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The historical belief in urology was that the genitourinary system should be sterile
in a normal, healthy, asymptomatic adult. This idea was perpetuated for decades
until research revealed a diverse microbiota existing in human anatomical niches
that contributed to both human health and disease processes. In recent years,
the search for an etiology and modifiable risk factors in infertility has turned to
the human microbiome as well. Changes in the human gut microbiome have
been associated with changes in systemic sex hormones and spermatogenesis.
Certain microbial species are associated with higher levels of oxidative stress,
which may contribute to an environment higher in oxidative reactive potential.
Studies have demonstrated a link between increased oxidative reactive potential
and abnormal semen parameters in infertile men. It has also been hypothesized
that antioxidant probiotics may be able to correct an imbalance in the oxidative
environment and improve male fertility, with promising results in small studies.
Further, the sexual partner’s microbiome may play a role as well; studies have
demonstrated an overlap in the genitourinary microbiomes in sexually active
couples that become more similar after intercourse. While the potential
applications of the microbiome to male fertility is exciting, there is a need for
larger studies with uniform microbial sequencing procedures to further expand
this topic.
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Introduction

The Human Genome Project (HGP), launched in 1990, aimed to map the entire human

genome, which led to significant advancements in our understanding of human biology and

genetics (1). As part of this project, researchers also started to investigate the microbial

communities that inhabit the human body and their role in human health (2). The

microorganisms inside humans, known as the microbiota, outnumber human cells ten to

one (3). The microbiota’s genomes, collectively referred to as the microbiome, can

provide traits and functions that humans did not evolve on their own, and produce a

composition of small molecules and downstream products, referred to as the metabolome

(3). If we are thought of as a composite of microbial and our own cells, then human

health and disease develops from both genomes, the microbiome and our own (3). With

advances in molecular biology techniques such as Next Generation Sequencing and 16S

rRNA subunit analysis, scientists were able to characterize an entire microbial community

in a sample, rather than just an individual species (4). These advances revealed that

microbiomes exist in nearly every anatomical niche in the body, and seem to play a role

beyond infection (3). The individuality of the microbiome and dynamic changes it
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undergoes in adulthood may allow an opportunity to treat disease

on a more personalized level, and to understand variances in

disease susceptibility and treatment response.
Gut-testes axis

As demonstrated in other systems, there is a hypothesized link

between the gut microbiome and the male urogenital tract. The

gut-testes axis refers to an interaction between the microbiome of

the gut and its impact on regulating testicular function, and is

thought to play a role in male reproductive health and infertility.

There is significant evidence that an alteration in the GM can

lead to systemic changes and inflammation, thus may affect the

testicular environment and form an interdependent connection

(5). Trimethylamine N-oxide (TMAO) is thought to be a key

signaling molecule. TMAO is a biologically active molecule

generated by the GM and associated with an increased risk of

atherosclerosis and endothelial dysfunction (6). High levels of

TMAO are associated with fewer and less healthful endothelial

progenitor cells and more reactive oxygen species, potentially

contributing to vasculogenic erectile dysfunction (7).

A paper written by Tremellen in 2016 highlighted a potential

mechanism that links gut dysfunction in obese men and late

onset hypogonadism, formally referred to as “The Gut Endotoxin

Leading to a Decline in Gonadal Function” (GELDING) theory

(8). The theory states that a high fat, high calorie diet can trigger

a breakdown in intestinal mucosal barrier, leading to a leakage of

bacterial endotoxin and a chronic state of low grade

inflammation (8). This state of low grade inflammation can then

lead to testicular and hormonal dysfunction (8). There is

evidence that a high fat diet can alter disordered tight junction

proteins that separate the metabolome of gut microbes from

leaking into systemic circulation (9). One study in male mice

demonstrated the consumption of a high-fat diet altered the

seminal fluid and gut microbiomes (10). This theory is also

supported by data in animal studies that show certain endotoxins

can impair luteinizing hormone (LH) pulses and interfere with

intra-testicular production of testosterone (11, 12).

