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endometriosis development
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Endometriosis is an inflammatory disease that is defined as the growth of
endometrium-like tissue outside the uterus, commonly on the lining of the pelvic
cavity, visceral organs and in the ovaries. It affects around 190 million women of
reproductive age worldwide and is associated with chronic pelvic pain and
infertility, which greatly impairs health-related life quality. The symptoms of the
disease are variable, this combined with a lack of diagnostic biomarkers and
necessity of surgical visualisation to confirm disease, the prognosis can take an
average timespan of 6–8 years. Accurate non-invasive diagnostic tests and the
identification of effective therapeutic targets are essential for disease
management. To achieve this, one of the priorities is to define the underlying
pathophysiological mechanisms that contribute to endometriosis. Recently,
immune dysregulation in the peritoneal cavity has been linked to endometriosis
progression. Macrophages account for over 50% of immune cells in the
peritoneal fluid and are critical for lesion growth, angiogenesis, innervation and
immune regulation. Apart from the secretion of soluble factors like cytokines and
chemokines, macrophages can communicate with other cells and prime disease
microenvironments, such as the tumour microenvironment, via the secretion of
small extracellular vesicles (sEVs). The sEV-mediated intracellular communication
pathways between macrophages and other cells within the peritoneal
microenvironment in endometriosis remain unclear. Here, we give an overview of
peritoneal macrophage (pMΦ) phenotypes in endometriosis and discuss the role
of sEVs in the intracellular communication within disease microenvironments and
the impact they may have on endometriosis progression.
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Introduction

Endometriosis is a chronic inflammatory disease that affects approximately 10% of

women of reproductive age worldwide (1). It is characterized as the ectopic growth of

endometrium-like tissue, most commonly along the mesothelial cell layer lining the

peritoneal cavity, but also in the form of ovarian endometriosis cysts (endometrioma) or
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below the peritoneal surface as deep nodules (2). Clinical

symptoms include cyclical and non-cyclical pelvic pain,

dysmenorrhea, and pain during and after sexual intercourse,

defecation and emptying the bladder (2). Around 30% to 50% of

patients with endometriosis present with subfertility (3).

Depending on the location, depth and size of lesions and

adhesions, endometriosis can be divided into stages I-IV using

the rASRM (revised American Society for Reproductive

Medicine) classification system (4); deeply infiltrating

endometriosis can be further classified following the ENZIAN

criteria (5) and pregnancy outcomes can be predicted using the

Endometriosis Fertility Index (EFI) (6). With the improvement of

medical technologies, imaging tools (MRI and ultrasound) have

shown reasonable specificity and sensitivity to aid diagnosis of

endometrioma and deep endometriosis (7). The definitive

diagnosis of endometriosis, especially peritoneal endometriosis,

still requires laparoscopy (1).

As an oestrogen-driven chronic inflammatory disease,

endometriosis primarily affects women during reproductive age.

Clinically, it often manifests itself as early as adolescence (1).

Dependent on geographical locations and accessibility of health

care, there exists a delay of 6–8 years between the onset of

symptoms and diagnosis (8). Shortening this gap requires

increased awareness both in the general population and in the

medical community, improvement of positive and negative

predicative value of current imaging modalities particularly for

peritoneal endometriosis and development of clinically reliable

biomarkers. Furthermore, both medical and surgical approaches

are associated with high recurrence rates and significant side

effects (9, 10). For many patients, therefore, the disease generates

long-term impairment to their quality of life, and consequently it

is a substantial burden to healthcare systems and within society (1).

Retrograde menstruation is the most widely accepted theory

implicated in the aetiology of endometriosis (11). This theory

proposes that endometriosis lesions develop from endometrial

cells and tissue flowing backward from the uterine cavity during

menses, via the Fallopian tubes, into the peritoneal cavity (11).

However, other mechanisms involved in the regulation of cell

adhesion and proliferation must exist, as this retrograde

menstruation occurs in as many as 90% of females (12).

