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Previous studies on highly HIV-1-exposed, yet persistently seronegative
women from the Punwami Sex Worker cohort in Kenya, have shed light on
putative protective mechanisms, suggesting that mucosal immunological
factors, such as antiproteases, could be mediating resistance to HIV-1
transmission in the female reproductive tract. Nine protease inhibitors were
selected for this study: serpin B4, serpin A1, serpin A3, serpin C1, cystatin A,
cystatin B, serpin B13, serpin B1 and α-2-macroglobulin-like-protein 1. We
assessed in a pilot study, the activity of these antiproteases with cellular
assays and an ex vivo HIV-1 challenge model of human ecto-cervical tissue
explants. Preliminary findings with both models, cellular and tissue explants,
established an order of inhibitory potency for the mucosal proteins as
candidates for pre-exposure prophylaxis when mimicking pre-coital use.
Combination of all antiproteases considered in this study was more active
than any of the individual mucosal proteins. Furthermore, the migration of
cells out of ecto-cervical explants was blocked indicating potential
prevention of viral dissemination following amplification of the founder
population. These findings constitute the base for further development of
these mucosal protease inhibitors for prevention strategies.
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Introduction

Despite the progress in antiretroviral based HIV pre-exposure prophylaxis, there are

still 1.5 million new HIV infections diagnosed per year. New infections

disproportionately affect populations experiencing economic and gender inequities (1).

The gender gap is most notable in areas of Sub-Saharan Africa, where more than half

of those living with HIV and those newly infected with HIV are women (2). The

majority of new HIV infections occur through mucosal transmission and with

increasing prevalence of antiretroviral (ARV) drug resistance (3, 4), new pre-exposure
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prophylaxis (PrEP) strategies specifically designed to effectively

protect the mucosal portals of viral entry and not solely ARV-

based, need to be considered.

The Punwami Sex Worker cohort in Kenya includes women

that have maintained high-risk sexual behavior and remained

serologically and PCR negative for HIV (5, 6). Proteomic

studies with cervicovaginal lavage (CVL) samples from this

cohort suggest that mucosal immunological factors could be

mediating resistance to HIV-1 transmission in the female

reproductive tract. Antiproteases were among the proteins to

be differentially expressed in CVL between HIV-1-resistant

women and control groups (7, 8). The majority of over-

abundant proteins were antiproteases, some with known anti-

inflammatory and anti-HIV-1 activity. Serin protease

inhibitors, known as serpins, play an important role in

regulating inflammation and their absence can lead to severe

inflammation, tissue damage, and disease (9, 10). Many

serpins found overexpressed in the cohort of HIV-resistant

women inhibit cathepsin G, which acts as a chemoattractant

for macrophages and neutrophils (11, 12) and stimulates T

cells (13); and elastase, which is known to increase the risk of

HIV-1 infection and impair wound healing (14–17). Anti-

inflammatory and anti-HIV-1 activity has also been described

for cystatins and other protease inhibitory proteins such as α-

2-macroglobulin-like-protein 1 (A2ML1) (18–23). In the

present pilot study, we sought to evaluate the potential anti-

HIV-1 activity of nine antiproteases including serpin B4,

serpin A1, serpin A3, serpin C1, cystatin A, cystatin B, serpin

B13, serpin B1 and A2ML1. We used cellular and mucosal

tissue models to identify potential direct antiviral mechanisms

or inhibition driven by anti-inflammatory-linked processes.
Method

Reagents and virus

Antiproteases (APs) were produced by GenScript

(Piscataway, NJ, USA) via transient transfection of 293-6E

cells with a recombinant plasmid encoding each AP. Purity

was determined to be 80%–85% and functional analysis of the

protein was confirmed using a Neutrophil Elastase Inhibitor

Screening Kit (Biovision) per manufacturer’s instructions (24).

