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Clinical trial simulation to
evaluate tenofovir disoproxil
fumarate/emtricitabine HIV
pre-exposure prophylaxis dosing
during pregnancy
Rachel K. Scott1†*, Yifan Yu2†, Mark A. Marzinke3, Jenell S. Coleman4,
Craig W. Hendrix3 and Robert Bies2
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2Department of Pharmaceutical Sciences, University of Buffalo, Buffalo, NY, United States, 3Division of
Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States,
4Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD,
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Objective: To evaluate upward-adjustment of tenofovir disoproxil fumarate (TDF)/
emtricitabine (FTC) pre-exposure prophylaxis (PrEP) dosing during pregnancy in
order to maintain target plasma concentrations associated with HIV protection.
Design: Population pharmacokinetic (PK) modeling and clinical trial simulation
(CTS).
Material and methods: We developed population pharmacokinetic models for
TFV and FTC using data from the Partners Demonstration Project and a PK study
of TDF/FTC among cisgender women by Coleman et al., and performed an in-
silico simulation. Pregnancy-trimester was identified as a significant covariate on
apparent clearance in the optimized final model. We simulated 1,000 pregnant
individuals starting standard daily oral TDF/FTC (300 mg/200 mg) prior to
pregnancy. Upon becoming pregnant, simulated patients were split into two
study arms: one continuing standard-dose and the other receiving double
standard-dose throughout pregnancy.
Results: Standard-dose trough TFV concentrations were significantly lower in
pregnancy compared to pre-pregnancy, with 34.0%, 43.8%, and 65.1% of trough
plasma concentrations below the lower bound of expected trough
concentrations presumed to be the protective threshold in the 1st, 2nd, and 3rd
trimesters, respectively. By comparison, in the simulated double-dose group,
10.7%, 14.4%, and 27.8% of trough concentrations fell below the estimated
protective thresholds in the 1st, 2nd, and 3rd trimesters, respectively. The FTC
trough plasma concentration during pregnancy was also lower than pre-
pregnancy, with 45.2% of the steady-state trough concentrations below the
estimated protective trough concentrations of FTC. In the pregnancy-adjusted
double-dose group, 24.1% of trough plasma concentrations were lower than
protective levels.
Conclusions: Our simulation shows >50% of research participants on standard
dosing would have 3rd trimester trough plasma TFV concentrations below levels
associated with protection. This simulation provides the quantitative basis for the
design of prospective TDF/FTC studies during pregnancy to evaluate the safety
and appropriateness of pregnancy-adjusted dosing.
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01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/frph.2023.1224580&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/frph.2023.1224580
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frph.2023.1224580/full
https://www.frontiersin.org/articles/10.3389/frph.2023.1224580/full
https://www.frontiersin.org/articles/10.3389/frph.2023.1224580/full
https://www.frontiersin.org/articles/10.3389/frph.2023.1224580/full
https://www.frontiersin.org/articles/10.3389/frph.2023.1224580/full
https://www.frontiersin.org/journals/reproductive-health
https://doi.org/10.3389/frph.2023.1224580
https://www.frontiersin.org/journals/reproductive-health
https://www.frontiersin.org/


Scott et al. 10.3389/frph.2023.1224580
Introduction

Pre-exposure prophylaxis (PrEP) is critically important for the

prevention of Human Immunodeficiency Virus (HIV) during

pregnancy, both for prevention of maternal HIV and secondary

perinatal transmission. Oral tenofovir disoproxil fumarate/

emtricitabine (TDF/FTC) is the most commonly used PrEP

medication for people with receptive vaginal exposure to HIV and

has extensive safety data in pregnancy; however, dosing and efficacy

have not been prospectively evaluated in pregnancy. Multiple studies

of TDF/FTC during pregnancy both for treatment and prevention of

HIV report lower tenofovir (TFV) exposures in the 2nd and 3rd

trimesters attributed to pregnancy-related increased volume of

distribution and renal clearance (1–16). Similar declines in FTC

concentrations are also reported (7–9, 11). The Partners

Demonstration Project showed the largest decline during pregnancy

compared to non-pregnant women, with 45%–58% reductions in

plasma TFV and intraerythrocytic TFV diphosphate (TFV-DP)

