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Pre-implantation genetic testing (PGT) is a vital tool in preventing chromosomal
aneuploidies and other genetic disorders including those that are monogenic in
origin. It is performed on embryos created by intracytoplasmic sperm injection
(ICSI). Genetic counseling in the area of assisted reproductive technology
(ART) has also evolved along with PGT and is considered an essential and
integral part of Reproductive Medicine. While PGT has the potential to prevent
future progeny from being affected by genetic conditions, genetic counseling
helps couples understand and adapt to the medical, psychological, familial
and social implications of the genetic contribution to disease. Genetic
counseling is particularly helpful for couples with recurrent miscarriages,
advanced maternal age, a partner with a chromosome translocation or
inversion, those in a consanguineous marriage, and those using donor
gametes. Partners with a family history of genetic conditions including
hereditary cancer, late onset neurological diseases and with a carrier status for
monogenic disorders can benefit from genetic counseling when undergoing
PGT for monogenic disorders (PGT-M). Genetic counseling for PGT is useful
in cases of Mendelian disorders, autosomal dominant and recessive conditions
and sex chromosome linked disorders and for the purposes of utilizing HLA
matching technology for creating a savior sibling. It also helps in
understanding the importance of PGT in cases of variants of uncertain
significance (VUS) and variable penetrance. The possibilities and limitations are
discussed in detail during the sessions of genetic counseling.
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Introduction

Pre-implantation genetic testing (PGT) is vital in preventing chromosomal

aneuploidies and other genetic disorders including rare genetic monogenic conditions

in human embryos created by intracytoplasmic sperm injection (ICSI). The utility of

PGT in infertility management has steadily gained importance over the last two

decades. Although the practice of genetic counseling originated in the 1960s along with

the emergence of prenatal testing, genetic counseling in the area of assisted

reproductive technology (ART) has evolved as an integral part of the PGT process and

is widely used in reproductive medicine (1).
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Genetic counseling is defined by the National Society of

Genetic Counselors, USA, as a process of helping people

understand and adapt to the medical, psychological and familial

implications of the genetic contributions to disease. This process

integrates the following: (a) Interpretation of the family and

medical history to assess the chance of disease occurrence or

recurrence. (b) Education about inheritance, testing,

management, prevention, available resources and current

research. (c) Counseling to facilitate informed choices and

adaptation to the risk or condition (2, 3). Genetic counseling is

specially helpful for families facing complex situations that may

arise during the process of PGT for Monogenic disorders (PGT-

M). The current review is an attempt to introduce readers to

some situations that can arise while offering PGT-M.

While the advancement of diagnostic technologies offers

prevention of genetic disorders and birth defects, the

dissemination and interpretation of information on the disease-

causing variations and their solutions can best be served with

genetic counseling. With PGT emerging as an early alternative to

post-conception prenatal diagnosis, couples are in a better

position to plan a pregnancy with the help of in vitro

fertilization (IVF) driven PGT. Preimplantation genetic

technology aims to prevent the trauma of repeated termination

of pregnancies in cases where genetic abnormalities in the fetus

are diagnosed much later by prenatal testing. Genetic counseling

plays an important role in communicating the benefits,

limitations and complexities of PGT in an IVF set up in a non-

directive way, with empathy.
Counseling during the PGT procedure

PGT is an integral part of an experienced IVF centre and is

done in collaboration with a genetics laboratory with skills to

accurately report on the results of testing 1–8 embryonic cells.

On day 5–6 after the ICSI procedure, about 5–8 herniated

trophectoderm cells are biopsied from a site on the blastocyst

away from the inner cell mass by an experienced embryologist.

The biopsied cells from each embryo are transferred into

separate tubes and sent to specialized genetic laboratories for

testing (4, 5). All concerns of patients related to the invasive

nature of micromanipulation and lack of long-term safety

outcome data should be addressed with transparency.

Reassurance about the safety of recent biopsy techniques of the

trophectoderm compared to previously used techniques should

be shared (6). After biopsy, the embryos are vitrified until the

availability of results. Although the risks associated with thawing

of vitrified embryos is minimal, couples should be made aware of

them (7).