HIV-1BaL (25) was provided by the NIH AIDS Research &

Reference Reagent Program (http://www.aidsreagent.org/). Viral

stocks were by passaging through activated PBMCs for 11 days (26).
Cell culture conditions

All cell cultures were maintained at 37 °C in an atmosphere

containing 5% CO2. TZM-bl cells (27–29) were grown in

Dulbecco’s Minimal Essential Medium (DMEM) (Sigma-
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Aldrich, Inc., St. Louis, MO) containing 10% fetal calf serum

(FCS), 2 mM L-glutamine and antibiotics (100 U of penicillin/

ml, 100 μg of streptomycin/ml). PM-1 cells (30) (AIDS

reagent project, National Institute for Biological Standards

and Control, UK) were maintained in RPMI 1,640 medium

containing 10% FBS, 2 mM L-glutamine and antibiotics

(100 U of penicillin/ml and 100 μg of streptomycin/ml).
Patients and tissue explants

Surgically-resected specimens of human ecto-cervical tissue

were collected at St. Mary’s Hospital, Imperial College

Healthcare NHS Trust, London, UK. All tissues were collected

after receiving signed informed consent from all patients

through the Imperial College Healthcare Tissue Bank approved

by Research Ethics Committee Wales (IRAS 17/WA/0161). All

patients were HIV-negative. Mucosal tissue specimens were

transported to the laboratory and processed less than 1 h after

resection. Upon arrival in the laboratory, resected tissue was cut

into 2–3 mm3 explants comprising epithelial and stromal layers

as described previously (31). Non-polarized tissue explants were

maintained with DMEM containing 10% fetal calf serum, 2 mM

L-glutamine and antibiotics (100 U of penicillin/ml, 100 μg of

streptomycin/ml, 80 μg of gentamicin/ml).
Infectivity and inhibition assays

]The infectivity of virus preparations was estimated in TZM-bl

cells (by luciferase quantitation of cell lysates, Promega, Madison,

WI) and PBMCs (by measure of p24 antigen content in cell

culture supernatant). The extent of luciferase expression was

recorded in relative light units (r.l.u) as described previously (32).

Viral p24 content in supernatant was measured with HIV-1 p24

ELISA (Innotest HIV antigen ELISA, Fujirebio Europe, Belgium)

following manufacturer’s instructions. Experiments were

performed using a standardized amount of virus culture

supernatant normalized for infectivity. Cells or tissue explants

were incubated with serial dilutions of APs for 1 h at 37 °C. After

1 h at 37 °C, virus was added to TZM-bl cells (103.3 TCID50/ml)

and left for the time of the experiment (2 days). Alternatively,

tissue explants were challenged with HIV-1BaL at 10
4 TCID50/ml.

After 2 h of incubation, explants were washed with PBS,

transferred to fresh plates and cultured for 24 h. Then, explants

were once more transferred to fresh plates to harvest cells that

might have migrated out of the tissue. Cervical migratory cells

were either transferred to 96-well plates containing PM-1 cells or

counted. Tissue explants and co-cultures with PM-1 cells were

cultured for 15 days in the absence of inhibitor. Approximately

50% of supernatant was harvested every 3 to 4 days and replaced

with fresh media. Infectivity was evaluated in supernatants by

analysis of p24 concentration (Innotest HIV antigen ELISA).
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Viability assays

Viability in the presence of antiproteases was determined by

measuring tetrazolium salt [3-(4,5-dimethyl-2-thiazolyl)-2,5-

diphenyl-2H-tetrazolium bromide (MTT)] (Sigma-Aldrich,

Inc., St. Louis, MO) cleavage into a blue product (formazan)

by viable cells (33). Briefly, cells and explants were incubated

or not with antiproteases or Nonoxydol-9 (N-9) for 24 h.

Then, culture supernatants were removed and 0.5 mg/ml of

MTT added. Plates were incubated for 3 h at 37 °C. MTT

solution was aspirated and lysis buffer (98% Isopropanol with

2% HCL 2N) added for 30 min at 37 °C before measurement

of optical density (O.D) with a Synergy-HT plate reader

(BioTek, Winooski, VT). Alternatively, after incubating tissue

explants with MTT solution, dry weight was recorded.

