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Background: Racial and ethnic disparities persist in preterm birth (PTB) and
gestational age (GA) at delivery in the United States. It remains unclear
whether exposure to environmental chemicals contributes to these disparities.
Objectives: We applied recent methodologies incorporating environmental
mixtures as mediators in causal mediation analysis to examine whether racial
and ethnic disparities in GA at delivery and PTB may be partially explained by
exposures to polybrominated diphenyl ethers (PBDEs), a class of chemicals
used as flame retardants in the United States.
Methods: Data from a multiracial/ethnic US cohort of 2008 individuals with low-
risk singleton pregnancies were utilized, with plasma PBDE concentrations
measured during early pregnancy. We performed mediation analyses
incorporating three forms of mediators: (1) reducing all PBDEs to a weighted
index, (2) selecting a PBDE congener, or (3) including all congeners
simultaneously as multiple mediators, to evaluate whether PBDEs may
contribute to the racial and ethnic disparities in PTB and GA at delivery,
adjusted for potential confounders.
Results: Among the 2008 participants, 552 self-identified as non-Hispanic
White, 504 self-identified as non-Hispanic Black, 568 self-identified as
Hispanic, and 384 self-identified as Asian/Pacific Islander. The non-Hispanic
Black individuals had the highest mean ∑PBDEs, the shortest mean GA at
delivery, and the highest rate of PTB. Overall, the difference in GA at delivery
comparing non-Hispanic Black to non-Hispanic White women was −0.30
(95% CI: −0.54, −0.05) weeks. This disparity reduced to −0.23 (95% CI: −0.49,
0.02) and −0.18 (95% CI: −0.46, 0.10) weeks if fixing everyone’s weighted
index of PBDEs to the median and the 25th percentile levels, respectively. The
proportion of disparity mediated by the weighted index of PBDEs was 11.8%.
No statistically significant mediation was found for PTB, other forms of
mediator(s), or other racial and ethnic groups.
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Conclusion: PBDE mixtures may partially mediate the Black vs. White disparity in
GA at delivery. While further validations are needed, lowering the PBDEs at the
population level might help reduce this disparity.
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polybrominated diphenyl ethers, mediation analysis, environmental mixtures
1 Introduction

Preterm birth (PTB) affects 9%–10% of pregnancies in the

United States, and is associated with increased risk of maternal

and neonatal morbidity and mortality (1, 2). There are

pronounced racial and ethnic disparities in PTB in the United

States, with rates disproportionately higher in non-Hispanic

Black women than non-Hispanic White women (14% vs. 9%) (3,

4). These disparities may further contribute to higher infant

mortality (4) among non-Hispanic Black relative to non-Hispanic

White infants. For other groups, studies showed no significant

difference in PTB rate comparing Asian or Hispanic women to

White women, although the risk appeared higher in certain

Asian subgroups (5). Therefore, identifying the potentially

modifiable risk factors of PTB, especially those that are unevenly

distributed across racial and ethnic groups, is important, to help

understand and reduce the disparities in PTB.

The existing literature suggests that disparities in PTB are

largely attributable to environmental factors rather than genetic

variation (3, 6, 7). These include social stressors, physical

stressors (such as environmental chemicals and pollutants),

neighborhood variation, healthcare access/quality, and individual

cultural practices (8). One study suggested that certain

sociodemographic and perinatal health factors contributed to the

Black vs. White disparity in PTB, although they reported that

more than 60% of the disparities in PTB remained unexplained

(9). Other studies also showed that the Black vs. White

disparities in PTB persisted after accounting for socioeconomic

status, access to care, or medical interventions (10–12). For

environmental pollutants, multiple studies revealed associations

of air pollution, lead, phthalates, and other chemicals with

increased risk of PTB, and found higher exposure levels among

non-Hispanic Black women compared with the non-Hispanic

White women (13–20). However, it remains unclear whether and

what proportion of racial and ethnic disparities in PTB is

attributable to different exposures to these environmental factors.

A causal mediation analysis (21) is needed to further explore the

role of multiple environmental factors on the racial and ethnic

disparities in PTB.

There have been recent calls for and developments in the

methodology of evaluating environmental factors as potential

mediators of health disparities (22–24). Furthermore, given that

people are often simultaneously exposed to multiple

environmental factors (25, 26), a growing body of conceptual

models and statistical methods integrating the joint effects of

multiple pollutants into a mediation analysis framework has been

proposed, especially in the field of environmental health
02
disparities (27–30). These methods can help quantify the

proportion of disparity due to environmental factors, as well as

the proportion of disparity that would remain if interventions

were made to reduce the levels of these environmental factors.