PGT which was previously called pre-implantation genetic

diagnosis (PGD) includes three terms, PGT-A, PGT-SR and

PGT-M (8–10). PGT screens embryos for chromosomal

aneuploidies (PGT-A) thereby increasing the chances of

implantation and reducing pregnancy loss (11). PGT for

structural rearrangement (PGT-SR) including reciprocal balanced
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translocations, inversions or insertions is helpful for individuals

with chromosomal rearrangements. PGT for monogenic diseases

(PGT-M) has the potential to offer reproductive options to

couples who are at an increased risk of having progeny with

single gene disorders such as thalassemia, sickle cell anemia,

cystic fibrosis and Huntington disease to name a few. PGT-A is

also carried out together with PGT-M to increase the chances of

success, by selecting euploid unaffected embryos for transfer.

This review is limited to the discussion of PGT-M.
Pre-implantation genetic testing for
monogenic disorders (PGT-M)

In 1990, Handyside’s group first reported live births using IVF

followed by PGD for an X-linked disorder (12). After 2005,

different methodologies evolved resulting in a plethora of

techniques capable of diagnosing genetic disorders. These were

quickly adopted in PGT. They include haplotyping (13),

comparative genomic hybridization (aCGH) (14), next generation

sequencing (NGS) (15), karyomapping (16) and linkage analysis

(17). PGT-M is presently available for identifying pathogenic or

likely pathogenic disease causing variants in embryos for all

known monogenic disorders (18). These disorders encompass

both common Mendelian conditions such as beta thalassemia,

cystic fibrosis, hemophilia, sickle cell anemia, Huntington’s

chorea, Duchenne muscular dystrophy, as well as rarer genetic

diseases like methylmalonic acidemia and lysosomal storage

disorders. Additionally, specific mitochondrial disorders like

Leigh syndrome where nuclear DNA is involved (19, 20), are also

included. The aim of genetic counseling is to effectively convey

the advantages and constraints of PGT while ensuring that

patients have comprehensive information to make an informed

decision, taking into account the outcomes derived from the test.

Some of the important features of PGT-M genetic counseling are

discussed in this review.
Pre-PGT-M genetic counseling

It is important for all couples considering PGT-M to

participate in genetic counseling and share their family history,

medical records and results of molecular studies carried out for

family members. A prerequisite for PGT-M testing is that the

disease-causing variant is identified and classified as per

American College of Medical Genetics (ACMG) guidelines for

pathogenicity before initiating PGT-M (21–23). Based on the

pedigree analysis and review of reports, the genetic counselor is

in a position to discuss the inheritance pattern of the condition

in the family, risks to the offspring and available preventive

options including prenatal or pre-implantation genetic testing.

The benefits of PGT vs. its risks, limitations, and cost of testing

should be communicated to the family. Informed written consent

is necessary and should be taken prior to initiating the PGT

procedure.
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FIGURE 1

Genetic diagnostic workflow for PGT-M of common known variants
in certain disorders.
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Determination of the disease causing
variation and evaluation of the
inheritance pattern are prerequisites
for PGT-M

Most of the Mendelian disorders are caused by disease causing

variations in a single gene (monogenic). The inheritance of these

conditions can be autosomal dominant, autosomal recessive, X-

linked dominant or X-linked recessive. The involvement of the

genetic counselor begins by looking at the phenotype of the

affected individual in the family, doing a dysmorphology

assessment, reviewing the medical records, determining the

inheritance pattern and ordering tests to identify the disease-

causing variation along with its inheritance. Based on the

phenotype analysis, the counselor follows a genetic diagnostic

workflow which is economical and best suited for the case

(Figures 1–5). The following case examples demonstrate the

adopted workflow in frequent counseling scenarios:

(a) Common genetic variations such as ΔF508 in cystic fibrosis

[c.1521_1523del (p.Phe508del)] and c.20A>T (p.Glu6Val) in

sickle cell anemia can be checked by simple molecular

techniques such as polymerase chain reaction (PCR) (24–

27). If the variation is confirmed either in the index case or

the carrier parents, PGT-M can be offered for the condition

(Figure 1).

(b) If common genetic variations are absent in a case with clear

cystic fibrosis or sickle cell anemia phenotypes, the genetic

counselor will order tests with wider scope such as full gene

sequencing of CFTR or beta globin gene to identify rare

pathogenic variations (28, 29). Many times it is seen that

the individual with sickle cell anemia may actually have

sickle cell thalassemia with a sickle cell heterozygous

variation and a thalassemia heterozygous variation (30). Full
FIGURE 2

Genetic diagnostic workflow for PGT-M of autosomal dominant conditions
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gene sequencing will help to identify such cases. Based on

these results, the option of PGT-M can be discussed with

the family (Figure 1).