concentrations from dried blood spots, respectively, compared to

non-pregnant women (1). Decreases in peripheral blood

mononuclear cell (PBMC) TFV-DP concentrations of up to 49%

were also reported (1). Additionally, although plasma TFV

concentrations are 20%–25% higher during the first 6 weeks

postpartum than in the 3rd trimester, they remain lower than non-

pregnant concentrations (4, 5). Lower TFV exposure during

pregnancy is of particular concern, as meta-analyses, pooled study

analyses, and pharmacometric modeling studies indicate that non-

pregnant women already require higher drug concentrations required

to achieve high levels of HIV protection in women compared to men

(17–21). While plasma and PBMC concentrations of parent drugs

(TFV, FTC) and active anabolites (TFV-DP, FTC-TP), respectively,

are the same in men and women, drug deposition and TFV-DP

concentrations are lower in cervicovaginal tissue as compared to

colorectal tissue, which may contribute to the differences in TDF/

FTC efficacy between men who have sex with men (MSM) vs.

women (22–28).

We hypothesized that without doubling the TDF/FTC dose in

pregnancy, substantial losses in HIV protection of 20%–40% would

be expected due to moving down the concentration-response curve

(17, 18, 29). The objective of the current analysis is to evaluate the

effect of pregnancy on the pharmacokinetics (PK) of TDF and FTC

in a population pharmacokinetics (popPK) modeling framework

using a nonlinear mixed effects approach and to perform a clinical

trial simulation to evaluate the appropriateness of a pregnancy-

adjusted double TDF/FTC dose. Since the majority of TDF is

rapidly converted to TFV after oral absorption, TFV is the primary

circulating form of the drug in the plasma (30); thus the modeling

and simulation were based on TFV plasma concentrations.
Materials and methods

Study design and study data

This analysis utilized popPK models of TFV and FTC and

clinical trial simulation to compare the adequacy of standard
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TDF/FTC dosing to a pregnancy-adjusted, double TDF/FTC dose

to maintain target plasma concentrations associated with HIV

protection in the 1st, 2nd and 3rd trimesters of pregnancy. The

pregnancy-adjusted double-dose TDF/FTC regimen was selected

based on the demonstrated pregnancy-related concentration

decreases in both TFV and FTC reported in the PK literature

(1–9, 11–13, 15, 16).

