non-specific medical
comorbidities, which may benefit general health status and
spermatogenesis restoration. Several other population-based
studies have shown the association between male infertility
and hypertension (125–127). Animal studies have also thrived
in this aspect of reproductive research and have provided
evidence that hypertension is associated to male infertility (128–
130). Akinyemi et al. reported a significant decrease in serum
total testosterone and reduced sperm progressive motility in
hypertensive rats. They showed increased OS status in the
testes and epididymides of hypertensive rats as evidenced by
a significant reduction in total and non-protein thiol levels,
glutathione S-transferase (GST) activity with a concomitant
increase in DFCH oxidation and TBARS production. Likewise, a
decreased testicular and epididymal NO• level with simultaneous
elevation in arginase activity was observed in hypertensive
rats (128). One of the studies performed in the SURRG
laboratory also investigated the association between obesity-
induced hypertension and male infertility. Obese hypertensive
rats presented with significantly increased levels of serum
inflammatory cytokine including, IL-1β, IL-6, IL-12, IL-18 and
TNF-α, when compared to the lean group. Also observed were
histopathological testicular changes, as there were significant
reductions in the seminiferous tubule area (97,807 ± 1,488
µm² vs. 118,347 ± 6,073 µm², p < 0.05), seminiferous tubule
diameter (354.0 ± 3.0µm vs. 386.2 ± 9.5µm, p < 0.05), lumen
area (19,891 ± 1,717 µm² vs. 30,058 ± 3,639 µm², p < 0.01),
and lumen diameter (157.8 ± 7.3µm vs. 191.2 ± 12.2µm,
p < 0.05) in the obese hypertensive group compared to the
lean group. The obese hypertensive rats also presented with a
significantly reduced testosterone: estradiol ratio (130). Another
study performed with a hypertensive rat model reported altered
sperm quality (sperm motility, normal morphology, sperm
count) in hypertensive rats (129). Their findings also showed a
reduction in 3β and 17β-hydroxysteroid hydrogenase (3β-HSD
and 17β -HSD) activities, as well as testosterone, luteinizing
hormone (LH), and FSH levels. An increased ROS and MDA
levels were observed with a subsequent decrease in thiol levels,
CAT, and glutathione-S-transferase activities (129).

Deducing from the above findings, it can be suggested that
hypertension impairs male fertility through (i) a reduction
in blood flow to the testis, as the oxygen-dependent organ
functions in a state of near anoxia, such a decrease in
blood flow may very likely have profound effects on the
tissue morphology that ultimately would predispose to various
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FIGURE 3 | Hypertension and the development of oxidative stress. In the

occurrence of hypertension, there is proliferation of the vascular smooth

muscles and the narrowing of vascular lumen. The narrowing of the vascular

lumen leads to increase in the generation of ROS, thus causing oxidative

stress.

forms of hypo-spermatogenesis with consequent compromise
in reproductive capability, (ii) altered hormone levels, as the
obstructed spermatogenic cells are unable to produce adequate
hormone for normal spermatogenesis, (iii) increase in the
formation of ROS and a subsequent decrease in antioxidant
activities, which consequently lead to OS (Figure 3), and (iv)
alteration in the expression of important glycoproteins necessary
for normal testicular and sperm morphology.

OBESITY-INDUCED OS IN MALE
INFERTILITY

Obesity ensues when there is an energy imbalance between
the energy consumed and energy expended, therein leading to
excessive accumulation of fat (131). Obesity is a multifactorial
disorder influenced by genetic or environmental factors, and the
incidence has tripled since 1975 as reported by the WHO (131).
In 2016, more than 1.9 billion adults of ≥18 years old were
overweight, of this, 650million were obese, indicating that 39% of
adults of the world’s population aged ≥18 were overweight (39%
of men and 40% of women) and 13% were obese (11% of men
and 15% of women) (131).

The consequence of obesity is not limited to the risk of
developing cardiovascular diseases but also include the possibility
of male fertility impairment (Figure 4). One of the review
articles published by members of our lab explicitly explained
how obesity has become a modern man’s fertility nemesis (17),
as it contributes to reduced semen quality, modified sperm
proteomes, erectile dysfunction as well-cause other physical
problems (17, 18).