(c) In autosomal dominant conditions such as history of a child

with achondroplasia, confirmed by a genetic test, the

recurrence risk is usually low as parents are unaffected. The

sporadic occurrence of achondroplasia and low recurrence

risk is explained to the couple and PGT-M may not be

offered. The extreme rare condition of gonadal mosaicism,

where parents may be unaffected carriers but produce

gametes with a variation due to the presence of a variation

only in gonadal tissue should be discussed. In such

condition PGT-M can be offered after counseling. However,

in a homozygous state, achondroplasia is usually

embryonically lethal (31) (Figure 2).
.
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FIGURE 3

Genetic diagnostic workflow for PGT-M of autosomal recessive conditions.

FIGURE 4

Genetic diagnostic workflow for PGT-M of X-linked recessive conditions.
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(d) If a parent has an early onset autosomal dominant Alzheimer,

Huntington disease or Marfan syndrome, the risk of

recurrence for offspring is 50% hence the PGT-M option is

explained to the couple (32–34) (Figure 2).

(e) For autosomal recessive disorders, the workflow will include

identification of a recessive variation in the index child or
Frontiers in Reproductive Health 04
identification of the carrier status in both partners (35, 36).

Examples of recessive disorders include thalassemia, cystic

fibrosis and albinism (37). A recurrence risk of 25% for

every pregnancy is discussed with the family during the

counseling session based on the confirmation of a recessive

variation in the index case or carrier status of both partners
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FIGURE 5

Genetic diagnostic workflow for PGT-M of X-linked dominant conditions.
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by genetic tests. In some instances where the proband or

affected family member is unavailable, carrier screening is

recommended for parents to identify the general risk of

inheriting recessive disorders that are not indicated by

family history. Carrier screening can be offered for selective

targeted disorders by targeted NGS panels or for all

recessive disorders using whole exome sequencing (WES)

methodologies. This testing is particularly helpful in

consanguineous marriages. Genetic counseling in the

presence of consanguinity is vital in order to explain the

possibility of more than one recessive disorder risk in the

offspring because of the higher proportion of shared genetic

material between the partners (38) (Figure 3).

(f) In cases such as Duchene muscular dystrophy (DMD) or

spinal muscular atrophy (SMA), the multiplex ligation

dependent probe amplification (MLPA) technology is

utilized to identify exon level deletions or duplications.

Confirmation of pathogenic homozygous deletion/duplication

in affected individuals or hemizygous/heterozygous deletion/

duplication in carrier parents will open up the discussion on

the option of PGT-M (Figure 4) (39, 40).

(g) For X-linked recessive conditions like hemophilia, where

males are mainly affected, the counselor will recommend

identification of the gene variant in the affected male child

or in the female partner, who is usually an unaffected

carrier with a variation on one of her X chromosomes, the

other X chromosome being normal. A 50% risk to the male

offspring is explained as the risk that she passes on when

she transmits an X chromosome with the variant. Female

offspring are usually unaffected like their mother (41)

(Figure 4).

(h) In certain scenarios the counseling session will clarify that

there is no risk to the offspring and PGT-M may not be

required. For instance, if the male partner’s brother has

DMD which is an X-linked recessive condition, there is no
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risk for the couple as the male partner has a normal

phenotype being devoid of the variation on his X

chromosome (Figure 4).

(i) Although rare, X-linked dominant conditions such as,

Incontinentia pigmenti and Rett syndrome equally affect

males and females. Males with X-linked dominant condition

are affected more severely with low survivability than

females. In many cases in-utero demise is a common

phenomenon observed in affected male fetuses. An affected

mother will have a 50% chance of passing on the dominant

gene variant to either male or female offsping. In case of an

affected father there is 50% risk for female offspring and no

risk for male offspring as the father does not contribute the

X-chromosome to a male child (Figure 5).

(j) There are many other complex disorders with multi-gene

etiology and for their diagnosis including differential

diagnosis, NGS based WES is used. The test relies on

sequencing of genomic exons or the coding regions of the

genome and is usually recommended for the affected family

member (Index or proband) (42, 43). Couple carrier

screening can also be offered. Based on the test results, the

genetic counselor would guide the family and patients for

follow-up tests which could be either in the prenatal or pre-

implantation period.

(k) There are many disorders for which PGT-M was successfully

offered (44–46).

The dilemma of variants of uncertain
significance (VUS)—pathogenic or
benign?