Endometriosis lesion architecture is variable but is usually

composed of endometrial stromal and epithelial cells, with

immune cell infiltration, fibrogenesis, neovascularisation, and

innervation (2, 13). Endometrial stromal cells are the most

predominant cell population in ectopic lesions and are thought to

be mostly responsible for lesion attachment to the peritoneum (14).
Immune dysfunction in the peritoneal
microenvironment of endometriosis

Endometriotic lesions and the mesothelial cell layer are

exposed to immune cells in the peritoneal fluid (PF). Mass

cytometry (15) and single-cell RNA sequencing analysis (16) has

revealed distinct immune cell profiles of PF between

endometriosis patients and controls. Cellular profiling studies
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identified over 40 types of immune cells in the PF, including

monocytes and macrophages (the most abundant cell

population), natural killer (NK) cells and neutrophils from the

innate immune system, as well as T and B cells from the

adaptive immune system (15). Recent evidence has suggested that

peritoneal immune dysregulation facilitates the growth of

endometriotic lesions (17). For example, decreased NK cell

cytotoxicity was observed in PF of women with endometriosis

compared to control women (17). The T helper (CD4+) immune

pattern in PF of endometriosis patients is shifted toward a Th2

anti-inflammatory immune response favouring lesion growth (18,

19). Recently regulatory T (Treg) cells have also been implicated

in disease development, through interactions with endometrial

stromal cells and macrophages (20–22).
The role of peritoneal macrophages in
endometriosis

Macrophages are the most abundant immune cell population

in PF, accounting for almost 50% (15). In addition to tissue-

resident macrophages, monocyte-derived macrophages are

recruited to the peritoneal cavity when local inflammation occurs

(23). Elevated numbers of macrophage are found in PF of

endometriosis patients (15). These peritoneal macrophages

(pMΦ) are recruited and get activated under the influence of

macrophage growth factors and chemokines, such as colony-

stimulating factor-1 (CSF-1) and monocyte chemoattractant

protein-1 (MCP-1/CCL2) (24, 25). Mesothelium, endometriotic

stromal cells and nerve fibres participate in the chemotactic

recruitment of macrophages to the pelvic cavity in an oestrogen-

dependent manner (26, 27). Oestrogen acts on pMΦ and

endometriotic lesions via the oestrogen receptors alpha (ERα)

and beta (ERβ) (28, 29).

The activated pMΦ exhibit both pro-inflammatory and pro-

repair phenotypes (15). They produce numerous cytokines and

growth factors in the peritoneal microenvironment, such as

interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8

(IL-8), interleukin-12 (IL-12), tumour necrosis factor-alpha

(TNF-α), vascular epithelial growth factor (VEGF) and

transforming growth factor-beta 1 (TGF-β1) to induce

endometriosis lesion implantation, growth and angiogenesis (2,

17, 30). Notably, Treg cells can promote macrophage polarization

with pro-repair phenotypes via the secretion of soluble

fibrinogen-like protein 2 (22). In addition, pMΦ from

endometriosis patients have impaired phagocytotic abilities

caused by the downregulation of CD36 (31, 32). These may

contribute to the survival and attachment of refluxed endometrial

cells and tissue. Furthermore, increased pMΦ abundance is

correlated with pelvic pain scores in endometriosis patients (33),

but the severity of pain symptoms does not correlate with

rASRM stages, suggesting complex mechanisms (34).

Inflammatory responses in endometriosis modulate pain by

activating and sensitising peripheral nerve fibres, and long-term

peripheral nociceptive input leads to central sensitisation (35,

36). Macrophages are attracted to nerve fibres under the
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influence of CSF-1 and CCL-2 (27, 37), and the recruited

macrophages secrete nerve growth factors such as insulin growth

factor 1, and VEGF, promote neurogenesis and nerve

sensitization mediated by oestrogen (29, 38).

These studies show that pMΦ are associated with

endometriosis progression through intercellular communication

with other cells in peritoneal microenvironments (Figure 1).