Absorbance was measured after overnight incubation with

methanol at room temperature. OD values were corrected for

explant dry weight.
Statistical and mathematical analysis

IC50 values were calculated from sigmoid curve fitted (Prism,

GraphPad) fulfilling the criterion of R2 > 0.7. Statistical

significance was determined using a two-tailed unpaired

Student t test, and P≤ 0.05 was considered statistically significant.
Results

Inhibitory activity of APs in TZM-bl cells

The inhibitory activity of the non-formulated APs, serpin B4,

serpin A1, serpin A3, serpin C1, cystatin A, cystatin B, serpin

B13, serpin B1 and A2ML1, was assessed in TZM-bl cells

against the clade B R5-tropic isolate HIV-1BaL (Figures 1A–C,

Table 1). The estimated concentration of these antiproteases in

cervical secretions is in the μg/ml range, hence the maximum

concentrations tested were 100 μg/ml or 32.5 μg/ml depending

on manufactured protein stock. In this cellular model, dose-

response curves were only obtained for serpin B4 and cystatin

A with IC50 values of 15.60 ± 2.57 μg/ml and 6.29 ± 2.98 μg/ml,

respectively. No cytotoxicity was observed by MTT viability

assay (Supplementary Figure S1A).
HIV-1 prophylaxis potential of APs in
cervical tissue

The inhibitory profile measured in TZM-bl cells can only

recapitulate a limited number of inhibitory mechanisms.

Furthermore, considering the limited predictive power of

TZM-bl cells for mucosal compartments and to evaluate the
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potential of mucosal proteins as a pre-exposure prophylaxis

strategy, we tested the nine APs in a more relevant ex vivo

model of human ecto-cervical tissue. Titration of the APs in

ecto-cervical tissue explants revealed dose-response curves

against HIV-1BaL (Figures 1D–F) with different inhibitory

profiles. For all APs, except cystatin B, an IC50 value could be

calculated (Table 1); however, cystatin A was the only protein

reaching inhibitory levels above 80% within the range of

concentrations tested. None of the APs were cytotoxic in

cervical explants withing the range of concentrations tested

(Supplementary Figure S1B).

We next considered the potential of a combinatorial

approach with all nine APs mimicking their presence in the

cervicovaginal tract. When all nine APs were combined at the

same concentration and titrated maintaining the same

proportion, a higher inhibition level was reached in ecto-

cervical explants with the nine AP-combination than with each

of the APs titrated individually (Figure 2). The dose-response

curve showed a reduction in the IC50, with a value of 0.79 ±

0.039 μg/ml for the nine APs combination (reaching

significance towards the IC50 of serpin C1 P = 0.0284, cystatin

B P = 0.0054 and serpin B13 P = 0.0498 when tested alone) and

an increase of the higher maximum level of inhibition of

91.26 ± 1.824% reached within the range of concentrations tested.
APs are associated with decreased count
of ex vivo ecto-cervical migratory cells

To further assess the potential of APs as PrEP candidates, we

measured their inhibitory activity against trans-infection between

cervical migratory cells and CD4+ T cells in a co-culture model of

migratory cells isolated from ecto-cervical explants and a CD4+ T

cell line, PM-1 cells. We initially evaluated serpin B4, cystatin A

and serpin B13. Surprisingly, no viral replication was observed in

culture supernatants (Figure 3A). To investigate this non

titratable inhibition, new ecto-cervical explants from

independent donors were dosed with these APs. A significant

reduction in migratory cell count was measured in treated

explants compared to the number of migratory cells measured

in control explant cultures not dosed with APs (P < 0.0001 for

all conditions) (Figure 3B).
Discussion

We have evaluated, side by side, the activity of nine mucosal

APs, including serpins and cystatins, in cellular and tissue

models of cis- and trans-infection. Cystatin A was the most

potent protein candidate in all models used; however, the

order of inhibitory potency for the nine APs was different in

each model. The maximum inhibitory level achieved by the

most potent AP in TZM-bl cells, serpin B4, was not reached
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FIGURE 1

Activity of antiproteases in cellular and tissue explant models. Antiproteases (APs) were titrated against HIV-1BaL in TZM-bl cells (A–C) and ecto-
cervical explants (D–F). The percentage of inhibition by each AP was normalized relative to the r.l.u values obtained for cells or p24 values
obtained for explants not exposed to virus (0% infectivity) and for cells or explants infected with virus in the absence of AP (100% infectivity).
Data are means (± SEM) from at least two independent experiments performed in triplicate. Dashed line in each panel represents 50% of inhibition.
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in ecto-cervical tissue explants. These discrepancies highlight

the importance of pre-clinical evaluation with models that

mimic the mucosal environment. Furthermore, analysis of the

inhibitory capacity of serpin B4, serpin B13 and cystatin A

against trans-infection revealed another potential anti-viral

mechanism of protection for these proteins, with a significant

reduction in the number of cells migrating out of ecto-cervical

explants after overnight culture post-ex vivo dosing with APs.