With the advancement of NGS technologies allowing rapid and

inexpensive sequencing of the human genome, we are witnessing

its rapid adoption in clinics for couples as a preliminary genetic
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work up by choice, before starting any fertility treatment. A change

in the genetic code is usually called a variant and thousands of

variants are identified in the process of WES or whole genome

sequencing. These variants are classified into five tiers:

pathogenic (P), likely pathogenic (LP), variant of uncertain

significance (VUS), likely benign (LB), and benign (B) as per

ACMG guidelines. Pathogenic and likely pathogenic variants are

those that are strongly associated with disease etiology hence

offering PGT-M in such situations is justified. Benign and likely

benign are those variants that may not be disease causing.

Therefore, PGT-M is not offered. Variants that are not classified

either as pathogenic or benign are reported as VUS (21). A VUS

is a genetic change whose clinical impact is not yet well

understood, either because its effect on the gene’s function is not

fully known or because there is lack of sufficient data for its

definitive classification as benign or pathogenic due to a low

number of cases reported or due to conflicting results in

literature. While many laboratory policies reject PGT-M requests

for VUS, some labs accept them, provided the patients clearly

understand the implications of testing the VUS (47). An in-

depth counseling session will help couples understand these

details and a clear documentation of the same communication

between the genetic counselor and patients should be made

available to the lab along with the signed consent form. It should

be noted that the classification of a variant may change over time

to likely pathogenic or likely benign with increasing availability

of data on the gene variant. Laboratories providing sequencing

and reporting services may contact families if there is a change

in classification of the variant and issue a revised report. Patients

should be encouraged to attend a genetic counseling session with

a revised report. Sometimes testing extended family members can

help in resolving the issue of pathogenicity of the VUS. This is

done by determining whether variants are shared by other

affected or unaffected individuals. However, this requires a

prolonged work-up of multiple family members and may not be

practical in all cases. Considering the above issues with VUS, the

focus of the genetic counselor should be to address the

uncertainty in such a way that the couple understands the

implications in order to make an informed decision.
The process of pre-PGT-M workup

PGT-M optimization includes designing laboratory primers

and pre-work-up using DNA of extended family members. The

laboratory usually carries out a linkage-based analysis using

multiple genetic markers on parents and available family

members before testing the embryos. In some cases, the genetic

counselor may involve more team members including laboratory

personnel and clinical experts in the discussion in order to

determine the feasibility of testing the embryos (48). PGT-M

may sometimes be complex and difficult in cases of de novo

variants, unconfirmed VUS in extended family members,

unavailability of relatives, refusal for testing by relatives, in the

presence of complex gene loci and other technical difficulties.
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Genetic counseling for mitochondrial
disorders

Mitochondrial disorders mostly result in metabolic problems.

They involve multiple organs with variable disease onset and

severity. Variations in both nuclear DNA and mitochondrial

DNA (mtDNA) are responsible for mitochondrial disorders.

Disorders caused by variations in nuclear DNA usually follow

an autosomal recessive pattern of inheritance, although rarely an

autosomal dominant pattern is seen. Prenatal diagnosis and PGT

are available to prevent the birth of another severely affected

child in such cases of nuclear gene associated mitochondrial

disorders (Variation in SURF1 gene for Leigh Syndrome) (49).

For de novo variations, the recurrence risk is low and couples

can be counseled accordingly.

However in 15%–25% of cases, mitochondrial diseases are

caused by mtDNA variations, which can be either de novo or

maternally inherited. Mitochondrial DNA sequencing is used to

confirm the variations. But for maternally inherited mtDNA

variations, the recurrence risk is often unpredictable because of

random presence of heteroplasmy (a mixture of normal and

variation copies in mtDNA) or homoplasmy (all copies of the

mitochondrial genome are identical with or without the

variation) in cells. In addition, mtDNA variations are associated

with a variable phenotype which leads to difficulty in predicting

the phenotypic outcome. The option of oocyte donation may be

discussed to prevent transmission of the disorder to the offspring.