Several studies have demonstrated that the gut microbiome

influences testosterone levels and sperm production. Bacterial

fermentation produces certain short-chain fatty acids, which

trigger the release of gut hormones such as GLP-1 and peptide

YY (PYY), two anorexigenic peptides that regulate satiety (13,

14). GLP-1 agonists have also been shown to increase serum

testosterone in diabetic and/or obese patients, improve sperm

metabolism, motility, and insulin secretion in the testes (15).

PYY administration inhibits GnRH secretion in male rats and

delays the LH surge in female ewes (16, 17). The GM also

directly generates androgens, thus changes in the GM may

modulate intestinal and androgen metabolism (18). Additionally,

androgen deprivation can alter fecal microbiota and exacerbate

risks for other systemic diseases such as obesity and

cardiovascular disease (19).

Animal studies have also shown that a FMT can treat infertility

and improve sperm quality, demonstrating another link between
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gut dysbiosis and fertility. A study in mice by Zhang et al.

looked at the effects of a FMT in mice with damaged

spermatogenesis and sperm quality. The study found that a FMT

improved spermatogenesis, increased sperm concentration,

improved motility, increased levels of testicular antioxidants and

key reproductive proteins, and increased gene expression related

to spermatogenesis (20). In mice with induced Type 1 diabetes

and infertility, a FMT significantly decreased blood glucose and

increased semen quality, improved spleen and liver functions to

strengthen the systemic environment for sperm development,

and increased blood and testicular key metabolomes, such as

docosahexaenoic acid (DHA) and testosterone (21). Other studies

have demonstrated decreased DHA in the testes of animals with

high fat diets, and supplemental DHA has been associated with

restored fertility in infertile male mice (22, 23).

In addition to evidence from animal experiments, a few clinical

trials have shown an association between the gut microbiome,

serum testosterone levels, and sperm production (24–27). In an

observational study of men with type 2 diabetes, significant

differences in microbiota species were noted between men with

and without low testosterone (26). Men with low serum

testosterone also had an increased abundance of opportunistic

pathogens (26). Another study demonstrated a significantly

positive association between gut levels of Firmicutes and serum

testosterone in adult men, while controlling for age, BMI and

lipoprotein levels (28). There is further evidence through

endocrine research that certain hormones involved in

steroidogenesis are actively synthesized in the colon and under

the influence of the GM (29–31). One study found that a specific

microbial species found in the gut and genitourinary tract is

capable of metabolizing both endogenous glucocorticoids and

pharmaceutical derivatives, potentially influencing bioavailability

of certain metabolites that may influence hypertension and

prostate growth (29). Overall, the combination of these studies

demonstrates a link between hormones and microbes, but more

research especially in humans is needed in regards to male

fertility specifically.
Male infertility

While the urogenital microbiome shows similarity with the

gastrointestinal microbiome in individuals, there are significant

differences that suggest a distinct upper genital tract contribution

(32). Studies have shown that the list of bacteria was shorter and

the total count of bacteria was lower in first catch-urine

(representing urethra microbiome) than in first-catch seminal

fluid, suggesting a unique contribution of the upper genital tract

(33). The diversity of seminal microbiome has been

demonstrated with several studies, with one citing >104 bacteria

per ml in both healthy and infertile men, without any differences

detected in semen parameters or semen specimens with and

without bacteria (34). Analysis of 97 semen samples showed that

83% contained bacteria, and the presence of multiple bacterial

species in semen was not associated with abnormal sperm

function (35). The seminal vesicles, prostate, and testes have their
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own unique microbiomes, which differ between individuals and at

different points in time, and can be altered based on individual

hygiene, circumcision, sexual practices, sexual partners, and diet

(36). For example, lower bacterial concentration and diversity

were observed in men without sexual experience compared to

those with sexual experience (37). In a healthy man, the most

abundant species varies throughout the urogenital tract, which

makes it difficult to fully understand what constitutes a healthy

seminal microbiome (36).