Cervical migratory cells are dendritic cells (DCs) (31), and

decreased migration of cells from the ecto-cervix prevents

onward dissemination of HIV to secondary lymphoid tissue

(34). No cytotoxicity was observed in ecto-cervical explants

following exposure to any of the AP tested, hence the
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reduction in migratory cell count is not due to a cytotoxic

effect. This is in line with reports linking certain antiproteases

with anti-apoptotic functions (35). Migration of cervical DCs,

including myeloid DCS, plasmacytoid DCs and Langerhans

cells, has been shown to be modulated by pro-inflammatory

cytokines such as TNF-α, IL-1β, IL-8 and MIP-1β using ecto-

cervical tissue explants cultures (36). Cystatin A has been

shown to inhibit IL-8 production by keratinocytes (37). Serpin

B13 inhibits cathepsin K, L and V. Cathepsin K has been

shown to induce secretion of the pro-inflammatory cytokine

IL-6 (38) and to facilitate immune cell migration with

cathepsin L (39). Furthermore, the later has been shown to

induce proliferation of CD4+ T cells (40). Hence, inhibition of
frontiersin.org
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TABLE 1 IC50 of antiproteases against HIV-1BaL in different models.

Antiprotease IC50 (μg/ml)a

TZM-bl cells Ecto-cervical explants

Serpin B4 15.73 ± 1.55 14.60 ± 8.36

Serpin A1 N/A 12.41 ± 9.23

Serpin A3 N/A 11.01 ± 9.51

Serpin C1 N/A 6.33 ± 2.73

Cystatin A 6.29 ± 1.72 12.72 ± 8.99

Cystatin B N/A N/A

Serpin B13 N/A 5.12 ± 1.05

Serpin B1 N/A 6.16 ± 4.45

A2ML1 N/A 10.42 ± 3.48

N/A: value could not be calculated within the range of concentrations tested.
aData are means (± SEM) derived from at least two independent experiments

performed in triplicate.

FIGURE 2

Combination of nine antiproteases in ecto-cervical explants are
more active against HIV-1BaL than each individual drugs. The
dose-response curve of each antiprotease (AP) was compared
with than of the combination of the nine APs. The percentage of
inhibition by each AP and by the combination was normalized
relative to the p24 values obtained for ecto-cervical explants not
exposed to virus (0% infectivity) and for explants infected with
virus in the absence of APs (100% infectivity). Data are means
(± SEM) from at least two independent experiments performed in
triplicate. Dashed line represents 50% of inhibition.
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these cathepsins by serpin B13 could reduce the number of HIV

target cells and the levels of IL-6, which is known to be

upregulated during the acute phase of HIV infection in the

female genital tract (41). However, increased expression of

serpin B4 and cystatin A have been described in chronic

inflammatory conditions of the skin with infiltration of

dendritic cells, macrophages, Th1 cells and neutrophils (42,

43). Hence, further investigation is necessary to assess the

impact of these protease inhibitory proteins on the mucosal

environment and immunology of the female genital tract.

The APs included in this study were found to be

overabundant in the HIV-resistant women from the Punwami

Sex Worker cohort, however it remains unclear what triggered

this altered mucosal expression levels. Recent studies have

shown that serpin and cystatin levels in the female genital

tract can be modulated by hormonal treatment (44, 45) or

even by chronic sexual abuse (46). The initial combinatorial

study performed in ecto-cervical explants aims at reproducing

this increased expression of not just one, but all the

antiproteases identified in this cohort. The distinct inhibitory

potency observed in the TZM-bl cell and in the ecto-cervical

explant cultures indicates that the mechanism of action is

linked to the anti-inflammatory response induced by these

proteins more than by a direct anti-viral mechanism. To our

knowledge no study has evaluated the effect of the

combination of these anti-proteases on pro-inflammatory

cytokines/chemokines and other mucosal factors that could

affect the susceptibility to HIV-1 infection.

