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The relevance of sperm
morphology in male infertility

Elena Moretti*, Cinzia Signorini, Daria Noto, Roberta Corsaro

and Giulia Collodel

Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy

This brief report concerns the role of human sperm morphology assessment

in di�erent fields of male infertility: basic research, genetics, assisted

reproduction technologies, oxidative stress. One of the best methods in

studying sperm morphology is transmission electron microscopy (TEM) that

enables defining the concept of sperm pathology and classifying alterations

in non-systematic and systematic. Non-systematic sperm defects a�ect head

and tail in variable ratio, whereas the rare systematic defects are characterized

by a particular anomaly that marks most sperm of an ejaculate. TEM analysis

and fluorescence in situ hybridization represent outstanding methods in the

study of spermmorphology and cytogenetic in patients with altered karyotype

characterizing their semen quality before intracytoplasmic sperm injection. In

recent years, the genetic investigations on systematic sperm defects, made

extraordinary progress identifying candidate genes whose mutations induce

morphological sperm anomalies. The question if sperm morphology has an

impact on assisted fertilization outcome is debated. Nowadays, oxidative stress

represents one of themost important causes of altered spermmorphology and

function and can be analyzed from two points of view: 1) spermatozoa with

cytoplasmic residue produce reactive oxygen species, 2) the pathologies with

inflammatory/oxidative stress background cause morphological alterations.

Finally, sperm morphology is also considered an important endpoint in in vitro

experiments where toxic substances, drugs, antioxidants are tested. We think

that the field of spermmorphology is far frombeing exhausted and needs other

research. This parameter can be still considered a valuable indicator of sperm

dysfunction both in basic and clinical research.

KEYWORDS

assisted reproduction technologies (ART), human sperm, sperm morphology,

transmission electron microscopy, oxidative stress, genetics, systematic

sperm defects

Introduction

Among animal species, the man shows a relatively low fertility and, in fertile

individuals, a percentage of altered, immotile and dead spermatozoa is present (1).

The first scientist who described in the seventeenth century the spermatozoa and their

morphological variability was Anton van Leeuwenhoek and since then, the study of

sperm morphology became more and more relevant, particularly in this era when

infertility is a real medical and social issue.

Over the years, the sperm morphology evaluation has become much more severe,

indicating that a careful analysis of this parameter plays an important role in routine
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semen analysis (2). The reference value for normal sperm

morphology, reported in the different editions of World Health

Organization (WHO) guidelines for semen analysis, sharply

decreased from ≥ 80.5% reported in the 1st edition (3, 4) to ≥

14% in the 4th edition (5). They lowered up to ≥ 4% in the 5th

and 6th editions (2, 6). These observations support and confirm

that the man produces a high proportion of defective sperm

compared to other animal species.

With the introduction of assisted reproductive technologies

(ARTs), spermmorphology evaluation became a cornerstone for

prognostic purposes. However, in most cases the analysis was

and is still limited to the assessment of normal sperm percentage

at light microscopy (LM) level (7). The sperm morphology

evaluation by LM is easy but shows technical limitations in

terms of resolving power and is unable to spot alterations

of structures as chromatin texture and axoneme. Therefore,

the “best-looking” spermatozoon by LM could not be lacking

morphological defects (1, 8–10). Many efforts have been made

in improving sperm morphology evaluation and many other

methods were used to enhance the observation of the inner

regions of spermatozoon using, for example, high magnification

methods and polarized light (11–13).

The questions on the relevance of sperm morphology in

determining male fertility potential (14) and its impact on ARTs

outcome are debated. While previous data showed a predictive

role of spermmorphology in the reproductive outcome, recently

acquired data seems not to confirm this (15). Many studies

reported the genetic origin of different sperm alterations.

In rare situations, most sperm show a specific defect as in

globozoospermia or dysplasia of fibrous sheath (DFS) (3, 16)

and, in these cases, it is easy to recognize and quantify it.