Both animal and human studies have provided evidence that
obesity indeed can impair male fertility (15, 132–136). One
of the studies performed in the SURRG laboratory assessed
the effect of long-term obesity on male reproductive functions
(137). After inducing obesity in male Wistar rats for 54

and 60 weeks, respectively, sperm parameters and estradiol
levels were adversely altered and some molecular modifications
were observed. It was suggested that the instigator of the
molecular and proteomic modifications includes an increase in
the production of ROS, elevated stress proteins levels and higher
levels of redox and inflammatory proteins. Further proteomic
analysis of the epididymis and sperm revealed that proteins
essential in metabolism, ROS production, stress, inflammation
and in the regulation of reproductive function were adversely
affected. This means that long term obesity may impair male
fertility potential. This is in line with the findings of many others
(132, 133). Another study showed that after feeding mice with
a high-fat diet (HFD) for 8 weeks, there were manifestations of
spermatogenic impairments such as decreased relative testicular
weight, impaired testes morphology, and increased percentage
of germ cell-depleted tubules. Sperm parameters and functions
were also altered (sperm count, sperm motility, sperm viability,
reduced serum testosterone), which consequently led to a
decrease in pregnancy rate (132). The adverse effects seen were
attributed to the occurrence of apoptosis, as there was an increase
in caspase 3 activity and a decrease in Bcl-2 activity. Also
observed in the obese mice were increased mRNA levels of Xbp-
1, Grp78 and CHOP, as these are indicators of endoplasmic
reticulum stress, and are believed to be activated by obesity.
Abbasihormozi et al. investigated the OS status in the semen
samples of men with obesity and type 2 diabetes to validate
whether OS in these diseases can influence fertility potential
(15). The sperm motility, concentration, total sperm count, and
normal sperm morphology were significantly reduced in obese
men. The seminal plasma TAC was significantly reduced in the
obese group with higher ROS levels, early apoptotic spermatozoa,
and increased percentage of sperm with fragmented DNA.
Also observed were decreased serum testosterone concentration
and increased cortisol levels in the obese group. It was
therefore concluded that increase ROS levels and elevated DNA
fragmentation in men affected with obesity could be considered
as prognostic factors in sub-fertile patients (15). The findings of
the study of Abbasihormozi et al. is supported by Raad et al. who
also reported impaired sperm quality of men with obesity (135).

Deshpande et al. investigated the effect of both diet-induced
and genetically inherited obesity on male fertility in adult
male rats. It was reported that the difference between HFD-
induced obesity and genetically inherited obesity is shown in
the expression of fertility-related hormones and spermatogenesis
(138). The authors further explored the expression of genes
related to reproductive hormone receptors, leptin signaling
molecular biomarkers, pro-inflammatory cytokines, OS and
cell cycle mediators in the testis (133). Their findings showed
that both types of obesity have altered expression of hormone
receptors, cytokines and biomarkers of OS, as well as cell
cycle mediators; but the changes are different (133). The
differences were seen in the metabolic pathways, and the
changes are attributed to the variation in white adipose tissue
accumulation (138).

Several other studies, both animal and human have
highlighted that in obesity, there is excessive production of
ROS, leading to OS and consequently induce apoptosis, which
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FIGURE 4 | Obesity-induced oxidative stress and male infertility. Obesity-induced oxidative occurs because of (i) increase in metabolic reaction due to elevated

glucose and lipids levels, (ii) increase in the level of stress hormones and proteins and (iii) alteration in genetic composition. The occurrence of oxidative stress leads to

disrupted hypothalamo-pituitary gonadal axis, induction of apoptosis, increased sperm DNA fragmentation and alters cell cycle, which cumulatively result in male

infertility.

may further lead to reduced reproductive potential or subfertility
(139–143). Some showed the disruption of the blood-testis
barrier (141) in obesity, while some suggested that the duration
have an unfavorable impact on male fertility (142, 143).

DIABETES MELLITUS-INDUCED OS IN
MALE INFERTILITY

Hyperglycemia can occur because of the inability of the
pancreatic beta cells to secrete insulin or as may arise from
insulin resistance and variable degrees of inadequate insulin
secretion resulting in diabetes and related comorbidities. Given
that the global burden of diabetes is continuously increasing, it is
estimated that the number of men in their reproductive age that
will be affected with diabetes is likewise on the rise, as there is an
elevation in the number of childhood and adolescent males with
diabetes (144, 145).