There have been several studies that have looked at the role of

seminal dysbiosis and its relation to prostatitis. While a number

of microorganisms have been reported to cause chronic

prostatitis, there is a growing hypothesis that prostatitis could

be the result of seminal dysbiosis (38). Other studies have

linked chronic prostatitis to inflammatory bowel syndrome,

with simultaneous presence of syndromes occurring in about

30% of patients (39). The pathophysiology of these two

simultaneous conditions is thought to be secondary to intestinal

and or seminal dysbiosis and persistent mucosal inflammation

(40). A study by Mandar et al. in 2017 revealed men with

prostatitis had overall higher species richness and lower counts

of Lactobacilli (41). Lactobacilli are associated with protective

functions in oral cavity, vagina, and gastrointestinal tract, and

may possibly play a similar role in the male reproductive tract

(42). In studies of semen quality in infertility, >80% of normal

semen samples clustered into a Lactobacillus predominant

group (43).

The microbiome may be a tool to help improve male factor

fertility. Estimates of idiopathic male infertility range from 30%–

50%, citing underlying factors such as oxidative stress, lifestyle,

and unidentifiable hormonal imbalances (44, 45). Oxidative stress

(OS) from both exogenous (e.g., alcohol) and endogenous

metabolic processes is a contributor to idiopathic male infertility

in an estimated 80% of cases (44). Dysfunctional cellular

processes contribute to the generation of reactive oxygen species

(ROS) in semen, which in turn negatively impacts sperm

function and membrane fluidity (46). An increase in oxidation-

reduction potential, a measure of ROS, is associated with

abnormal semen parameters in infertile men (47).

There has also been an established link between dysbiosis and

increased oxidative stress; certain bacterial species may generate

ROS through bacteriospermia, adhesion, toxin production, and

inflammation (48). Studies of sperm quality and oxidative

markers revealed that bacteriospermia is associated with

inflammation, oxidative stress and sperm structural deterioration

(49). Another study revealed that the intake of ultra-processed

foods (UPFs) and a disruption of the normal GM was positively

associated with the odds of asthenozoospermia (50). There is also

an established link between gut dysbiosis and an increase in

systemic oxidative stress potentially associated with other diseases

such as Alzheimer’s dementia, depression, and type 2 diabetes

mellitus (51).

Since the establishment of a microbiome in the testis and

semen, research has focused on trying to identify specific

taxonomic correlations with infertility (36, 52). While studies

have tried to find an association between the presence of seminal
Frontiers in Reproductive Health 03
dysbiosis and infertility, the results are still conflicting (52, 53).

Several studies conclude Lactobacillus is associated with a

protective impact on semen parameters, yet Ureaplasma

urealyticum, Mycoplasma hominis, and Aerococcus have been

shown to have a negative impact on semen parameters.

Bacterioidetes and Firmicutes are associated with azoospermatic

semen (32, 43, 52–58). A recent study from Garcia-Segura in

2022 identified several bacteria strains in the seminal microbiome

in infertile men that were negatively correlated with sperm global

DNA fragmentation, specifically Moraxella, Brevundimos, and

Flavobacterium (59). Other species correlated with reduced

chromatin protamination status and increased in DNA

fragmentation, negatively effective sperm reproductive potential

(59). There is still a scarcity of data on this subject, with meta-

analyses incorporating data from non-human subjects to

supplement human trials, however, the data overall supports the

hypothesis that certain bacterial strains in semen can alter the

quality of sperm (53).

Although the link between male infertility and the taxonomy of

the microbiome is unclear, the function of the microbiome may be

more important (60). Despite differences in microbiota

composition between individuals, their overall microbiome may

perform the same functions, producing the same metabolites and

causing the same changes in human cells (61). A study by Lundy

et al. found that infertile men had significant alterations in the S-

adenosyl-L-methionine (SAM) cycle overrepresented in their

urine and semen (32). The SAM cycle is involved in DNA

methylation, oxidative stress, and polyamine synthesis, however,

its specific role in fertility is currently unknown (32). This study

suggests that the specific metabolic processes that the

microbiome performs, rather than its composition, may be

affecting fertility. Further research is needed to better understand

the functional processes of the microbiome and their association

with infertility.

Another area for further exploration is the role of combined

seminovaginal microbiome and its potential influence on the

couples’ fertility. Sexual intercourse can alter both the urinary

and vaginal microbiomes in women, with studies showing an

increased G. vaginalis in young women after sexual activity (62).