However, little attention is still paid to the quantification and

the description of human sperm abnormalities that represent

mixed combinations of head and tail defects found in variable

percentages in different ejaculates (7, 9, 17).

Many limitations in sperm morphology assessment are still

present and are mainly due to the physiological variability of

most morphological sperm characteristics, the subjective nature

of the evaluation, the utility of this parameter in the choice of

an adequate treatment of the patient. This brief report deals

with the role of human sperm morphology in different fields

of male infertility: basic research, genetics, assisted reproduction

technologies, oxidative stress.

Sperm morphology at transmission
electron microscopy levels

One of the best methods to study sperm morphology

is transmission electron microscopy (TEM) that enables

the evaluation of the cellular inner organization at high

magnification discriminating the normal and altered structures.

TEM is useful in the assessment of sperm defects that can

influence the fertilizing potential. Ultrastructural studies

combined with immunocytochemistry and molecular

techniques (1, 9) overcome the description of morphology

and allow a detailed characterization of sperm defects from

structural, molecular, and functional points of view (18).

These last methods enabled the definition of the sperm

pathology concept that was important for the classification of

ultrastructural alterations in “non-systematic” and “systematic”

sperm defects (1, 19).

Non-systematic sperm defects

Non-systematic sperm defects are common alterations

of head, connecting piece and tail structures combined in

variable ratio in semen samples. They increase in presence of

andrological disorders such as infections and varicocele (20),

other endogenous and exogenous factors (21–23) and they

may respond to different treatments. In the last decade, TEM

analysis was useful in the study of sperm chromatin vacuoles

that can be present in multiple copies per cell. An association

between large vacuoles and sperm chromatin immaturity has

been demonstrated (24). Recently, the focus was oriented on

the sperm centriolar region, since, in humans, sperm itself

contributes centrioles to the zygote (25, 26). Fishman et al.

(27), using electron microscopy with high pressure freezing,

demonstrated that in mature human spermatozoa two centrioles

are present, revising the centrosome reduction dogma (28).

The proximal centriole showed the typical barrel shape and the

distal one was composed of splayed microtubules surrounding

luminal proteins. Another poorly explored structure is the

centriolar adjunct, a sort of “mini flagellum” originating from

proximal centriole, visible by TEM in spermatids but partially

or completely disappeared in mature sperm. Recent studies

reported the presence of centriolar adjunct increased in length

in spermatozoa of infertile patients (29) and in a patient who

produced aneuploidy embryos with both natural fertilization

and ARTs (30).

TEM analysis is mainly a qualitative method and statistics

applied to TEM examination of ultrathin sections are

questionable, particularly in long cells as spermatozoa, due to

the impossibility of determining whether the observed sections

belong to the same or different sperm cells. Accordingly, our

research group (17, 31) developed a Bayesan formula that

quantifies the data obtained by TEM observations. The formula

calculates the number of spermatozoa without ultrastructural

defects (the fertility index) and the percentages of sperm

pathologies as immaturity (Figure 1A), necrosis (Figure 1B)

and apoptosis (Figure 1C). The considered ultrastructural

characteristics concern acrosome (position, dimension, shape,

and content), nuclear shape, chromatin texture, centrioles,

mitochondria, axonemal and periaxonemal structures, plasma

membrane, and presence/absence of cytoplasmic residue. This
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FIGURE 1

Transmission electron microscopy (TEM) micrographs of longitudinal sections of immature (A), necrotic (B) and apoptotic sperm (C). Immature

sperm (A) is characterized by irregular nucleus with uncondensed chromatin (uCh). Cytoplasmic residue (CR) embeds swollen mitochondria (M)

and coiled disassembled axoneme (Ax). Necrotic sperm (B) shows an altered nucleus with disrupted chromatin (dCh), swollen mitochondria (M)

and broken plasma membrane (arrow). In figure (C) two apoptotic sperm with marginated chromatin (mCh), acrosome (Ac) far from the

nucleus, integer plasma membranes (arrow) are shown. Bars A, B, C: 2µm.

quantitative method enabled the comparison of sperm quality

in different categorized patients (20, 32, 33) and before and after

a treatment or therapy (34, 35). It is still used in research and

validated by many publications over the years.