We included data from two studies in the popPK modeling: the

Partners Demonstration Project and data from the TDF/FTC arm of

a phase I, prospective, open-label study conducted in Baltimore,

Maryland by Coleman and colleagues (31, 32). The Partners

Demonstration Project was a multi-site, randomized, double-blind,

placebo-controlled clinical trial conducted in Kenya and Uganda,

which included PK data from 116 female participants, including 33

pregnant and postpartum participants who became pregnant while

taking TDF/FTC and elected to continue on TDF/FTC. TDF/FTC

was provided in a MEMS® container, which records a time-and-

date stamp for each container opening as a proxy for medication

ingestion. The Coleman study included intensively sampled, steady-

state PK data from 12 non-pregnant, pre-menopausal, HIV

negative, cisgender women taking TDF/FTC under directly

observed therapy (DOT). We chose the Partners Demonstration

Project as it sampled the largest published cohort of pregnant and

postpartum individuals on TDF/FTC PrEP. We included the

Coleman, et al., PK study to supplement the Partners

Demonstration Project PK data with intensive PK data under

DOT. For both studies, plasma TFV and FTC concentrations were

measured using a previously described, validated liquid

chromatographic-tandem mass spectrometric (LC-MS/MS) assay

(27). Lower limits of quantification (LLOQ) for plasma TFV and

FTC were 0.31 ng/ml. All plasma drug concentrations were

measured by the Clinical Pharmacology Analytical Laboratory at

the Johns Hopkins University School of Medicine.
Dataset preparation

We prepared the datasets for modeling by integrating MEMS

data on adherence and TFV/FTC concentration data from the

Partners Demonstration Project and dosing records from the

Coleman et al. study. We used “M3” method articulated by Beal

to handle drug concentrations below the limit of quantification

(BLQ) in the Partner Demonstration Project. The M3 method

accounts for measurements BLQ explicitly without censoring

them. Thus, these observations are included in the PK model

analysis using an appropriate statistical approach (33).
Modeling and simulation

We conducted the population analysis using NONMEM

(version 7.3. ICON Development Solution, USA) with the

gfortran compiler interfaced with Perl-speaks-NONMEM (PsN).

Dataset preparation and diagnostic plot plotting were carried out

using R (4.1.1). The clinical simulation was carried out using

mrgsolve package (1.0.8) in R.
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Model development

We developed the base model for TFV and FTC using the data

from the Coleman et al. study. Based on the published models, we

tested one-compartment and two-compartment models with first-

order absorption and with or without lag time. After the

development of the base model, we simultaneously used data from

both the Coleman et al. study and the Partners Demonstration

Project study for parameter estimation. For TFV, the exponential

between subject variability was supported on first order absorption

rate constant (Ka), apparent clearance (CL/F), apparent central

(Vc/F) and peripheral volumes (Vp/F), and apparent inter-

compartmental clearance (Q/F); For FTC, the exponential between

subject variability was supported on Ka, CL/F, Vp/F, and Q/F:

P ¼ TVP � exp (hp) hp � N(0, v2
P)

Where the P represents the individual value of the parameter P, the

TVP represent the typical value of the parameter P, the hp denotes

the inter-individual variability (IIV) which is assumed to have a

normal distribution with mean equals to 0 and variance equals to v2
P .

For both TFV and FTC, we used a proportional residual model

for the Coleman et al. study and a combined residual model for the

Partners Demonstration Project to account for the heterogeneity of

two clinical trials:

Cij ¼ cCij � (1þ 11ij � (2� STUDY)þ 12ij � (STUDY� 1))

þ 13ij � (STUDY� 1)

11ij � N(0, s 2
1 ), 12ij � N(0, s 2

2 ), and 13ij � N(0, s 2
3 )

Where the Cij represents the observed concentration of subject i at

time j, the cCij represents the predicted concentration, STUDY

represents the study number (i.e., 1—Coleman et al. study, 2—

Partners Demonstration Project). 11ij and 12ij represent the

proportional error of data from the Coleman, et al. and

the Partners Demonstration Project studies. 13ij represents the

additive error of data from the Partner Demonstration Project.
Covariate evaluation

We tested potential covariates for TFV and FTC parameters,

independently, using study number (i.e., 1 or 2 as above), baseline

creatinine clearance, and pregnancy status. We treated pregnancy

status as a categorical variable using 4 categories (0—non-pregnant,

1—1st trimester, 2—2nd trimester, and 3—3rd trimester). We

evaluated different grouping methods on pregnancy data to test if

the influence of each trimester could be identified separately. The

pregnancy data were grouped as 1st trimester vs. 2nd trimester vs.

3rd trimester, 1st trimester and 2nd trimester vs. 3rd trimester, 1st

trimester vs. 2nd trimester and 3rd trimester. Aggregation of all

trimesters as a single factor was also tested. To assess covariate

relationships, we first visualized the empirical Bayes estimates versus

the potential covariates, and then employed stepwise selection

method. For the forward selection, a decrease of the OFV more than
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3.84 was considered significant for one degree of freedom (p < 0.05).

For the backward elimination, an increase of OFV more than 6.63

was considered significant for one degree of freedom (p < 0.01).
Model evaluation

We evaluated the performance of the final model by the

diagnostic plots. This included evaluating the conditional

weighted residuals and review of visual predictive checks.