Despite the discussions on this framework and the related

methods, a real-world, population-based application of these

methods in evaluating the contribution of environmental

chemicals/pollutants as a mixture to a health disparity question

remains lacking.

One class of environmental chemicals, known as

polybrominated diphenyl ethers (PBDEs), has been used as a

flame retardant since the 1970s and remains to be detected in

the US population even a decade after the voluntary phase out

that began in 2004 (31–33). PBDEs have the potential to shed or

volatilize into the environment (34). Human beings are exposed

to PBDEs via inhalation of contaminated air, ingestion of

contaminated food, and contact with indoor dust. We

hypothesize that PBDEs might be potential mediators for the

racial and ethnic disparities in PTB given the following evidence:

(1) multiple studies showed higher exposure levels to PBDEs

among non-Hispanic Black women compared with non-Hispanic

White women (35–37); (2) studies have found associations

between certain PBDE congeners and elevated risk of PTB (38–

42). In this study, we aimed to use real-world data from a large,

multicenter, multiracial/ethnic cohort of singleton pregnancies in

the United States to evaluate whether and the extent to which

exposure to PBDEs may contribute to the racial and ethnic

disparity in PTB and gestational age at delivery, through

applying causal mediation analyses incorporating these chemicals

(individually and as mixtures) as potential mediators. Race and

ethnicity are socially constructed, and racial/ethnic health

disparities are driven by the root cause of structural/institutional

racism. With that in mind, we present a causal diagram (43) of

our research questions in Figure 1.
2 Methods

2.1 Study population

The study used data from the Eunice Kennedy Shriver National

Institute of Child Health and Human Development (NICHD) Fetal

Growth Studies—Singleton Cohort, a multicenter, multiracial/

ethnic prospective study of 2,802 pregnant women recruited

during 2009–2013 from 12 US clinical sites (44). Women aged

18–40 years with a singleton pregnancy were enrolled during 8–

13 weeks of gestation and followed through delivery. Further
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FIGURE 1

Causal diagram for studying racial and ethnic disparities in preterm birth and gestatonal age at delivery, mediated by polybrominated diphenyl ethers.
The boxes in yellow correspond to the variables that we were able to measure with available data in this study. The boxes in gray correspond to the
variables on the causal pathway that we were not able to measure in this study.
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details of the cohort can be found elsewhere (44, 45). For this study,

we restricted to a subcohort of 2008 eligible women with a low-risk

pregnancy (i.e., those with certain pre-existing medical conditions

such as systemic diseases or past pregnancy complications were

excluded from enrolling in the study) (44, 45) and without

obesity [i.e., individuals whose body mass index (BMI) < 30 kg/

m2], who had available data on gestational age at delivery and

measurements of PBDEs from blood specimens. The rationale of

these criteria and the numbers excluded are summarized in the

Supplementary Material (Supplemental eMethod). Approval for

human subjects’ research was obtained from the institutional

review boards at all participating sites, and all participants

provided informed consent.
2.2 Race and ethnicity

Self-identified race and ethnicity were collected at baseline in

four categories: non-Hispanic White, non-Hispanic Black,

Hispanic, and Asian/Pacific Islander. Further specifications such

as self-reported Hispanic origin or Asian background were

evaluated in secondary analyses. Non-Hispanic White was

defined as the reference group. Too few Hispanic White (n = 4)

and Hispanic Black (n = 4) participants were included to consider

these groups separately. We use the self-identified race and

ethnicity as the “predictor” parameter in the mediation analysis,

while recognizing that race is a social construct (46) that may

through racism impact differences in exposures to PBDEs and
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their sources, as well as differences in factors contributing to

PTB or shorter gestational age at delivery, including

pathophysiology and access to/quality of prenatal care (7)