Studies have shown that diabetes, both type I and type
II induce subtle molecular changes that are essential for
sperm quality and function. Bhattacharya et al. reported a
significant decrease in sperm motility, including the number of
rapid progressive spermatozoa (146). Another study revealed
a significant reduction in sperm kinetic parameters and a
decrease in the percentage of normal sperm morphology of
male diabetic partners (147). Several other studies have also

revealed a significant decrease in semen volume, sperm motility
and morphology in the semen of diabetic men (148, 149) while
some animal studies have equally reported alteration in sperm
parameters (150–152). All these effects can partly be explained
through the impact of OS, caused by the inequality between
ROS production and antioxidant defense mechanisms (Figure 5)
(19, 153). The process of how OS leads to male subfertility or
infertility has been discussed in detail in the earlier section.

PSYCHOLOGICAL DISORDERS AND OS IN
MALE INFERTILITY

The interaction between OS, male infertility and psychological
disorders is interesting, as both fertility and the neural system
are individually and collectively affected by OS. As mentioned,
OS has been implicated as a significant contributor to male
infertility (154). OS has independently been implicated in the
pathogenesis of various disorders of the brain, such as anxiety
disorders, depression, bipolar disorder and schizophrenia (155–
157). The contributing factor toward these pathologies is the
presence of PUFAs within both the brain and spermatozoa,
which are highly susceptible to damage by ROS. In the brain,
its lipid-rich composition and extensive oxygen utilization (155–
157), amongst other factors, allow for significant susceptibility
of the brain to OS-induced damage. The high rates of oxygen
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FIGURE 5 | Diabetes and impaired sperm function. Hyperglycaemia can

increase the production of advanced glycation end products, thereafter

causing imbalance in the ratio of ROS generation and its elimination by

antioxidants, thereby resulting in the development of oxidative stress.

consumption allow for substantial free-radical production (157)
as the lipids readily provide substrates for oxidation (158).
Other factors which contribute toward neuro-susceptibility to OS
include, inadequate antioxidant capacities and the availability of
redox-catalytic metals (158, 159), the same as with spermatozoa.

The independent susceptibility of the brain to OS has been
shown in numerous studies. OS is involved in the pathogenesis of
depression and in multiple human studies with patients suffering
from depression (156). Findings include decreased antioxidant
activity, DNA damage, amplified lipid peroxidation and
increased ROS production (156, 160). An interaction between
OS pathways and neurogenesis, the uptake of neurotransmitters
and neuroinflammation have additionally been suggested (157).
This indicates a connection between OS and depression, as
the pathogenesis of this disorder involves neuroinflammation
and altered neurotransmitter activity. Defective antioxidant
capacities and elevated ROS concentrations have been reported
in several studies of schizophrenic patients (157). OS contributes
to the pathogenesis of schizophrenia through its effect on
neuronal excitability and mitochondrial signaling, factors which
impart negative influences on neurons and ultimately promote
the development of schizophrenia (161). Similar findings
have been implicated in the pathogenesis of bipolar disorder,
including the involvement of elevated free radicals such as
NO, as well as lipid peroxidation and altered antioxidant levels
(157, 162).

Psychological stress and anxiety have been shown in various
studies to affect male fertility, as well as in the SURRG
laboratory (163). The activation of the hypothalamic–pituitary–
adrenal axis during stress and anxiety can affect the release
of the Gonadotropin Releasing Hormone (GnRH), which can
decrease the production of LH, FSH and therefore the release
of testosterone (164). In addition, increased psychological stress

has been shown to decrease seminal volume, even in healthy
individuals (165). The role of NO• in anxiety has not yet
been fully elucidated. However, in a study performed on male
mice lacking the gene that encodes for NO• synthase 1, these
mice were found to have abnormal anxiety levels compared
to their counterparts (166, 167). In addition, NO• levels in
seminal plasma were shown to be elevated in individuals who
scored higher on the State Anxiety Index questionnaire (168).
Psychological disorders such as Alzheimer’s disease have been
shown to cause oxidative damage to glycolytic enzymes as
well as enzymes involved in the tricarboxylic cycle during
glucose metabolism, thereby affective ATP biogenesis (169).
These changes can cause a cascade of oxidative damage that
can systemically make its way to the male reproductive system,
thereby affecting fertility.