Systematic sperm defects

Systematic sperm defects are rare alterations characterized

by a predominant anomaly present inmost sperm of an ejaculate

and similar in all patients with the same condition (1, 19).

Sperm head, connecting piece and flagellum are regions that can

be affected by systematic sperm defects. Since these alterations

show family clustering and are significantly more frequent in

individuals with a history of consanguinity, a genetic origin was

supposed (19). In recent years, the field of genetic investigations

related to systematic sperm defects has made extraordinary

progress. These studies allowed the identification of candidate

genes whose mutations induce morphological sperm anomalies,

enhancing the knowledge of sperm pathophysiology important

for improving patient management.

The most frequent systematic sperm defects are

reported here.

• “Globozoospermia" is characterized by sperm with round

head acrosome-less spermatozoa with immature chromatin

(Figure 2), depletion of the oocyte activator phospholipase

Cζ, located in the inner acrosomal membrane and in

FIGURE 2

Transmission electron microscopy (TEM) micrograph of sperm

with globozoospermia. The round-shaped heads were devoid of

acrosome, the nuclei show uncondensed chromatin (uCh)

characterized by granular texture. Bar: 3.5 µm.

perinuclear theca, that causes problems in ICSI outcome

(16, 36, 37). Many putative genes, studied also in animal

models, seem to be mutated in globozoospermia and

many of them encode proteins involved in acrosome

biogenesis (36). Although pathogenic variants in DPY19L2

and SPATA16 are known causes of globozoospermia and
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explain up to 70% of all cases, other candidate genes

such as ZPBP, CCDC62 (38), and SPACA1 (39) were

recently identified.

• “Macrozoospermia” is characterized by large-headed

spermatozoa with multiple flagella (36, 37) and is often

due to mutations of Aurora Kinase C (AURK) gene that

ensures efficient meiosis (37, 40, 41).

• “Head-tail detachment” / “acephalic sperm” shows an

extreme fragility of the connecting piece (42–44). Since

centrioles are linking the sperm head with the tail, the

mutations of proteins in the centriolar area can cause

head-tail disengagement (25) leading to the acephalic

sperm phenotype. Recently, Nie et al. (43), based on TEM

observations, classified in different subtypes the broken

points of sperm connecting piece in acephalic sperm.

The subtype one, which etiology needs to be explored,

is characterized by sperm head with proximal centriole

and tail with distal centriole; in the subtype two, the head

contains both centrioles and the identified genes involved

are HOOK1, SUN5 (44) and PMFBP1. In the subtype three,

the sperm tail contains both centrioles and TSGA10 and

BRDT are the involved genes (43).

• “DFS” / “Multiple Morphological Flagellar Anomalies”

(MMFA) is characterized by severe asthenzoospermia with

almost zero progressive sperm showing short, thick, and

irregular tails and disorganized fibrous sheath (36, 42,

45, 46). In the past 5 years, 18 genes whose mutations

cause MMAF were identified (46) even if about half of

MMAF individuals remain with unknown genetic causes.

The analyzed genes encode for outer and inner dynein arms

(DNAH1 is one of the most important), for proteins that

are involved in connecting axonemal and periaxonemal

structures (CFAP43 and CFAP44), in radial spoke complex

and centrosome (46).