Intercellular crosstalk is not only limited to soluble factors; small

extracellular vesicles (sEVs) also mediate cell communication.

sEVs, previously referred to as exosomes, are nanosized lipid-

bilayer vesicles (30 nm to 150 nm) released by cells (39), which

are present in almost all biological fluids, including PF (40).

They are formed by the inward budding of multivesicular

endosomes (MVEs) and secreted after the fusing of MVEs with

the cell surface (39). sEVs are enriched in specific cargoes

(proteins, lipids, nucleic acids and metabolites), reflecting their

cell of origin, and they deliver these to recipient cells to

modulate their activities (41). Noticeably, sEVs are elevated in

several diseases where they display altered phenotypes (39).

Studies characterising the role of sEVs have advanced our

knowledge of the pathology of various diseases, including

cardiovascular diseases (42), neurological diseases (43),

autoimmune disorders (44) and cancer (45). It has become clear

that sEVs are important mediators of intracellular

communication in disease microenvironments and they have

emerged as valuable biomarkers and potential therapeutic targets

(46, 47).

In this review, we will discuss the phenotypes of pMΦ and

sEV-mediated intracellular crosstalk in several different disease

microenvironments, and consider how these may contribute to

endometriosis development.
Peritoneal macrophage phenotypes in
endometriosis

pMΦ comprise a heterogenous population of immune cells

originating from various locations (23). They are highly plastic

cells that can differentiate into specific subtypes in response to

local stimuli. Different subtypes of tissue-resident macrophages

present various receptors, secrete distinct chemokines and

cytokines, and consequently play specific functional roles (48).

Flow cytometry studies have reported the heterogeneity within

human pMΦ populations and various subsets are identified by

assessing the expression of canonical markers, such as CD14,

CD16 and HLA-DR (49) and distinguished by expression of

Complement Receptor of the Immunoglobulin subfamily (CRIg)

and CCR2 (50). In endometriosis patients, one study identified

two subpopulations of pMΦ as HLA-DR+ CD14lo and HLA-DR+

CD14hi (33) and another study revealed two populations of pMΦ

based on the expression of CD14 and CD68 (51). Recently,

single cell RNA-Seq analysis identified seven distinct subtypes of

macrophages in PF from an endometriosis patient (16) and

reported five subpopulations of tissue resident and blood

infiltrated macrophages in ectopic lesions (52). Validation of the

characterisation and functional studies of these subtypes are now
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required to determine if the newly identified pMΦ subtypes have

distinct roles in endometriosis progression.

In mouse models of experimental endometriosis, the origins

and phenotypes of pMΦ have been thoroughly investigated.

Tissue-resident macrophages are seeded from the embryo yolk

sac and foetal liver, and monocyte-derived macrophages are

seeded from the bone marrow during adulthood (23). In mice,

pMΦ are characterised into large peritoneal macrophages (LpM;

F4/80hi MHC IIlo) and monocyte-derived small peritoneal

macrophages (SpM; F4/80lo MHC IIhi) (23). LpM are dominant

in the peritoneal cavity and consist primarily of self-renewing

embryonic-derived cells (53). They perform immunosurveillance

in the peritoneal cavity (54). Under inflammatory conditions like

endometriosis, monocytes infiltrate into pelvic cavity and

transform into pro-inflammatory SpM, which eventually

differentiate into LpM (55). LpM, therefore, consists of

embryonic-derived and monocyte-derived cells (55). Notably, the

tissue-resident, embryonic-derived LpM promote lesion growth,

while monocyte-derived LpM appear to limit the growth of

lesions in an endometriosis mouse model (56). These findings on

the origins of pMΦ and SpM/LpM functions in the mouse

model, cannot be directly translated to the human macrophage

system, where pMΦ display a higher level of complexity and

heterogeneity. Further research is critically required on the

origins, phenotypes and functions of human pMΦ in

homeostasis and disease states.
Small extracellular vesicle-mediated
crosstalk in tissue-specific
microenvironments

The uptake and functions of sEVs

sEVs are important cellular communicators in both

physiological and pathological processes, through transferring

functional proteins, lipids, and nucleic acids to recipient cells

(39). While the cargo in sEVs generally reflects that of the parent

cells, the RNA in sEVs tends to consist of small noncoding

RNAs, like micro RNAs (miRNAs) and RNA fragments (57, 58).