Concentrations associated with extreme deviations from the

model prediction were assessed individually for physiologic

plausibility. If an appropriate explanation of the outlier was not

identified, the outlier was removed. A prediction corrected visual

predictive check (pcVPC) of the final model showed the 5th,

50th, and 95th predicted percentiles from 1,000 simulated

datasets with 128 individuals (12 from the Coleman et al. study

and 116 from the Partners Demonstration Project), and

generated the observed concentrations of TFV and FTC. The

simulated concentrations that were BLQ were truncated to the

LLOQ (0.31 ng/ml). We stratified the VPC by study.
Clinical trial simulation

Based on the selected final population pharmacokinetic model,

we conducted a clinical trial simulation to evaluate trough

concentrations (Ctrough) of TFV and FTC during pregnancy. We

simulated PK profiles of 1,000 cisgender female participants taking

standard daily oral 300 mg TDF/200 mg FTC prior to pregnancy.

Upon becoming pregnant, simulated participants were split into

two arms: arm 1 (n = 500) continuing the standard dose regimen

and arm 2 (n = 500) receiving a pregnancy-adjusted, double-dose

of both TFV and FTC. We assumed an increase in renal clearance

due to pregnancy beginning in the 1st trimester. Simulated trough

plasma concentrations of TFV and FTC were compared with the

lower bound of expected trough concentration benchmarks,

estimated to be the protective thresholds associated with daily

dosing estimated from HPTN 066, 35.5 ng/ml for TFV and

49.1 ng/ml for FTC (28).
Results

The final dataset included data from 128 women (12 from the

Coleman, et al., study and 116 from the Partners Demonstration

Project; see Table 1). Data included 33 pregnant women, of whom,

29, 24, and 23 women contributed data from their 1st, 2nd, and

3rd trimesters, respectively. For TFV, there are 39 (6 BLQ) samples

in the 1st trimester, 59 (14 BLQ) samples in the 2nd trimester, and

62 (20 BLQ) samples in the 3rd trimester. For FTC, there are 37

(9 BLQ) samples in the 1st trimester, 55 (15 BLQ) samples in the

2nd trimester, and 55 (22 BLQ) samples in the 3rd trimester. Total

concentrations available for modeling included 487 TFV and 465

FTC measurements. Upon visual exploration of the final model,

outliers were noted in the pcVPC. Further examination revealed

four TFV measurements (0.82% of the total measures) and twelve
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TABLE 1 Participant demographics from the partners demonstration
project and the coleman et al. study.

Parameter Partners demonstration Coleman
et al.

Non-pregnant Pregnant Non-
pregnant

Number of
participants

97 (83 with plasma
samples)

37 (33 with plasma
samples)

12

Racea – – 9B, 2W, 1A

Ethnicitya – – 1H

mean (SD) median (IQR)

Age 30.6 (7.4) 25.1 (4.8) 34 (28–37)

Weight (kg) – – 90 (78–101)

BMI 24.5 (4.3) 24.6 (4.7) –

CrCl (ml/min) 101.8 (18.4) 111.7 (27.5) 139 (115–172)

iGFR (ml/min/
1.73 m2)

102 (88–114)

aBlack (B), White (W), Asian (A), Hispanic (H).
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FTC measurements (2.6% of total measures) that were physiologically

implausible. These were removed from the dataset and the population

model re-run. Minor differences were noted for TFV in the CL (51.5

vs. 52.4 L/h) and Vp/F (1,160 L vs. 1,120 L). A larger change was

observed in the Vc/F (359 vs. 252 L).

In the FTC population model, CL did not change; however, the

central volume of distribution changed from 90.7 to 66.9 L and the

peripheral volume of distribution changed from 195 to 166 L.
TFV model

A two-compartment model with first order absorption

adequately described the pharmacokinetics of TFV in this

population (Table 2); the diagnostic plots and VPCs indicated

good agreement between observed and predicted values
TABLE 2 Final estimates of TFV pharmacokinetic parameters, between
subject variability, and residual variabilitya.