(Figure 1). As race and ethnicity are non-manipulable, the effect

estimates from the mediation analysis should be interpreted as

associations reflecting disparity-related (instead of causal/

biological) information (23), but we maintained the usage of

“effects” when describing these measures to be consistent with

common causal mediation terminologies.
2.3 Outcomes

The primary outcomes of interest were: (1) gestational age at

delivery (weeks), calculated as the difference between date of

delivery (abstracted from medical records) and self-reported date

of first day of last menstrual period (LMP) as validated by

ultrasound (47); and (2) a binary outcome of PTB, defined as

delivery prior to 37 weeks of gestation. As secondary outcomes,

PTB was further categorized as very early or moderate (<34

weeks) and late (34 to <37 weeks) PTB.
2.4 Mediators

A set of potential mediators was determined based on prior

knowledge (42), which included plasma concentrations of

polybrominated biphenyl (PBB) 153 and 9 PBDEs (PBDE 28, 47,
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85, 99, 100, 153, 154, 183, and 209) collected upon enrollment

(median: 11 weeks of gestation). Details of the processing,

measurement, and limits of quantification (LOQs) of these

chemicals have been reported previously (48). All chemical

concentrations were reported as ng/mL plasma. For this analysis,

we restricted to six PBDEs with quantification rates >30% in this

population, including PBDE 28, 47, 99, 100, 153, and 154.

Machine-observed values were used for all chemicals in the

analysis without substitution, including concentrations below

the LOQ (49).
2.5 Covariates

The following covariates (collected from the baseline

questionnaire unless otherwise specified) were incorporated into

our mediation analyses, based on a priori knowledge of being

potential confounders for the mediator-outcome associations:

maternal age (years); prepregnancy BMI (kg/m2), calculated from

self-recalled prepregnancy weight divided by measured height

squared (50); parity (0, 1, 2+); education level (college degree,

some college/undergraduate, graduate/postgraduate); marital

status (married or living with partner, not married); family

income during last year (<$30,000, $30,000–$49,999, $50,000–

$99,999, ≥$100,000, not reported); plasma cotinine level (ng/

mL), measured in specimens collected at enrollment (35); plasma

total lipids (non-fasting) (ng/mL) at enrollment, quantified using

commercially available enzymatic methods (51), and calculated as

total cholesterol × 2.27 + triglycerides + 62.3 (52); total and

sedentary activities [metabolic equivalent of task (MET) hours/

week]; and acculturation status (US-born, recent immigrant,

long-term immigrant) based on previous definitions (53). It is

possible that race and ethnicity are associated with various

downstream risk factors, which might violate the assumption of

no mediator-outcome confounders affected by the exposure (54).

To address this, we conducted sensitivity analyses using more

generalized approaches (23), with details described in the

statistical analysis.
2.6 Statistical analysis

2.6.1 Descriptive analysis
The characteristics of the study population were summarized

with means ± standard deviations or numbers (percentages).

Geometric means (GMs) and 95% confidence intervals (CIs) of

lipid-adjusted PBDE congener concentrations and their molar

sum (∑PBDEs) were calculated, stratified by race and ethnicity

and by PTB status.

2.6.2 Mediation analysis
For mediation analysis, we natural log-transformed the

machine-observed values of the chemical concentrations to

account for skewedness of their distributions, and then

performed standardization (subtracted the mean and divided by

the standard deviation) to generate comparable scales. The total
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racial and ethnic (denoted by X) disparity in PTB or

gestational age at delivery (denoted by Y) accounting for a set of

covariates (denoted by C) was calculated using:

E[Y jX, C] ¼ a0 þ a1X þ a2C (when Y represents continuous

gestational age at delivery, in weeks), or

logit{Pr[Y ¼ 1jX, C]} ¼ a0 þ a1X þ a2C (where Y ¼ 1

represents PTB and Y ¼ 0 represents non-PTB). The following

forms of mediator(s) were then evaluated within a counterfactual

framework using causal mediation models (for simplicity, we use

a continuous variable Y as an illustration).

2.6.2.1 Reducing the PBDEs mixtures to a single mediator
—weighted quantile sum
As the first approach, we reduced the dimensions of the PBDEs

mixtures to a single summary index score via the weighted

quantile sum (WQS) approach, which is a method that

constructs a weighted index estimating the mixture effect

associated with all predictor variables on an outcome (55). The

weights for each PBDE were empirically determined using a

40%/60% split of training/validation sets from the data and 500

bootstrap samples for parameter estimation. Next, the WQS

index was treated as a single summary measure of the PBDE

congeners, and was included as a single mediator in the

following models:

E[Y jX, WQS, C] ¼ a0
0 þ a0

1X þ a0
2WQSþ a0

3C

E[WQSjX, C] ¼ b0
0 þ b0

1X þ b0
2C

The direct and indirect effects through this single mediator were

estimated using standard regression-based methods (56).