The tissue explant model is increasingly being used as a pre-

clinical tool to reduce the late-stage failure of HIV prevention

candidates (47) and in early clinical trials (48–53). Furthermore,

a multi-site study has shown that protocol standardization

provides measurement consistency among different laboratories

(54). This model recapitulates the histological and

immunological characteristics of the genital mucosae and early
Frontiers in Reproductive Health 05
responses to stimuli can be measured (55, 56). However,

limitations include (i) progressive loss of architecture despite the

maintenance of CD4:CD8 T cell ratios and sufficient viability to

sustain viral replication for more than 10 days (57); (ii) paucity

of data regarding preservation of immune competence (58);

(iii) limitation to demonstrate sterilizing protection.

To assess the combinatorial activity (synergy/additivity/

antagonism) of anti-viral candidates, the Chou-Talalay

equation (59) has often been used. However, to apply this

equation correctly, the slopes of all the dose-response curves

compared must be parallel and the activity of the candidate

must cover the full range between 0% and 100% of inhibition.

However, donor-to-donor variation of the explant model,

assessment of molecules with different mechanisms of action

and limited potency for some, makes this impossible to

achieve. Hence, we provided the IC50 value to show the

reduction in this value and the maximum inhibitory potency

achieved within the range of concentration tested as indicators

of increased anti-viral activity.

Our study has several limitations, including the sparse

number of explants that can be cut from each ecto-cervical

specimen limiting the breath of the titration and the number

of proteins that can be compared within a same donor. The

80%–85% purity of the APs is due to the presence of deletion

peptide sequences generated during synthesis and which could

affect the anti-viral potency of these proteins or

reproducibility of assays. Hence, peptide candidates of higher

purity could provide greater inhibitory potency. No analysis

of mucosal cytokine/chemokine profile linked to inflammatory

responses to APs was performed in this initial study.

Furthermore, inhibitory activity was only assessed against a
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FIGURE 3

Inhibition of trans-infection by antiproteases. Ecto-cervical explants were treated with antiproteases (APs), serpin B4 ( ), cystatin A ( ), serpin B13
( ), prior to viral challenge and after four washes with PBS, transferred to new plates. Migratory cells were harvested after 24 h of culture and were
either (A) transferred to 96-well plates containing PM-1 cells or (B) counted in a total volume of 200 μL. Co-cultures with PM-1 cells were kept for 15
days. The concentrations of p24 in the harvested supernatants were quantified by ELISA and the extent of inhibition calculated. The percentage of
inhibition was normalized relative to the p24 values obtained for cultures not exposed to virus (0% infectivity) and for cultures infected with virus in
the absence of compound (100% infectivity). Dashed line represents 50% of inhibition. Data are means (± SEM) from three independent experiments
performed in triplicate.
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laboratory-adapted clade B virus and not against transmitted

founder isolates from various clades. In future studies, it will

also be important to assess the potential presence of HIV

genetic material in the migratory cells to better define the

mechanism of trans-infection inhibition.

The encouraging results obtained in this pilot study support

further investigation to assess the mechanism of action of these

proteins in the mucosal environment, with a focus on the

potential modulation of inflammatory responses. Furthermore,

it will be important the define the impact of such modulation

on the migratory capacity of cervical DCs and, therefore, on

the inhibition of the local expansion and viral dissemination

to draining lymph nodes that occur following establishment of

the initial founder population during mucosal HIV-1

transmission (34). Evaluation of their activity with increased

dosing regimens will inform formulation strategies such as

sustained delivery. Understanding the mechanism of action

and pharmacological profile will be important for the dosing

and formulation strategy. Furthermore, these host mucosal

proteins will now be evaluated in combination with ARVs

and against multiple viral clades and ARV-resistant isolates.

Hence, this study constitutes the base for further development

of host mucosal proteins as HIV PrEP candidates.
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