Parameter Estimate RSE%
CL/F (L/h) 52.4 7

V2/F (L) 252 57

Q/F (L/h) 295 18

V3/F (L/h) 1120 18

KA (/h) 2.56 91

CL/F increment during 1st trimester (%) 21.4% 55

CL/F increment during 2nd trimester (%) 33.9% 34

CL/F increment during 3rd trimester (%) 63.9% 29

BSV on CL/F 35.9% 13

BSV on V2/F 41.4% 145

BSV on Q/F 67.6% 29

BSV on V3/F 56.7% 28

BSV on KA 56.4% 87

σ1(prop; Coleman study) 21.2% 6

σ2(prop; partner demonstration project) 71.2% 5

σ2(add; partner demonstration project) (ng/ml) 0.109 253

aCL/F, apparent clearance; V2/F, apparent volume of distribution of the central

compartment; Q/F, apparent intercompartmental clearance; V3/F, apparent

volume of distribution of the peripheral compartment; KA, absorption rate

constant; BSV, between-subject variability; σ1, proportional residual error; σ2,

additive residual error; RSE, relative standard error.
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(Figures 1, 2). Our final model overestimated the TFV trough

concentration in the Coleman et al. study, as seen in Figure 2.

Inclusion of trimester as a covariate in the apparent clearance

significantly reduced the objective function value (OFV) by

48.809. The typical value of the apparent clearance of TFV

increased by 1.214, 1.339, and 1.639-fold in the 1st, 2nd, and 3rd

trimester, respectively, compared to the non-pregnant baseline

values; these data are comparable to the previously reported

clearance increment during each trimester. The proportional

error of the Partners Demonstration Project (71.2%) was higher

than the Coleman et al. study (21.2%).
FTC model

We selected a two-compartment model with first-order

absorption as the final structural model (Table 3). Since the

simulated changes in FTC clearance (compared to pre-

pregnancy) for each trimester were commensurate with the

change when from pre-pregnancy to pregnancy (all

trimesters combined), we used combined data from all

trimesters in the final model. Pregnancy increased the

apparent clearance by 63.1% compared to the non-pregnant

baseline value, reducing the OFV by 27.685. As with TFV,

we found a high proportional error of the Partners

Demonstration Project data (85.4%). The diagnostic plot

(Figure 3) showed some bias. The VPC (Figure 4)

indicated the satisfactory performance of the final model.

Our final model overestimated FTC plasma concentrations

compared to those found in the Coleman et al. study.
Clinical trial simulation

In the non-pregnant population, the simulated median

steady-state trough plasma concentration was 62.5 ng/ml for

TFV and 158 ng/ml for FTC. Our simulation indicated that

13.9% and 16.4% of the participants on a standard “pre-

pregnancy” regimen would have steady-state trough plasma

TFV and FTC concentrations below the estimated protective

threshold, respectively. In the standard TDF/FTC dosing arm

(arm 1), the simulated median steady-state plasma TFV trough

concentration dropped to 45.9 ng/ml, 39.3 ng/ml, and 27.3 ng/

ml in the 1st, 2nd, and 3rd trimesters, respectively. According

to our simulations, steady-state median TFV plasma

concentrations decrease by 26.5–56.3% throughout pregnancy

from a pre-pregnant baseline. Accordingly, we found that

34.0%, 43.8%, and 65.1% of steady-state plasma trough

concentrations dropped below the estimated protective TFV

trough concentration (35.5 ng/ml) due to the progressively

increased clearance in the three trimesters. By comparison, in

the simulated arm 2 pregnancy-adjusted double-dose group,

the simulated median steady-state plasma trough concentration

were 91.8 ng/ml, 78.7 ng/ml, and 54.6 ng/ml in the 1st, 2nd,

and 3rd trimesters. Only 10.7%, 14.4%, and 27.8% of

participants in the pregnancy-adjusted double-dose arm had
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FIGURE 1

Goodness of fit plot of the TFV final model: (A) observed TFV concentration vs. Individual predicted TFV concentration; (B) observed TFV concentration vs.
population predicted TFV concentration; (C) conditional weighted residuals with interaction vs. population predicted TFV concentration; (D) conditional
weighted residuals with interaction vs. time.
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steady-state trough plasma concentrations less than 35.5 ng/ml

(Figure 5).