Discussion of complex mitochondrial inheritance needs extended

sessions during genetic counseling (50). Recently, mitochondrial

replacement therapy (MRT) has become available for clinical

application as an alternative to prevent the transmission of

heteroplasmic and homoplasmic mtDNA variations (51).
Genetic counseling for inherited
cancer predisposition syndromes

Individuals are considered to be candidates for inherited cancer

predisposition syndrome risk assessment if they have a personal

and/or a family history on the maternal or paternal side or if

they have clinical characteristics with features suggestive of

inherited cancer predisposition syndrome. Some examples are

familial breast and ovarian cancer, Lynch syndrome, Peutz–

Jeghers syndrome and inherited retinoblastoma. Testing the

affected individual or an individual at risk is essential to

determine the inheritance pattern and identify the risk for future

generations. Although prenatal and pre implantation testing can

be offered to families at a high risk, it must be kept in mind that

testing is done for germline cancer susceptible variants that

increase the risk for malignancy and not for somatic variations.

PGT can limit the transmission of the inherited cancer gene

variation to future generations (52–55). It is essential to discuss

the challenges that may be encountered including the age of

onset, variable penetrance and phenotype variability. Both pre-

test and post-test counseling sessions are recommended, so that
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the individuals are made aware of the details of the genetic report’s

cancer predisposition for appropriate planning of PGT-M.
Genetic counseling for adult-onset
genetic disease

PGT for late adult-onset diseases is complex with a wide range

of ethical, legal, social, and policy issues. PGT-M for late adult-onset

conditions is a controversial subject with debatable arguments on

both sides. The Ethics Committee of the American Society for

Reproductive Medicine (ASRM) states that PGT-M for adult-

onset conditions is ethically justified when the condition is

serious, and no safe, effective interventions are available. The

committee however cautions about technological issues,

complexity of the scientific, psychological and social aspects and

emphasizes on the strong role of an experienced genetic

counselor in the process (56). Examples of adult-onset genetic

conditions are Huntington disease, myotonic dystrophy,

spinocerebellar ataxia, Charcot-Marie-Tooth disease, adult-onset

metachromatic leukodystrophy, neurofibromatosis and hereditary

cancer predisposition syndromes. While patients with a positive

family history seek to understand their carrier status for late onset

diseases, sometimes the associated variants are identified in WES

tests as secondary or incidental findings. Labs disclose such

information only to individuals who consent to know their risk.

Once the risk is identified, the adult may choose not to pass on

the variant to the offspring and might seek PGT-M for the

condition. Many labs accept such a request with the individual’s

consent. However, one important aspect to consider when

discussing PGT-M for late adult-onset genetic diseases is the issue

of penetrance. If some individuals with the variant do not develop

features of the disorder while others do, the condition is said to

have reduced or incomplete penetrance. In such cases, ethical and

policy considerations including reproductive liberties take a central

place in the discussion. If the variation is identified in an affected

grandparent, the children in the reproductive age group could get

pre-symptomatic testing done with a view to avoid passing on the

deleterious gene to the next generation. Occasionally, these

couples may not want to know the result of the pre-symptomatic

test, but may want to do PGT anyway, in order to avoid

transmission of the pathogenic variant to their children. This is

feasible and can be done after discussing non-disclosure protocols

and taking appropriate informed consent. The genetic counselors

must consider all such situations and provide information to

patients in order to facilitate non-directive decision making (57, 58).
Genetic counseling for polygenic
disorders (PGT-P)

Polygenic diseases are complex diseases that are influenced by

the combined effects of many genes along with an environmental

contribution. Examples include commonly occurring diseases,

such as coronary heart disease and type 2 diabetes, inherited

cancer predisposition syndrome and schizophrenia. Unlike PGT-
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M, PGT for polygenic disease (PGT-P) represents a further level

of complexity in which multiple genes are tested and an

associated polygenic risk score (PRS) is established using

genome-wide association studies (GWAS). PRS estimates the

genetic risk of an individual for a disease or trait, calculated by

aggregating the effect of many common variants associated with

the condition. Assigning a PRS to an embryo is possible because

of available large datasets of people with each disease. Clinical

implementation of PRS may be useful in cohorts where there is a

higher prior probability of disease, for example, in early stages of

diseases to assist in the diagnosis or to inform individuals

regarding treatment choices (56, 59–62). The pros and cons of

PGT-P are highly debated among the scientific circles and there

are vocal proponents and opponents on both sides arguing cost

to benefit justification (63). Although a few companies are

already offering such services, genetic counselors should caution

families of the limitations such as uncertainty of the risks, non-

availability of data for many population groups, absence of long

term studies and the fact that it is only predictive with a risk

score and not diagnostic. Currently these limitations lead to

attenuated feasibility of prenatal or PGT-P (64).
Genetic counseling for epigenetic
disorders

The epigenome surrounds the genome or the genetic

component of the cell and influences the mechanism of turning

on and off the genes by condensation, folding and unfolding of

DNA. Histones, methyl groups and microRNAs constitute the

epigenome. Many human diseases including neurodevelopment

conditions, cancer and life style disorders are influenced by

epigenetic changes which are dependent on the environment.