• “Primary Ciliary Dyskinesia (PCD)” is a heterogeneous

disorder characterized by asthenozoospermia or total

sperm immotility generally concomitant with bronchitis

and rhinosinusitis and airways infections, due to the

common presence of the axoneme in cilia and flagella. To

date mutations in over 40 genes have been identified, but

the exact effect of these mutations on spermatogenesis is

poorly understood. Most of these genes encode proteins of

outer and inner dynein arms, dynein regulatory complexes

and axonemal organization and some of them are in

common with MMAF (47). At LM the sperm flagellum

shows normal length with no motility. TEM analysis allows

the direct observation of the absence of outer/inner, or

both dynein arms, of one or both central microtubules;

alterations of radial spokes, transposed microtubules, the

lack of axoneme, alterations often present in PCD (47).

• Very rare combinations of the above systematic sperm

defects such as alterations in head-tail attachment and DFS

[Figure 3, (48–50)], the concomitant presence of PCD and

FIGURE 3

Transmission electron microscopy (TEM) micrograph of a sperm

with a combination of flagellar alterations: hyperplastic fibrous

sheath (Dysplasia of fibrous sheath, DFS) and almost detached

tail (arrow); in addition, altered nucleus and acrosome are

visible. Bar: 3.5µm.

DFS (51), globozoospermia and head-tail detachment (52)

were also reported in literature.

• The identification of mutations causing systematic sperm

defects and the correct genotype–phenotype association

by TEM assist in the prognosis of intracytoplasmic sperm

injection (ICSI) outcome.

Sperm morphology and aneuploidies

Fluorescence in situ hybridization (FISH) requires probes,

complementary to DNA sequences, directly labeled with or

detected by a fluorochrome. This technique allowed the study

of human sperm chromosomes.

A recent review concerns the impact of sperm parameters

on incidence of numerical sperm abnormalities. Revising the

18 years’ experience on FISH applied to spermatozoa, the

authors concluded that only sperm concentration has negative

correlation with aneuploidies (53). However, the topic is debated

since many papers reported a relationship between sperm

morphology and a slight increase of aneuploidies. Sarrate et

al. (54) observed that some of the most predictive variables

for altered sperm FISH results are oligozoospermia and altered

sperm morphology. These sperm aneuploidies could play a

moderate negative impact on embryo quality, implantation, and

pregnancy rates.

For this purpose, the studies on the relationship between

sperm aneuploidies and recurrent pregnancy loss (RPL) are of
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particular interest. Focusing only on sperm morphology,

many observations agree with a positive relationship

between abnormal sperm morphology and increase of

sperm aneuploidies that can be one of the possible causes

of unexplained RPL (55–58). In most studies, the sperm

morphology was evaluated at LM level, which is the widely

used method with low magnification power. Collodel et al. (59)

analyzed a group of male patients with RPL who showed normal

semen parameters, including sperm morphology, at LM levels

and found an increase of sperm aneuploidies associated with

sperm apoptosis detected by TEM. The relationship between

sperm morphology and aneuploidies is interesting also for

systematic sperm defects such as in case of macrozoospermia

caused by AURKC mutations (40). In this case, large-headed

spermatozoa with double or triple nuclei (60) have an abnormal

DNA content mainly referred to polyploidy. De Braekeleer

et al. (61), revising studies on macrozoospermia, reported

that in 30 analyzed males over 90% of spermatozoa were

aneuploid, mainly diploid, and characterized by increased

DNA fragmentation.

Even though the relationship between globozoospermia

and increased sperm aneuploidies is debated (61, 62), the

current idea tends to a slight increase of aneuploidies

in this defect. The results concerning systematic defects

affecting sperm flagellum and aneuploidies are very scant.

Several studies have demonstrated an association between DFS

and increased frequency of sperm aneuploidies (45, 63–65).

Recently, Wambergue et al. (66) reported that 6 infertile patients

with MMAF due to homozygous DNAH1 mutations showed

an increased frequency of XY and 18 disomy, however no

differences respect to control for chromosomes 13, 21, and XX

and YY disomies were found.

Due to the reduced number of cases available, it is difficult

to draw conclusions, but it is evident that aneuploidy results

for the same chromosomes are variable in different reports

from different research groups, probably due to technical

aspects and a possible inter-individual variability, which

is worth exploring.