For FTC, since all trimesters were combined in the final

model, the simulated steady-state trough concentration

estimates trough concentrations throughout pregnancy. In

the arm 1 typical dosing group, the median simulated

steady-state trough plasma concentration during the pregnant

period was 62.4 ng/ml During pregnancy, 42.1% of

the steady-state trough concentrations dropped below the

estimated protective trough concentrations for FTC

(49.1 ng/ml). In the pregnancy-adjusted double-dose arm, the

median simulated steady-state trough plasma concentration

was 125 ng/ml; 22.4% of participants had trough

concentrations less than 49.1 ng/ml, similar to the non-

pregnancy group (Figure 6).
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Discussion

We analyzed sparsely sampled PK data from the Partners

Demonstration Project and intensively sampled PK data from

the Coleman et al. study for both plasma TFV and FTC using a

nonlinear modeling framework. Removal of outlier values had a

modest impact on the popPK parameter estimates, but resulted

in significantly improved model performance measures

(pcVPC). The central volume of distribution estimate after

removal of the outliers is consistent with that reported in the

literature (15, 34).

We observed a progressive increase in clearance for TFV

throughout pregnancy, with a nearly two-fold increase in clearance

in the 3rd trimester compared to the non-pregnant baseline, and

an associated progressive decrease in trough plasma levels. For
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FIGURE 2

Prediction corrected visual predictive check (pcVPC) of the TFV final model: (left) coleman, et al. study; (right) partners demonstration project.

TABLE 3 Final estimates of FTC pharmacokinetic parameters, between
subject variability, and residual variabilitya.

Parameter Estimate RSE%
CL/F (L/h) 16.7 9

V2/F (L) 58.8 62

Q/F (L/h) 13.8 22

V3/F (L/h) 190 18

KA (/h) 0.616 56

CL/F increment during pregnancy (%) 63.1% 23

BSV on CL/F 50.6% 9

BSV on Q/F 62.5% 43

BSV on V3/F 41.6% 60

BSV on KA 20.5% 26

σ1(prop; Coleman study) 29.3% 8

σ2(prop; partner demonstration project) 85.4% 6

σ2(add; partner demonstration project) (ng/ml) 12.5 31

aCL/F, apparent clearance; V2/F, apparent volume of distribution of the central

compartment; Q/F, apparent intercompartmental clearance; V3/F, apparent

volume of distribution of the peripheral compartment; KA, absorption rate

constant; BSV, between-subject variability; σ1, proportional residual error; σ2,

additive residual error; RSE, relative standard error.
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FTC, we observed a smaller increase in clearance in pregnancy, and

an associated decrease in trough concentrations; these changes were

consistent throughout pregnancy. Clinical trial simulation of

standard vs. pregnancy-adjusted double-dose TDF/FTC regimens

revealed that, compared to non-pregnant women, a clinically

significant proportion of pregnant individuals on the standard

dose would have exposures below the estimated protective

thresholds for both TFV (35.5 ng/ml) and FTC (49.1 ng/ml) in
Frontiers in Reproductive Health 06
part or all, respectively, of pregnancy. In contrast, the pregnancy-

adjusted dosing regimen significantly reduced the proportion of

pregnant individuals falling below the estimated protective

threshold from 34%, 43.8%, and 65.1%, to 10.7%, 14.4%, and

27.8% for TFV during the 1st, 2nd, and 3rd trimesters and from

42.1% to 22.4% for FTC during pregnancy. For context, the

simulated 1st trimester steady-state plasma TFV trough

concentrations with doubled TDF/FTC dosing—10.7% below and

89.3% above the 35.5 ng/ml daily dosing benchmark—is consistent

with the 90% sensitivity threshold used in HPTN 066 to select the

35.5 ng/ml benchmark. Even so, the doubled TDF/FTC daily dose

did not fully correct plasma TFV in the 2nd and 3rd trimester or

FTC during pregnancy to pre-pregnant levels.