2.6.2.2 Reducing the number of mediators—select specific
mediator(s)
As the second approach, we reduced the number of mediators by

selecting a single specific mediator based on the results of a

previous study utilizing data from the same cohort of individuals,

where multiple statistical approaches [including generalized linear

models, principal component analysis, and Bayesian kernel

machine regression (BKMR) (57)] have consistently

demonstrated PBDE 153 being the main congener associated

with shorter gestation and higher risk of PTB, after adjusting for

race/ethnicity and other covariates (42). In this study, we further

utilized a hierarchical BKMR variable selection approach based

on correlation structures of PBDEs in this cohort (which address

the potential bias introduced by highly correlated chemicals) to

re-evaluate that PBDE 153 is the most important contributor

that is associated with gestational age at delivery.

In this approach, we used a single mediator (PBDE 153 as an

example) in the following models:

E[Y jX, PBDE 153, C] ¼ a�
0þa�

1X þ a�
2PBDE 153þ a�

3C

E[PBDE 153jX, C] ¼ b�
0þb�

1X þ b�
2C

The direct and indirect effects through this single mediator were

estimated using regression-based methods (56).
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2.6.2.3 Modeling all six PBDE congeners as multiple
mediators—multiple regression
As the third approach, we included PBDE 28, 47, 99, 100, 153, and

154 simultaneously in the same model:

E Y jX; PBDEs 28; 47; 99; 100; 153; 154; C½ �
¼ a00

0 þ a00
1X þ a00

2PBDE 28þ a00
3PBDE 47

þ a00
4PBDE 99þ a00

5PBDE 100

þ a00
6PBDE 153þ a00

7PBDE 154þ a00
8C

along with six separate regression models estimating each mediator

as a function of the exposure:

E[PBDE 28jX, C] ¼ b00
0 28 þ b00

1 28X þ b00
2 28C

E[PBDE 47jX, C] ¼ b00
0 47 þ b00

1 47X þ b00
2 47C

E[PBDE 99jX, C] ¼ b00
0 99 þ b00

1 99X þ b00
2 99C

E[PBDE 100jX, C] ¼ b00
0 100 þ b00

1 100X þ b00
2 100C

E[PBDE 153jX, C] ¼ b00
0 153 þ b00

1 153X þ b00
2 153C

E[PBDE 154jX, C] ¼ b00
0 154 þ b00

1 154X þ b00
2 154C

The direct and indirect effects (specifically, the joint mediated

effect through the set of mediators) were estimated using

regression-based methods for multiple mediators (58).

In all the approaches, we estimated the following measures of

the disparities in gestational age at delivery and PTB mediated by

PBDEs, comparing each of the race and ethnicity groups to the

non-Hispanic White group: the total effect (TE), the controlled

direct effects (CDEs) while fixing the mediator(s) at various

levels, the natural direct and indirect effects (NDE; NIE), and the

overall percent mediated (PM) calculated as (NIE/TE) × 100%.

All models used regression-based methods, and 95% CIs

were obtained via the delta method (from closed-form

parameter function estimation in single-mediator models) or

bootstrapping (from direct counterfactual imputation estimation

in multiple-mediator models). We further extended the models

to allow for potential exposure–mediator or mediator–mediator

interaction (29, 56, 59).
2.6.3 Secondary and sensitivity analysis
As secondary or sensitivity analyses, we evaluated the outcomes

and mediator (WQS index) stratified by finer specifications of race

and ethnicity including Hispanic origin or Asian background. We

further conducted mediation analysis comparing selective

subgroups to non-Hispanic White women. We also performed

mediation analysis for PTB subcategories (very early/moderate

PTB and late PTB). Furthermore, we evaluated mediation

through the WQS index for the absolute risk difference (RD) of

PTB using the g-formula approach (60).

Given that some of the proposed mediator-outcome

confounders might be downstream factors of racism, hence
Frontiers in Reproductive Health 05
potentially having an association with race and ethnicity, we

conducted sensitivity analyses using the more generalized g-

formula approach (23, 60–62), which allowed for a vector of the

mediator-outcome confounders potentially affected by the

exposure to be accounted for in the analysis.