Another field of research concerns the study of sperm

parameters, including morphology and aneuploidies

in patients with altered karyotype. The most common

karyotype abnormalities in infertile men include numerical sex

chromosome alterations and Robertsonian translocations (67).

FISH coupled with TEM analysis could represent outstanding

method in the study of sperm morphology and cytogenetic in

patients with altered karyotype and several papers from our

and other groups were published during the first decade of the

2000s. Overall, the sperm pathologies found in spermatozoa,

in carriers of reciprocal and Robertsonian translocations

(68–72), were immaturity and apoptosis concomitant with

increased frequency of diploidy and disomies which are

variable among different carriers. A common characteristic

was the presence of spermatozoa with two (Figure 4A), three

FIGURE 4

Transmission electron microscopy (A) and UV (B) micrographs

of binucleated, diploid sperm. Figure (A) shows two nuclei

embedded in a large cytoplasmic residue (CR) where the tail (Ax)

is coiled. The acrosome (Ac) is mislocated. Figure (B) shows

fluorescence in situ hybridization with probes for chromosome

18 (green) and 9 (red). The nucleus is diploid since shows two

spots of each chromosome. Sperm nucleus is stained with DAPI

(blue). Bar A: 3.5µm.

or multiple nuclei that showed a severely altered chromosomal

constitution (Figure 4B).

Increased incidence of apoptosis, detected by TEM, and

diploidies were observed in spermatozoa from a group of

chromosome 9 pericentric inversion carriers (73). These kinds of

studies were also performed in sperm of a man with a 46 XY, 47

XY+18 mosaic karyotype; also in this case sperm apoptosis and

immaturity were associated with aneuploidies of chromosomes

18, X and Y (74).

The impact of karyotype alterations onmale infertility can be

faced by many points of views: how the chromosomal anomalies

influence sperm parameters, ART outcome, embryo quality

and miscarriages (75). In addition, chromosomal alterations,

in particular Robertsonian translocations, can interfere with

the segregation of other chromosomes, phenomenon known as

interchromosomal effect (76, 77).

Nowadays, the procedures of sperm selection for ICSI

cannot assure the choice of a spermatozoon without

chromosomal imbalance, neither analyzing sperm at high

magnification with Nomarski optics (78). Therefore, it is

important to improve the studies of the relationship between

sperm morphology and chromosome alterations for a correct

definition of sperm quality before ART.

Recently, Chen and Zhou (79) published a retrospective

study/systematic review on the association between autosomal

reciprocal translocation/Robertsonian translocation and semen

parameters, topic debated in the literature. They concluded

that the carriers of translocations had decreased sperm

parameters including sperm morphology as emerged reviewing

previous studies.
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As perfectly summarized by Ioannou et al. (80), some

undoubtable findings are present in the literature: some

chromosomes are more prone to non-disjunction, all men

produce aneuploid sperm, sperm aneuploidy frequency is

increased in infertile men and is correlated to the severity

of infertility.

Impact of sperm morphology in
assisted fertilization

The question of the impact of sperm morphology on ART

outcome is debated; despite previous data showed a predictive

role of sperm morphology in the reproductive outcome, recent

findings seem not to confirm this. It is reputed that the main

issues on evaluation of spermmorphology are related to the lack

of consensus on the classification method: the inter-observer

variations, the manual assessment, the subjective nature of

morphological evaluation, the use of different staining methods

and preparation of smears as well. Thus, the current trend is

neglecting the influence of abnormal sperm morphology in the

selection of a particular ART (15). Indeed, Del Giudice et al.

(81) reported that semen quality, including morphology, is not

associated with pregnancy rate.

The weakness of the evaluation of sperm morphology at

the LM is related to the poor resolving power, making this

method, alone, inadequate to precisely define the morphology

of a spermatozoon. Cassuto et al. (82) proposed a scoring scale

for sperm morphology, detected at high magnification, useful

for ICSI protocol and demonstrated that sperm with severely

altered nucleus showed chromatin decondensation, underlining

the importance of the way the morphology is evaluated (83).