Altered miRNA expression profiles are observed in endometriosis

patients and as miRNAs also function as epigenetic machinary,

sEVs could contribute to the process (59). The uptake of sEVs

can be local to the site of release or distant as they circulate in

biological fluids (60). Some sEVs can be exclusively taken up by

certain cell types, for example in the case of sEV mediated

organ-specific metastasis in cancer (61). Cellular uptake is

mediated by the surface composition of the vesicles (62). Once

sEVs reach the recipient cells, they can either trigger signalling

by directly interacting with surface receptors, fusing with the

plasma membrane, or be internalised (60). For the functional use

of sEV-encapsulated miRNAs and RNAs, sEVs need to get

internalised, bypass degradation and release cargos targeted to

endoplasmic reticulum for translation (63).
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sEV-mediated crosstalk in healthy and
diseased microenvironments

Endometriotic lesions share some clinical similarities with

cancer. For instance, both exhibit a metastatic phenotype with

adhesion, invasion and neuroangiogenesis, although the lack of

driver mutations limit the malignant potential of most forms of

endometriosis (2). There are a wealth of studies showing that

tumour-associated macrophage (TAM) derived-sEVs (TAM-

sEVs) interact with each other and other cells to promote

tumour progression. TAMs are one of the most studied disease-

associated macrophage populations. TAM-sEVs have been found

to regulate tumourigenesis (64), metastasis (65, 66) and drug

resistance (67), by transferring miRNAs and proteins to other

cells in various tumour microenvironments. The regulations

conferred are likely specific and dynamic to the cancer type. For

example, tumour-derived sEV miR-934 induces macrophage

polarisation into anti-inflammatory subtypes, promoting liver

metastasis of colorectal cancer (68). Notably, the sEV-mediated

regulation of TAMs is not limited to inducing anti-inflammatory

polarisation. In oral squamous cell carcinoma, tumour-derived

sEVs can activate pro-inflammatory TAMs to promote tumour

migration (69). In addition, melanoma cell-derived sEVs can

transform lipopolysaccharide (LPS) and interferon-gamma

(IFN-γ) stimulated macrophages to pro-inflammatory and pro-

angiogenic TAMs, which present strong differences in gene

expression compared to macrophages stimulated by interleukin-

14 (IL-4) + interleukin-13 (IL-13) and LPS + IFN- γ, and higher

survival rates (70). These studies highlight the heterogeneity of

TAMs and their complex roles in tumour microenvironments.

Importantly, sEV-mediated communication between TAMs and

other cells within the tumour microenvironment is bilateral. For

example, in gastric cancer, TAMs promote the migration of gastric

cancer cells by transfer of functional Apolipoprotein E via sEVs to

activate the PI3K-Akt signalling pathway (65). TAM-sEVs do not

only directly regulate cancer cells—in cases of pancreatic ductal

adenocarcinoma TAM-sEVs carrying miR-155–5p and miR-211–

5p promote angiogenesis and tumour growth by suppressing E2F2

expression in endothelial cells (71). In epithelial ovarian cancer

TAM-sEVs induce Treg/T helper 17 cell imbalance, contributing

to tumour progression and metastasis (72). In summary, in the

tumour microenvironment, TAMs can promote tumorigenesis and

metastasis by directly regulating tumour cells, or by indirectly

targeting endothelial and immune cells, via sEVs.

It is important to remember that sEVs also influence eutopic

endometrium function in both physiological and pathological

processes. Protein cargos of sEVs derived from endometrial

epithelial cells enhance the adhesive capacity of trophoblast,

potentially contributing to embryo implantation (73).