DISCUSSION AND CONCLUSION

Scientific evidences within and outside the SURRG over the years
have revealed that free radicals are neither exclusively beneficial
nor exclusively detrimental to the male reproductive functions.
Indeed, Redox equilibrium is important for the maintenance
of various vital aspects of sperm functionality. However, an
imbalance in the generation and elimination of ROS causes
impairment in sperm qualities, attributable to oxidative damage
due to their limited antioxidant capacity and cell membrane rich
in PUFAs. At pathological level, ROS becomes highly reactive,
causing substantial damage to various cellular biomolecules such
as nucleic acids, proteins and lipids (41). The subsequent series of
adverse events include loss of membrane integrity, mitochondrial
dysfunction, impaired sperm motility as well as DNA damage
and apoptosis resulting in damage of cellular components and
pathogenesis of reproductive diseases and infertility (23).

Thus, information obtained from the assessment of OS status
could be of great importance in enhancing clinical decision
making. However, OS profiling is predominantly used for
research settings and is not yet integrated into routine assessment
of male infertility. This is primarily due to the lack of universal
standards and norms in addition to the assay complexity and
high costs (170–173). There is, therefore, a definite need to
develop a robust assay that should be simple, validated and
easily performed to allow OS screening in a routine andrology
laboratories. Further work is also needed to establish cut-off
values for the OS key players with sufficient sensitivity and
specificity to be clinically useful in the differentiation between
fertile and infertile men.

Interestingly, we have established statistical correlations
between conventional semen parameters obtained with CASA
and a set of OS and membrane lipid peroxidation variables
showing that the rapid progressive motility is a valuable
sensitive indicator of lipid peroxidation that could be affected,
prior to any detectable deterioration in other sperm motion
characteristics. Furthermore, the observed inverse relationship
between intracellular sperm O−•

2 levels and VAP is important in
advancing our understanding of the possible role of free radicals
in constraining the actual rate of sperm-forward movement
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within the female reproductive tract, which is vital for successful
fertilization. These scientific revelations complement those of
previous investigators and contribute, additional evidence, with
respect to the significance of detailed CASA motility, velocity
and kinematic parameters in cementing the relationship between
conventional semen analysis and the oxidative status (107).

On the contrary, physiological or homeostatic level of ROS is
involved in the activation of intracellular pathways responsible
for spermatozoa maturation, capacitation, hyperactivation,
acrosomal reaction, chemotactic processes, formation of the
mitochondrial capsule and condensation of sperm DNA as well
as fusion with the female gamete to ensure fertilization.

The relationship between infertility and potential mechanisms
involved in the pathophysiology of various systemic diseases
such as insulin resistance, obesity, hypertension, certain mental
disorder as well as prolonged ejaculatory abstinence period
have also implicated ROS, thereby causing OS induced male
infertility in most of these conditions. Kasman et al. (16) have
also reported that infertile men had a higher risk of incident
for hypertension, diabetes, hyperlipidemia and heart disease
regardless of race, region or socioeconomic status. Using animal
studies, we have also reported the association between obesity-
induced hypertension and male infertility. Obese-hypertensive
rats presented with increased levels of serum inflammatory
cytokines when compared with control (130). Our studies
on the effects of long-term obesity on male reproductive
functions suggested that the instigator of the molecular and
proteomic modifications includes: an increase in the production
of ROS, elevated stress proteins levels and higher levels of
redox and inflammatory proteins. Further proteomic analysis
of the epididymis and sperm revealed that proteins essential in
metabolism, ROS production, stress, inflammation and in the
regulation of reproductive function were adversely affected (137).
Studies have shown that diabetes, both type I and type II induce

subtle molecular changes that are essential for sperm quality and
function, but a follow up study by our team projected that the
adverse effects caused by diabetes mellitus can partly be explained
through the impact of OS, caused by the inequality between ROS
production and antioxidant defense mechanisms (152).

On the other hand, psychological disorders have been
associated with increased NO• levels and oxidative damage
to glycolytic enzymes as well as enzymes involved in the
tricarboxylic cycle during glucose metabolism, thereby affecting
ATP biogenesis (169). These changes can cause a cascade of
oxidative damage that can systemically make its way to the
male reproductive system, thereby causing infertility. Deducing
from the above findings, it can be suggested that hypertension,
obesity, insulin resistance, certainmental disorder and prolonged
ejaculatory abstinence period impairs male fertility through
increase in the formation of ROS and a subsequent decrease in
antioxidant activities, which consequently lead to OS.
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