The introduction of ICSI, the outstanding technique applied

in ART (84), bypassed the natural selection barriers between

the oocyte and the sperm and raised many ethical and

evolutionary concerns. Therefore, many efforts have been made

in improving sperm morphology evaluation for the selection of

the spermatozoon to be injected during ICSI. One of the most

important ideas was represented by the analysis of sperm at high

magnification. Therefore, “Motile SpermOrganelle Morphology

Examination” (MSOME) was proposed; this method allows

the assessment of nucleus, nuclear vacuoles and the selection

of a good quality sperm that can enhance the ICSI outcome

(11, 85, 86). By the integration of MSOME analysis and ICSI,

the Intracytoplasmic Morphologically Selected Sperm Injection

(IMSI) was introduced. The method was promising but the

results were conflicting (87). Recently, Dieamant et al. (88),

revising the literature, found that IMSI appeared to be an

effective procedure in reducing the congenital malformations in

newborns compared to ICSI.

The use of polarized light applied to the optical

microscope/micromanipulator represented another strategy,

based on morphological characteristics, to improve the ICSI

sperm selection (89), assuming that the spermatozoon shows

a natural birefringence due to the configuration of its different

components. The natural sperm birefringence represented a

good indicator for the ICSI outcome (90–92), but unfortunately,

as for IMSI, the equipment is expensive and more studies on

DNA integrity should be advisable. Many other techniques

for sperm selection in ART, that considered sperm membrane

properties, the ability to bind hyaluronic acid or based on

microfluidics (selection performed on size and motility of

sperm) are available but none of them has shown outstanding

results in term of pregnancy rate (87, 93).

It is well known that most laboratories perform the tests

manually, with a consequent observer variability during the

analysis. Currently, computer-aided sperm analysis (CASA)

is a common automated system for routine semen analysis

in animals and humans. However, there are many concerns

on completely bypassing the human operator, since CASA is

still inaccurate in the evaluation of sperm morphology (94).

Technological advances such as the application of artificial

intelligence (AI)-based devices promise improving the efficiency

of the analysis and the reliability of the results (94). For

this purpose, an emerging and attractive field on human

reproduction and embryology is represented by the use of AI,

machine learning and deep learning. These technologies are

potentially applicable to many aspects of reproductive medicine,

as sperm, oocyte and embryo selection, prediction of ART

outcome, semen and sperm morphology evaluation (95–98).

Sperm morphology and oxidative
stress

In recent decades, much evidence has suggested the central

role of OS in the etiology of male infertility. A variety of factors

can lead to the generation of reactive oxygen species (ROS) in the

male germline: unhealthy lifestyle (smoking habit, alcohol abuse,

psychological stress) environmental factors (high temperature,

metal, and plasticizers exposure), environmental toxicants

(bisphenol A, phthalates exposure), systemic pathologies and

pathologies that affect the reproductive system as inflammation,

infections, and varicocele (99). Although low ROS levels

are necessary for several sperm physiological functions,

high ROS concentration causes lipid peroxidation, DNA

fragmentation, inactivation of enzymes and oxidation of

proteins in spermatozoa (100). In particular, OS leads to

alterations of sperm motility, affecting flagellar axonemal

structure (101) and morphology. Spermatozoa themselves can

produce high ROS levels by means of dysregulation of electron

transport in the mitochondria, elevated NADPH oxidase

activity, or the excessive stimulation of amino acid oxidase

action (102). The relationship between sperm morphology and

OS can be addressed from two different points of view. First, one

of the most frequent defects found in immature spermatozoa is
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the presence of retained cytoplasm that is not physiologically

eliminated during spermiogenesis. In the residual cytoplasm,

the NADPH system is activated via the hexose-monophosphate

shunt and represents a source of electrons for ROS production

(103, 104). Second, spermatozoa that reside in an oxidant

environment show alterations in motility, morphology, and

viability consequent to damage at several levels, as plasma

and acrosomal membrane, chromatin and mitochondria (102).