We also performed the following analyses to evaluate the

robustness of our main findings. First, we modeled the WQS

index as a binary mediator (≥median vs. <median). Second, we

evaluated potential non-linearity via categorizing the PBDEs into

<LOQ and quartiles above LOQ, and the WQS index into

quintiles, and we used these quantile measures as mediators.

Given WQS regression’s assumption of unidirectionality, we in

addition explored the application of quantile g-computation (63),

a flexible extension of WQS estimating the joint effects of a

mixture while allowing for chemicals to act on both directions,

although with the limitation of being subject to multicollinearity

in the presence of highly correlated chemicals within a mixture

(64). From the quantile g-computation results, we identified the

PBDEs that contributed to the associations with shorter gestational

age at delivery, and further created a weighted index of these

chemicals as a mediator. Lastly, we conducted sensitivity analysis

considering potential measurement errors of the mediator (65).
2.6.4 Statistical software
All causal mediation analyses were conducted using the

CMAverse (v.0.1.0) package in R (https://bs1125.github.io/

CMAverse/) (62). The WQS analyses were conducted using the

gWQS (v.3.0.0) package in R (https://cran.r-project.org/web/

packages/gWQS) (66).
3 Results

Among the 2008 women included in the study, 552 (27.5%)

self-identified as non-Hispanic White, 504 (25.1%) self-identified

as non-Hispanic Black, 568 (28.3%) self-identified as Hispanic,

and 384 (19.1%) self-identified as Asian/Pacific Islander

(Table 1). There were several differences in characteristics across

these groups (Table 1). On average, compared with non-Hispanic

White women, non-Hispanic Black women were younger, had

higher BMI, lower education level, and less family income, and

were more likely to be unmarried. Non-Hispanic Black women

also had the highest plasma cotinine level and total and

sedentary activity levels compared with other groups. Hispanic

women had the highest mean BMI and plasma total lipid level,

the lowest percentage of being nulliparous, and the highest

percentages of attaining less than a college degree or being long-

term immigrants. Asian/Pacific Islander women had the highest

mean age, the lowest mean BMI, plasma cotinine level, and total

activity level, as well as the highest percentage of being recent

immigrants. Non-Hispanic Black women had shorter mean

gestational ages at delivery (39.0 vs. 39.3 weeks) and higher risks

of PTB (9.1% vs. 5.1%) compared with non-Hispanic White

women. The outcomes among Hispanic or Asian/Pacific Islander

women were similar to those of the non-Hispanic White women.
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TABLE 1 Characteristics of the study population by race and ethnicity, NICHD Fetal Growth Study–Singleton Cohort (n = 2,008).

Overall Non-Hispanic White Non-Hispanic Black Hispanic Asian/Pacific Islander

(n = 2,008) (n = 552) (n = 504) (n = 568) (n = 384)
Age (years) 28.3 ± 5.4 30.3 ± 4.4 25.6 ± 5.5 27.1 ± 5.5 30.6 ± 4.5

Prepregnancy BMI (kg/m2) 23.6 ± 3.0 23.3 ± 2.8 24.2 ± 3.1 24.4 ± 2.8 22.2 ± 2.6

Parity, n (%)

0 979 (48.8) 299 (54.2) 253 (50.2) 223 (39.3) 204 (53.1)

1 689 (34.3) 184 (33.3) 157 (31.2) 204 (35.9) 144 (37.5)

2+ 340 (16.9) 69 (12.5) 94 (18.7) 141 (24.8) 36 (9.4)

Education level

Less than college degree 554 (27.6) 30 (5.4) 191 (37.9) 267 (47.0) 66 (17.2)

Some college or undergraduate 1,086 (54.1) 336 (60.9) 271 (53.8) 282 (49.6) 197 (51.3)

Graduate or postgraduate 368 (18.3) 186 (33.7) 42 (8.3) 19 (3.3) 121 (31.5)

Marital statusa, n (%)

Married or living with partner 1,539 (76.6) 518 (93.8) 251 (49.8) 417 (73.4) 353 (91.9)

Not married 467 (23.3) 33 (6.0) 252 (50.0) 151 (26.6) 31 (8.1)

Family income during last year, n (%)

Less than $30,000 470 (23.4) 21 (3.8) 205 (40.7) 196 (34.5) 48 (12.5)

$30,000–$49,999 288 (14.3) 40 (7.2) 90 (17.9) 125 (22.0) 33 (8.6)