Although the search for new fetal epigenetic markers and the

clinical implementation of epigenetic approaches for noninvasive

prenatal diagnosis are underway (65), prenatal and PGT options

are not currently feasible. Pre-pregnancy parental lifestyle, post

pregnancy maternal care and early childhood nurturing, make

for an optimal epigenome that can protect individuals

throughout their life span (66).
Post PGT-M genetic counseling

A post-test genetic counseling session explaining the PGT-M

results and their interpretation should be carried out. Usually,

along with testing for the monogenic disorders, PGT-A is also

offered on the embryos so that the risk of aneuploidy is also

ascertained (48). Aneuploid embryo with a normal or unaffected

carrier status for the tested genetic condition is chosen for

transfer to the uterus at a time when the endometrium is most

receptive. Other normal embryos are cryopreserved for future

use. It is important to counsel individuals about the rare false

negative results, however rare, caused by both technical

limitations and complex biological processes. For example, a

disintegrated DNA sample might fail to amplify both the alleles
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FIGURE 6

Summary of end to end genetic counseling work flow for PGT-M.
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of the variant simultaneously, resulting in a false homozygous

report. This phenomenon of amplification of only one allele,

instead of both, is called as allele drop-out. In vivo, the early

embryonic divisions are prone to errors and may give rise to

sporadic genetic variants that may be pathogenic in the fetus.

Hence diagnostic prenatal tests by chorionic villus sampling

(CVS) or amniocentesis processes should be communicated

during counseling in a simple language with emphasis on the

need of post-conception testing. The entire process of genetic

counseling in PGT-M is summarized in a flow chart in Figure 6.

It gives a broad outline of steps usually followed by the genetic

counselor before initiating the tests and after evaluating the type

of result (pathogenic, likely pathogenic, uncertain significance

variants), late onset disease diagnosis and secondary findings.
Genetic counseling for PGT-M for a
savior sibling

A savior sibling is usually considered by parents when a child

needs a bone marrow transplant and finding a compatible donor is

a challenge. The savior baby is generally created through IVF by
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testing the embryos by human leukocyte antigen (HLA) typing

and using the embryos that are 100% HLA matched with the older

affected sibling. A wide range of genetic disorders can be treated

by savior siblings including blood disorders like thalassemia,

leukemia, bone marrow disorders, immune deficiencies and certain

cancers. It is important to select an embryo which is not only

100% HLA match but is also devoid of the pathogenic disease

variation present in the older sibling. Haematopoietic stem cells

collected from the umbilical cord blood or the bone marrow of the

HLA-matched donor sibling born are used for transplantation to

cure the affected sibling (67). HLA typing of ART-created embryos

was first reported in 2001 (68) and with several encouraging

results reported worldwide, savior sibling creation is now offered

in several IVF clinics (69). The genetic counselor will have to

discuss ethical, technical and financial implications of a savior

sibling during the genetic counseling session (70).
Conclusion

The role of genetic counseling for couples undergoing PGT-M

is crucial and must be offered by trained, qualified genetic
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counselors. Usually the information gathered during a genetic

counseling session helps the counselor to not only offer PGT-M

option based on the case details, but also to select appropriate

technology or workflow for pre-PGT-M work up. Genetic

counselors will have to consider the inheritance pattern,

availability, or non-availability of index case, family history and

clinical parameters before giving out the recommendations.

Complex genetic disorders including mitochondrial diseases and

polygenic conditions must be addressed with care.

Communicating genetic test results to the family and helping

them understand the implications is an important part of the

sessions. The genetic counselor plays a pivotal role in

establishing a close collaboration between genetic labs and ART

centers which is paramount for successful implementation of

PGT-M. As couples would be going through complex IVF

treatment together with genetic testing, it is expected that they

may be sensitive and emotionally charged and may ask abundant

questions. A genetic counselor should be proficient with the

language of the patient/family, have empathy, should be willing

to listen and explain, be supportive, non-directive, and use

effective communication through charts and videos. Genetic

counselors should align their discussion with ethical, religious

issues and the rules and regulations of the governing body of the

residing country.
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