Intriguingly, in patients with adenomyosis (a condition where

endometrial-like cells grow into the myometrium causing heavy

menstrual bleeding, pain and infertility, often in association with

endometriosis) (74), sEVs secreted by endometrial organoids

contain miRNAs associated with pregnancy complications and

adenomyosis progression (75).
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The sEV-mediated crosstalk in the
peritoneal microenvironment of
endometriosis

These findings from cancer and endometrium studies raise the

possibility that macrophage-derived and endometriosis tissue-

specific sEVs could have an impact on endometriosis progression

through concerted cell targeting in the lesion microenvironment

(76–78). Indeed, similar to TAM, pMΦ are also regulated by sEV

mediated signalling networks. In an endometriosis mouse model,

sEVs derived from stromal cells induced macrophage polarisation

into an anti-inflammatory subtype with decreased phagocytotic

abilities, leading to increased lesion size (79). One recent study

found that ectopic stromal cells collected from recurrent ovarian

endometriosis patients induced anti-inflammatory polarisation of

macrophages via the secretion of sEV-derived Legumain

pseudogene 1 (EV-LGMNP1), a newly identified pseudogene of

LGMN (80). LGMN is highly expressed in many cancers and

appears to promote cancer progression (81, 82). Intriguingly in

the following retrospective clinical cohort study (n = 73) a higher

serum EV-LGMNP was detected in recurrent endometriosis

patients (80).

pMΦ-sEVs, on the other hand, have been shown to transfer

miR-22–3p to endometrial stromal cells, enhancing cell

proliferation, migration, and invasion through the regulation of

the SIRT1/NF-κB signalling pathway (83). Another study

revealed that pMΦ-sEVs induce proliferation and migration of

ectopic stromal cells in vitro and promote lesion growth in an

endometriosis mouse model via the transfer of the long non-

coding RNA (lncRNA) CHL1-AS1 (84). lncRNA CHL1-AS1 is

the antisense of the CHL1 gene, which can suppress or promote

cancer development at different stages (85). Overexpression of

the CHL1 gene and lncRNA CHL1-AS1 has been found in the

ectopic endometrium from ovarian endometriosis patients (86).

Interestingly, sEVs from LPS-induced macrophages can reduce

endometriosis lesion growth by repolarising anti-inflammatory

macrophages into pro-inflammatory subtypes in mice (87). These

macrophage-derived sEVs also repress stromal cell migration and

angiogenesis in vitro (87). These above-mentioned studies suggest

that macrophage-derived sEVs could target various cells and

pathways in endometriosis. Accordingly, these sEVs may

promote or supress endometriosis progression, determined by the

phenotypes of the macrophages that they are derived from. The

majority of the literature has focussed on pMΦ-sEVs and, to

date, there exists a lack of data on the role of lesion-resident

macrophage-derived sEVs.

An additional source of sEVs relevant to endometriosis are

those from stromal cells. Apart from regulating pMΦ, sEVs

derived from endometrial stromal cells are found to induce

neuroangiogenesis (88). Additionally, sEVs from endometrial

stromal cells from endometriosis patients exhibit differential

profiles of miR-21 and lncRNA antisense hypoxia inducible

factor (aHIF), promoting proangiogenic properties of endothelial

cells (89, 90). lncRNA aHIF derived from endometrial stromal

cells target VEGF, a strong pro-angiogenic molecule, which is
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highly expressed in endometriosis lesions and PF of endometriosis

patients (90). Of note, sEV shuttled miR-21, has been linked to

tumour progression through targeting of cancer cells, endothelial

cells and immune cells (like macrophages) as an apoptosis

suppressor (91). Interestingly, stromal cell sEV secreted miR-214

and miR-214–3p are found to supress fibrosis of endometriosis

lesions in murine models (92, 93); miR-214–3p was significantly

downregulated and its target, connective tissue growth factor, is

upregulated in ectopic lesions from endometriosis patients (93).