A correlation between the presence of ROS and abnormal

morphology evaluated by LM (105) was reported and, recently,

teratozoospermia was associated with sperm apoptosis, OS and

decreased antioxidant capacity of the semen (106). TEM studies

underlined a prevalence of immaturity in case of varicocele and

necrosis in case of infections/inflammation and in idiopathic

infertile patients (20, 33, 107, 108); these pathologies share an

inflammatory/OS background.

Sperm morphology as a monitor of
sperm quality in in vitro experiments

Human and animal spermatozoa can be used also as an in

vitro model to test drugs and chemicals and the morphology

could be considered, together with motility and vitality, a

worthwhile monitor of sperm quality.

A topic debated in the literature refers to the use of

antioxidants in male infertility. The antioxidants are essentially

administered as dietary supplements to improve human sperm

quality (109, 110) even though the real utility of nutraceutical

products in male reproductive health is debated (111). In

vivo studies on animal models can help to understand the

effects of a standardized diet on germ cell morphology during

spermatogenesis (112).

An interesting research field concerns the in vitro treatment

of spermatozoa with antioxidants during gamete handling

as centrifugations, cryopreservation, procedures in which OS

is exacerbated (Supplementary Figure 1). Recently, a general

agreement on the protective activity of these compounds, in

particular at membrane and acrosomal levels, has been found

(113–119). The role of sperm morphology, as a monitor for

spermiotoxicity due to different compounds, is also important.

For example, Castellini et al. (120) demonstrated that different

metals caused different morphological alterations of head

sperm membrane in rabbits: arsenic, cadmium, mercury,

and platinum were responsible for acrosome damage and

formation of microvesicles, arsenic, cadmium, and chromium

of large round hole, finally vanadium caused numerous

folds in the acrosomal membrane. The role of hexavalent

chromium in inducing acrosomal reaction has been confirmed

by Yoisungnern et al. (121).

These in vitro experiments using the spermatozoon as

indicator after a treatment are useful to test compounds

showing potential male contraceptive activity. Das et

al. (122) demonstrated, by TEM and other techniques,

that a compound derived from the plant Sesbania sesban

Merrill, affected sperm membranes compromising motility

and vitality and proposed it as a possible candidate

for spermicidal activity. Membrane alterations were

observed when the essential oil of Trachyspermum

ammi (123) and the Escherichia coli recombinant sperm

immobilizing factor (124) were used in treating human

sperm in vitro.

Conclusions

We deeply think that the field of sperm morphology is

far from being exhausted and needs other research since

this parameter can be still considered a valuable indicator of

sperm dysfunction both in basic and clinical research. From

a clinical point of view, in case of systematic sperm defects

the altered morphology plays a key role in the fertilization

failure. More difficult is defining the role of sperm shape in

case of non-systematic sperm defects that are responsible for

a sperm subpopulation where a particular cell type could have

increased chance of fertilization (125). For this purpose, a

recent study (126) shows a strong correlation between sperm

morphology and expression and methylation status of ten genes,

which represent a sort of sperm signature and a new tool for

sperm analysis during ARTs and in exploring male infertility.

This fascinating hypothesis of “sperm signature” based on

molecular and morphological traits could represent the base of

further studies to clarify the role of sperm morphology in the

clinical outcome.
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SUPPLEMENTARY FIGURE 1

Scheme representing the role of the morphology studied at

transmission electron microscopy level during the in vitro treatment of

spermatozoa with antioxidants. The oxidative stress induced in vitro or

by gamete handling such as centrifugations, cryopreservation can cause

damage to sperm as acrosome reaction, the use of antioxidant

compounds can protect sperm.
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