Consistent with our findings, physiological changes in renal

blood flow are known to be progressive in pregnancy and are

associated with progressive increases in clearance and decreases in

exposure for renally excreted drugs, such as TFV and FTC.

Although not identified in our final model, the increased volume

of distribution during pregnancy may also contribute to lower

plasma concentrations of TFV and FTC. The 26.5–56.3% reduction

we estimated in simulated TFV trough plasma concentrations

throughout the pregnancy is consistent with the 45%–58%

reduction in TFV concentration reported by Pyra et al. in the

averaged TFV concentrations in the Partners Demonstration

Project (1). A popPK analysis by Benaboud et al. found a 39%

increased clearance during pregnancy in women with HIV on

TDF/FTC-containing regimens (2). A whole body physiologically

based pharmacokinetic (PBPK) model by De Sousa Mendes et al.

in pregnancy predicted a 40% increase in TFV apparent clearance
frontiersin.org

https://doi.org/10.3389/frph.2023.1224580
https://www.frontiersin.org/journals/reproductive-health
https://www.frontiersin.org/


FIGURE 3

Goodness of fit plot of the FTC final model: (A) observed FTC concentration vs. Individual predicted FTC concentration; (B) observed FTC concentration
vs. population predicted FTC concentration; (C) conditional weighted residuals with interaction vs. population predicted FTC concentration; (D)
conditional weighted residuals with interaction vs. time.
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at approximately 33 weeks gestational age (35). A popPK model in

women with HIV during pregnancy developed by Hirt et al.

showed up to a 50% increase in the apparent clearance of FTC

compared with the non-pregnant population (11), similar to our

final estimates. A simplified pregnant-PBPK model developed by

Xia et al. predicted a 1.39-fold change in the renal clearance of

FTC in late pregnancy due to increased in renal secretion and

filtration (36). The whole body PBPK model mentioned above

predicted a 1.29-fold clearance change, which is slightly lower than

our estimates (35). Liu et al. predicted the PK profiles of FTC at

different stages of pregnancy using a maternal-fetal PBPK model.

They predicted an up to 27.7% decrease in median FTC AUC at

26 weeks of gestation (37).

Despite the availability of newer PrEP modalities, TDF/FTC

remains the main stay of HIV prevention in pregnancy.
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Although there are safety and PK data for HIV treatment in

cisgender women, including during pregnancy, tenofovir

alafenamide (TAF)/FTC is not yet recommended in cisgender

women for PrEP given the lack of efficacy data. There are only

limited safety and PK data for long-acting Cabotegravir in

pregnancy (38, 39) and although there are reassuring safety data

on the use of the Dapivirine ring in pregnancy (40, 41), its

approval is limited globally. Decreased protective efficacy of

TDF/FTC PrEP during pregnancy due to lower TFV and FTC

exposures, as indicated in the clinical trial simulation, is cause

for considerable concern, especially as the baseline HIV

incidence among pregnant and postpartum women is two to four

times that of non-pregnant women (42, 43). Modeled infectivity

from the Partners in Prevention HSV/HIV Transmission Study

and the Partners PrEP study demonstrated that the probability of
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FIGURE 4

Prediction corrected visual predictive check (pcVPC) of the FTC final model: (left) coleman et al. study; (right) partners demonstration project.

FIGURE 5

Simulated TFV trough concentration at steady state and the estimated protective trough concentration of TFV.