Together, the evidence suggests endometriosis-specific stromal

derived sEVs may contribute to disease progression. Recently,

miR-30c encapsulated in sEVs derived from endometriotic

epithelial cells was found to supress epithelial cell invasion and

migration and attenuate endometriosis progression in a mouse

model (94).

These in vitro and in vivo studies indicate that the peritoneal

microenvironment will likely contain a variety of sEVs, and that

these sEVs may carry key factors instrumental in the

pathogenesis of endometriosis. Combined with the known

miRNA and lncRNA, a distinct sEV protein profile has been

identified in a mass spectroscopy proteomic study of PF-derived

sEVs from endometriosis patients, compared to controls (39).

Five proteins, peroxiredoxin-1, histone H2A type-2-C, annexin

A2, inter-α-trypsin inhibitor heavy chain H4 and tubulin alpha-

chain were exclusively present in sEVs in the PF from women

with endometriosis (39). One of the proteins, Annexin A2 has
FIGURE 1

The chemokine-mediated intercellular communication of macrophages and
endometriotic lesions in the peritoneal cavity are composed of stromal cells
the surrounding peritoneal fluid (PF), immune cells are present, including
peritoneal macrophages and CD206+/CD163+ macrophages are increased
lesions, mesothelial cells from peritoneum, nerve fibres attract macrophages
chemoattractant protein-1 (MCP-1/CCL2), colony-stimulating factor-1 (CSF
MCP-1 to attract more macrophages. Treg cells induce macrophage polarisa
protein 2 (sFGL2), favouring lesion growth. On the other hand, peritoneal ma
differentiation via the secretion of cytokines and growth factors including int
(IL-12), tumour necrosis factor alpha (TNF-α), vascular epithelial growth facto
biorender.com).
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been found to be highly expressed in ectopic stromal cell-derived

sEVs, and promotes angiogenesis and stromal cell proliferation

and migration by activating ERK1/2 STAT3 pathways (95).

Future work is required to build on these data and establish key

pathways that could be targeted for therapies, or function as

biomarkers for disease severity.
Future perspectives

Macrophages play a central role in endometriosis establishment

and progression and exhibit a high level of heterogeneity. Recent

studies have identified various human pMΦ subpopulations

using different experimental approaches. pMΦ achieve bilateral

interactions with a broad range of cells in endometriosis

(Figure 1). Along with soluble factors, pMΦ will likely secrete

sEVs with functional moieties, and the pMΦ themselves are

likely affected by sEVs from the microenvironment, akin to

tumour microenvironments (Figure 2). Recent studies have

revealed the significance of stromal cell-derived sEVs in several

aspects of endometriosis progression including angiogenesis,

neuroangiogenesis and macrophage polarisation by transferring

RNAs and proteins. The research on macrophage-derived sEVs,

on the other hand, is limited to the regulation of pMΦ-sEVs on

cell proliferation, migration and invasion of stromal cells. We

propose a succession of pathways in which pMΦ-sEVs may be
other cells in the peritoneal microenvironment of endometriosis. Ectopic
and epithelial cells and infiltrated with blood vessels and nerve fibres. In
macrophages, neutrophils, T cells and B cells. The number of total
in PF of endometriosis patients. Stromal cells from the endometriotic
to peritoneal cavity via the secretion of attractant factors like monocyte
-1), and RANTES (CCL5). Existing peritoneal macrophages also secrete
tion into pro-repair subtypes via the secretion of soluble fibrinogen-like
crophages facilitate lesion growth, angiogenesis, neurogenesis and Treg
erleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-12
r (VEGF) and transforming growth factor beta 1 (TGF-β1). (Created with
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FIGURE 2