There is additional data to suggest sexual intercourse can change

the male urethral microbiome, with certain species such as

Ureaplasma, Mycoplasma and Sneathia only found in sexually

experiences males (63). While data around the microbiome and

male infertility is rare, parallel studies examining the microbiota

of sexually active couples are even rarer (64). A study done by

Mandar et al. found major shifts in the vaginal microbiome after

intercourse; a predominance of G. vaginalis in women was

significantly associated with leukocytospermia in their male

partners (64). Leukocytes in sperm are also the number one

contributor to seminal ROS, potentially contributing to male

infertility (44). In addition, Wittemer et al. demonstrated that

positive bacterial cultures from both vagina and semen in

couples undergoing in vitro fertilization decreased the clinical

pregnancy rate and increased the spontaneous miscarriage rate

significantly more than vaginal infection alone (65). The concept

of olfactory receptors and volatile short-chain fatty acids (SCFAs)
frontiersin.org

https://doi.org/10.3389/frph.2023.1166201
https://www.frontiersin.org/journals/reproductive-health
https://www.frontiersin.org/


Magill and MacDonald 10.3389/frph.2023.1166201
could provide the underlying mechanism for a seminovaginal

microbial role in fertility. Olfactory receptors are key receptors

involved in spermatozoa chemotaxis, and can be activated by

SCFAs, metabolic by-products of anaerobic bacterial

fermentation (66). A study by Teveroni et al. in 2022

demonstrated spermatozoa activation after olfactory receptors

bound to SCFAs produced by microbiota metabolism in cervical

mucus (66). This mechanism relied on a bacterial process in the

vagina, thus providing a possible mechanism for a microbiome’s

role in a couple’s fertility.
Probiotics for male infertility

In the case of a disordered microbiome and excess ROS

contributing to male infertility, probiotics and prebiotics with

antioxidant properties may be a way to create an environment

that is more favorable for spermatozoa. Probiotics contain live

microorganisms, while prebiotics are food for human microbiota.

There are seven core genera of organisms that are most often

used in probiotics, those being Lactobacillus, Bifidobacterium,

Saccharomyces, Streptococcus, Enterococcus, Escherichia, and

Bacillus (67). Probiotics may be able to reset reproductive tract

dysbiosis (68). Antioxidants have been shown to enhance the

semen quality in smokers, prevent release of immature sperm,

and have a positive impact on assisted reproductive technology

(44). Oral probiotics have shown to be successful in treating

female reproductive concerns, and thus have the potential to

optimize the male microbiome as well (69, 70). A meta-analysis

on probiotics for female reproductive tract concerns highlighted

that oral probiotics can effectively restore vaginal microbiomes to

optimal Lactobacillus spp dominance (71). An imbalance in this

species has been associated with adverse pregnancy outcomes, a

significant decrease in endometrial implantation, and altered IVF

outcomes (71). The species also produces bacteriocins with
TABLE 1 Examples of studies on the effects of probiotics and male reproduc

Test group Probiotic s

Studies on humans
Infertile male patients with semen and/or prostatic
secretions positive for gram-negative bacteria

Enterococcus faecium, Saccharomyce

Men with asthenozoospermia Lactobacillus rhamnosus CECT8361
CECT7347

Men with idiopathic oligoasthenoteratospermia Lactobacillus paracasei, arabinogalct
and l-glutamine

Men with idiopathic oligoasthenoteratozoospermia Lactobacillus casei, Lactobacillus rha
bulgaricus, Lactobacillus acidophilus
Bifidobacterium longum, and Strept

Studies on animals
Zebrafish Lactobacillus rhamnosus and Bifido

Male broilers Bacillus amyloliquefaciens TOA5001

Male mice Lactobacillus rhamnosus PB01
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antimicrobial activity against relevant urogenital pathogens (71).

Some probiotic species can also improve immune responses, with

one study demonstrating a reduction in endometrial lesions

through endometrial epithelial cell barrier function with

probiotic administration (72).