$50,000–$99,999 451 (22.5) 166 (30.1) 86 (17.1) 95 (16.7) 104 (27.1)

$100,000 or more 523 (26.0) 305 (55.3) 57 (11.3) 54 (9.5) 107 (27.9)

Unknown 276 (13.7) 20 (3.6) 66 (13.1) 98 (17.3) 92 (24.0)

Plasma cotinine (ng/mL)a 1.1 ± 12.7 1.1 ± 13.2 2.7 ± 20.8 0.3 ± 4.4 0.0 ± 0.2

Plasma total lipids (non-fasting) (mg/dL)a,b 610.5 ± 98.7 613.3 ± 95.9 580.8 ± 99.0 628.3 ± 100.4 619.2 ± 91.2

Total activity (MET hours per week)a 323.1 ± 167.8 326.0 ± 147.8 354.8 ± 200.6 307.3 ± 158.9 300.3 ± 153.9

Sedentary activity (MET hours per week)a 26.1 ± 18.3 20.7 ± 12.2 37.1 ± 22.2 22.6 ± 17.0 24.4 ± 15.6

Acculturationa, n (%)

US-born 1,322 (65.8) 514 (93.1) 462 (91.7) 242 (42.6) 104 (27.1)

Recent immigrant (<10 years) 304 (15.1) 16 (2.9) 16 (3.2) 117 (20.6) 155 (40.4)

Long-term immigrant (≥10 years) 379 (18.9) 20 (3.6) 26 (5.2) 208 (36.6) 125 (32.6)

Gestational age at delivery (weeks) 39.2 ± 1.7 39.3 ± 1.5 39.0 ± 2.1 39.3 ± 1.5 39.3 ± 1.3

Preterm birth, n (%) 118 (5.9) 28 (5.1) 46 (9.1) 26 (4.6) 18 (4.7)

Means ± SD for continuous variables. N (%) for categorical variables.
aNumbers may not add up to total numbers owing to missing values. Variables with missing values (missing rate) included: marital status (0.1%), plasma cotinine (1.6%),

plasma total lipids (1.1%), AHEI 2010 score (37.4%), total activity (0.2%), sedentary activity (0.2%), and acculturation (0.1%).
bTotal lipids = total cholesterol × 2.27 + triglycerides + 62.3.

TABLE 2 Geometric means (95% confidence intervals) of lipid-adjusted PBDE concentrations, stratified by race and ethnicity and by preterm birth status.

Chemicals, ng/g lipid Race and ethnicity PTB status

Non-Hispanic White Non-Hispanic Black Hispanic Asian/Pacific Islander Preterm Non-preterm

(n = 552) (n = 504) (n = 568) (n = 384) (n = 118) (n = 1,890)
PBDE 28 0.20 (0.18, 0.22) 0.29 (0.26, 0.33) 0.30 (0.26, 0.33) 0.25 (0.22, 0.29) 0.28 (0.22, 0.37) 0.25 (0.24, 0.27)

PBDE 47 4.48 (3.77, 5.33) 8.89 (7.49, 10.54) 5.53 (4.55, 6.72) 3.62 (2.88, 4.55) 6.10 (4.12, 9.03) 5.38 (4.87, 5.94)

PBDE 99 0.18 (0.13, 0.25) 0.52 (0.38, 0.73) 0.43 (0.32, 0.58) 0.24 (0.16, 0.34) 0.29 (0.14, 0.58) 0.32 (0.27, 0.38)

PBDE 100 0.55 (0.46, 0.67) 1.44 (1.19, 1.75) 1.01 (0.85, 1.21) 0.52 (0.41, 0.65) 0.84 (0.54, 1.30) 0.82 (0.74, 0.91)

PBDE 153 1.37 (1.16, 1.61) 1.90 (1.61, 2.25) 0.83 (0.73, 0.94) 0.83 (0.71, 0.98) 1.35 (0.95, 1.93) 1.16 (1.07, 1.26)

PBDE 154 0.05 (0.04, 0.07) 0.11 (0.08, 0.15) 0.07 (0.05, 0.09) 0.12 (0.09, 0.17) 0.07 (0.04, 0.14) 0.08 (0.07, 0.09)

∑PBDEs, pmol/g lipida 27.8 (25.2, 30.8) 47.4 (42.8, 52.5) 32.7 (29.6, 36.1) 23.4 (20.6, 26.5) 36.6 (29.4, 45.6) 31.9 (30.2, 33.7)