The small extracellular-mediated intracellular communication in endometriosis. Small extracellular vesicles (sEVs) are present in peritoneal fluid and
distinct protein profiles are shown in peritoneal sEVs from endometriosis patients compared to controls. Five proteins, peroxiredoxin-1 (PRDX1),
histone H2A (H2A) type-2-C, annexin A2 (ANXA2), inter-α-trypsin inhibitor heavy chain H4 (ITIH4) and tubulin alpha-chain are solely present in
peritoneal sEVs from endometriosis patients. sEVs are important intracellular communicators between different types of cells in the peritoneal
microenvironment of endometriosis. One study has revealed that stromal cell-derived sEVs regulate macrophage polarisation by delivering legumain
pseudogene 1 and promote angiogenesis via miR-21 and lncRNA aHIF. Additionally, stromal cell-derived sEVs promote neuro-angiogenesis.
Endometrial epithelial cell sEVs inhibit lesion growth by transferring miR-30c. Peritoneal macrophages also secrete sEVs. pMΦ -derived sEVs promote
lesion growth by delivering miR-22-3p and lncRNA CHL1-AS1 to stromal cells. pMΦ could potentially regulate angiogenesis, neuroangiogenesis and
immune escape in endometriosis progression via sEVs. As a future potential therapeutic approach, miR-24 transfected sEVs from stromal cells are
found to supress fibrosis in an endometriosis mouse model. LPS induced-macrophage-derived sEVs could attenuate endometriosis progression by
repolarising pMΦ, inhibiting angiogenesis and stromal cell proliferation.

Wang et al. 10.3389/frph.2023.1130849
involved in endometriosis: when ectopic endometrial tissue and

cells enter the abdominal cavity during menstruation, pMΦ-sEVs

regulate other immune cells (e.g.,: T cells) impairing immune

surveillance, facilitating lesion implantation to peritoneal surfaces.

Once the lesions are attached, the endometrial lesions will

further release sEVs to transform pMΦ into lesion-favouring

subtypes. sEVs secreted from these macrophages will then

communicate with other immune cells, endothelial and nerve

cells to sustain immune evasion, promote lesion proliferation,

and induce fibrosis, angiogenesis and neurogenesis (38). Future

work to investigate sEVs derived from endometriosis associated-

macrophages including lesion-resident macrophages are critically

required.
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One pivotal point when conducting sEVs characterisation

studies in endometriosis is that many cellular and intracellular

activities in the peritoneal microenvironment are oestrogen

dependent (1, 29). Ectopic endometriotic lesions contain

oestrogen receptors and enzymes such as P450−aromatase to

convert androgens into potent 17β-oestradiol (27). Oestrogen

receptors are overexpressed in pMΦ from endometriosis patients

(96). In addition, oestrogen levels fluctuate across the menstrual

cycle and are also affected by frequently used hormonal

treatments, such as the combined contraceptive pill, progestogens

or gonadotrophin-releasing hormone agonists and antagonists

(2). Mismatches of the hormonal status may impair the reliability

and reproducibility of the characterisations. Standardised
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protocols to collect clinical data and biological samples as well as

their processing are the prerequisite for replicable studies and

data validation. For endometriosis, these protocols exist and

should be used (97–100).

Identification of non-invasive biomarkers is one of the ultimate

goals of sEVs studies which requires research beyond the peritoneal

microenvironment. Notably, sEV shuttled miR-22–3p, lncRNA

aHIF which are identified as key intracellular communicators in

the peritoneal microenvironment are significantly higher in the

serum of endometriosis patients (90, 101). sEV packaged-miR-

214–3p which were reported to have a protective role on

endometriosis fibrosis are decreased in serum of women with

endometriosis (93). The physiological and pathophysiological

significance of these RNAs remains to be determined in

endometriosis, but the finding raises hope that sEVs could be the

source of a peripheral blood biomarker for diagnosis and

assessing the efficacy of treatments of endometriosis. It is

necessary to remember that the majority of sEVs studies in

endometriosis are pilot studies, we need confirmation and

validation of these results using independent and sufficiently

powered studies before any conclusion can been drawn. Future

work is also required to examine whether engineered-sEVs could

become therapeutic modalities, to constrain lesion development

and/or improve the quality of life for many women with

endometriosis.
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