Scott et al. 10.3389/frph.2023.1224580
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FIGURE 6

Simulated FTC trough concentration at steady state and the estimated protective trough concentration of FTC.
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HIV acquisition per condomless sex act increases starting in early

pregnancy and peaks postpartum [adjusted RR 3.97 (1.50, 10.51) p

< 0.001]) (43). Data from several observational studies corroborate

that model’s findings of increased male-to-female transmission in

pregnancy (42–48). This increased incidence is attributed to both

behavioral and biological changes (including immunological,

vaginal microbiome, and vaginal epithelial integrity) during

pregnancy and delivery (42, 46, 49–51). Prevention of HIV is

especially critical in pregnant individuals secondary to the

additional and increased risk of perinatal transmission. The risk

of perinatal transmission is 9–15-fold higher in women

diagnosed with HIV during (vs. prior to) pregnancy (22 vs.

1.8%) (52, 53). Increased HIV acquisition attributable to

decreased protection of TDF/FTC PrEP against HIV during

pregnancy has not been reported, but it is unclear if this is due

to the adequacy of TDF/FTC PrEP protection in pregnancy vs.

underutilization of PrEP in pregnancy and a dearth of large-scale

research on PrEP in pregnancy. Limited clinical trials and

epidemiologic research have focused on oral PrEP in pregnancy,

but none in sufficient size to evaluate increased incidence due to

TDF/FTC PrEP failure.

Limitations of the current analysis include the availability in

pregnancy of only sparse PK data and only plasma drug

concentrations, rather than active intracellular phosphorylated

analytes. Additionally, we did not include body weight and renal
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clearance as covariates or intracellular metabolite concentrations

in our model. Neither study controlled for diet nor timing of

dose related to meals, which could introduce additional

variability (54, 55). Regarding the differences in CrCl between

populations, kidney estimation equations were primarily derived

in non-Black populations, and the equations used in the United

States at the time the original data were collected (e.g., Coleman

et al.) are not always applicable to African populations (e.g.,

Partners Demonstration Project). Previously published models

found body weight (10) and creatinine clearance (10, 34, 56–58)

to be significant covariates for TFV and FTC clearance. Even

without inclusion of these covariates, the model still captures the

global effect of trimester on clearance for TFV and underscores

the need for a pooled analysis of all clinical trial data in

pregnancy to better understand the dose optimization needs and

for prospective PK research on dosing in pregnancy. For FTC,

we were unable to identify the different changes in its clearance

over different trimesters. An additional limitation was the need

for a separate residual error model for Partners Demonstration

Project; of particular concern was the large proportional error

potentially attributable to differences in PK sampling and

ascertainment of the dosing history. During our clinical trial

simulation, we discovered that up to 65.1% of the TFV trough

concentration and 45.2% of the FTC trough concentration in

pregnant population may fall below the protective threshold.
frontiersin.org

https://doi.org/10.3389/frph.2023.1224580
https://www.frontiersin.org/journals/reproductive-health
https://www.frontiersin.org/


Scott et al. 10.3389/frph.2023.1224580
However, we also observed that our final model tended to

overestimate the TFV and FTC concentration in the non-

pregnant population. As a result, the proportion of pregnant

individuals with trough concentrations below the protective

threshold (based on empiric observations) may have been

underestimated. An additional limitation is that although

Partners Demonstration Project utilized MEMS to measure

adherence, doses were not observed and activation of the MEMS

without taking a dose or taking a double dose (“catch up

dosing”) prior to a study visit could bias CL/F. Lastly, as noted

above, our sample size and that of published studies are

insufficient to assess any impact of pregnancy on TDF/FTC PrEP

efficacy.

Our popPK model and clinical trial simulation found that steady-

state TFV and FTC trough plasma concentrations decreased during

pregnancy, which puts pregnant individuals receiving standard

TDF/FTC dosing at significantly greater risk of falling below the

protective thresholds for both TFV and FTC compared to

participants taking the pregnancy-adjusted double dose. This

simulation provides the quantitative basis for the design of

prospective TDF/FTC studies during pregnancy to evaluate the

safety and appropriateness of pregnancy-adjusted dosing.
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