Certain studies have examined the use of probiotics couples

with antibiotics in treating infertility associated with infections,

which are outlined in Table 1. A study by Grande et al. treated

104 infertile patients with semen and/or prostatic secretions

positive for gram-negative bacteria with fluoroquinolones, with

84 receiving probiotic Enterococcus faecium and Saccharomyces

boulardii, followed with Lactobacilli, in addition to antibiotics

(73). A negative semen culture was observed in 76.2% of patients

in the combination treatment group, compared to only 50% in

the antibiotics alone group (73). Another study looked at the

progression of chronic bacterial prostatitis (CBP) in patients with

infertility and concomitant inflammatory bowel disease after

treatment with antibiotics (40). Patients were treated with a

combination of rifaximin and a probiotic strain of eight gram-

positive bacteria species (40). The men in the therapeutic

treatment group had a lower risk of progression of prostatitis

into prostate-vesiculitis than men given no treatment (40). These

studies demonstrate a benefit to adding probiotics to antibiotic

treatment when treating for potential infections that contribute

to infertility.

There are very few studies that have looked at the effects of

probiotic administration on male fertility not attributable to a

possible genitourinary infection. In a study with zebrafish,

Valcarce et al. demonstrated that supplementation with probiotic

species Lactobacillus rhamnosus and Bifidobacterium longum was

associated with increased sperm concentration, total motility, and

progressive sperm motility in the treatment group (77). The two

probiotic species also had known antioxidant properties,

potentially highlighting their mechanism of action in male

infertility (68). In a small pilot study of nine men with
tive health and fertility.

pecies Result

s boulardi, Lactobacilli Negative semen culture more likely in combined
probiotic and antibiotic group (73)

and Bifidobacterium longum Improved sperm motility, decreased DNA
fragmentation, decreased intracellular hydrogen
peroxide, no change in cell viability (74)

an, oligo-fructosaccharides Improved sperm count, sperm concentration,
progressive motility, and percentage of typical forms
in group treated with probiotics (75)

mnosus, Lactobacillus
, Bifidobacterium breve,
ococcus thermophil

Improved serum testosterone, ejaculate volume,
sperm concentration, total antioxidant capacity of
plasma in men taking probiotics (76)

bacterium longum Increased sperm concentration, motility, and
progressive sperm motility and treatment group (77)

Improved sperm concentration, improved activity of
antioxidative associated enzymes (78)

Improved serum testosterone, LH, and FSH, more
motile sperm, increased sperm kinetic parameters (79)
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asthenozoospermia treated with the same oral antioxidant

probiotic strains, sperm motility was drastically improved after 6

weeks of ingestion (74). DNA fragmentation and intracellular

hydrogen peroxide were also decreased in sperm (74). Cell

viability was not affected by the treatment (74). In a randomized

controlled trial conducted by Maretti and Cavallini, the

administration of a probiotic and prebiotic combination for six

months was significantly associated with improved sperm count,

ejaculate volume, sperm concentration, progressive motility and

the progression of typical forms (75). The study also found the

treatment to be significantly associated with an increased FSH,

LH, and T levels in patients, with five men fathering a child

compared to none in the control group. Another randomized

control trial by Helli et al. looked at probiotic supplementation

in men with idiopathic oligoasthenoteratozoospermia over a

course of 10 weeks (76). In the treatment group, the ejaculate

volume, number, concentration and percentage of motile sperm,

and total antioxidant capacity of plasma significantly increased

compared to the control, and the concentration of inflammatory

markers significantly decreased (76). Probiotic supplementation

led to a significant increase in sperm concentration and motility

with a significant reduction in oxidative stress and inflammatory

markers (76). The data from these studies is promising, but

larger studies will be needed to fully understand the impact of

probiotic supplementation.
Conclusion

The Human Microbiome Project (HMP) has revealed that

microbiota exist in nearly every anatomical niche in the body

and play a role beyond infection. An individual’s microbiome is

unique and changes throughout a lifetime and is influenced by

factors such as genetics, diet, drugs, body size, surrounding

environment, and hygiene. The gut and male reproductive
Frontiers in Reproductive Health 05
system are interdependent through the microbiome, and this axis

influences male reproductive health and infertility. Several studies

have shown that the GM can influence testosterone levels and

sperm production, modulate intestinal and androgen metabolism,

and affect testicular function. Dysbiosis in the gut and

reproductive system may lead to an increase in ROS and may

contribute to male infertility. Treatment with probiotics offers an

exciting opportunity to potentially correct microbiome

dysregulation, but larger human studies are needed to fully

examine this question.
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