Geometric means (95% CI) calculated using all machine-observed values including those below the LOQs, where zero and negative values were assigned the value of

(lowest positive value)/2. PTB, preterm birth.
a∑PBDEs (in pmol/g lipid) refers to the molar sum of PBDEs, which was calculated by dividing each lipid-adjusted chemical concentration by its molecular weight and

summing all detectable concentrations.
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In Table 2, non-Hispanic Black women have higher GMs of all

six PBDE congeners and ∑PBDEs than non-Hispanic White

women. Across all groups, Hispanic and Asian/Pacific Islander

women had the highest GMs of PBDE 28 and PBDE 154,

respectively. When comparing those with vs. without PTB in the
Frontiers in Reproductive Health 06
study population, four PBDEs (i.e., PBDE 28, 47, 100, and 153)

and ∑PBDEs had higher GMs.

We used a WQS index to estimate the mixture effect of six

PBDEs on gestational age at delivery (weights for each PBDE

shown in Figure 2). The association of a 1-unit increase in the
frontiersin.org
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FIGURE 2

Weights for each PBDE congener from the weighted quantile sum index. WQS, weighted quantile sum.
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WQS index with gestational age at delivery was β (95% CI) =−0.20
(−0.35, −0.05) weeks, adjusted for race and ethnicity and other

covariates. Table 3 provides results from the mediation analysis,

where the WQS index was considered a potential mediator for

the racial and ethnic disparity of gestational age at delivery or

PTB. Comparing non-Hispanic Black women with non-Hispanic

White women, the covariate-adjusted difference in gestational age

at delivery was βTE (95% CI) =−0.30 (−0.54, −0.05) weeks. The

CDEs (95% CIs) when fixing everyone’s WQS index levels at the

25th, 50th, and 75th percentiles were −0.18 (−0.46, 0.10), −0.23
(−0.49, 0.02), and −0.32 (−0.57, −0.07) weeks, respectively.

Overall, a suggestive NIE of βNIE (95% CI) =−0.04 (−0.07, 0.00)
weeks were mediated through the WQS index (proportion

mediated = 11.8%). The odds ratio of PTB comparing non-

Hispanic Black with non-Hispanic White women was ORTE

(95% CI) = 1.82 (1.00, 3.31), yet no statistically significant NIE

was found. In addition, no statistically significant disparity was

found when comparing Hispanic or Asian/Pacific Islander

women with non-Hispanic White women.

The correlation coefficients between PBDEs are shown in

Supplementary Figure S1. PBDE 28, 47, 99, and 100 were

moderately to highly correlated, and PBDE 153 and 154 were

weakly correlated. Using BKMR with hierarchical variable

selection (based on the correlation structure, PBDE 28, 47, 99,

and 100 were assigned as Group 1, and PBDE 153 and 154 were

assigned as Group 2), we found that Group 2 was of relatively

greater importance, and PBDE 153 was the most important

chemical within Group 2 [reflected by the posterior inclusion

probabilities (PIPs) shown in Supplementary Table S1] that was

associated with shorter gestational age at delivery

(Supplementary Figure S2). There were no qualitative

interactions between the PBDEs (Supplementary Figure S3).

Thus, for the single-mediator model, we included PBDE 153 as

the mediator. Table 4 provides results from the mediation
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analysis, where only PBDE 153 was considered as a potential

mediator. The CDEs (95% CIs) when fixing everyone’s PBDE

153 levels at the 25th, 50th, and 75th percentiles were −0.18
(−0.45, 0.09), −0.18 (−0.45, 0.09), and −0.29 (−0.54, −0.05)
weeks, respectively, yet with a non-significant NIE mediated via

PBDE 153 (proportion mediated = 7.9%). No statistically

significant NIE was found for the non-Hispanic Black vs. non-

Hispanic White disparity in PTB.

Table 5 provides results when all six PBDEs were included

simultaneously as multiple mediators. The CDEs (95% CIs) when

fixing all PBDEs at the 25th, 50th, and 75th percentiles were

−0.25 (−0.53, 0.02), −0.14 (−0.47, 0.17), and −0.27 (−0.61,
−0.03) weeks, respectively, yet with a non-significant NIE jointly

mediated via PBDE 28, 46, 99, 100, 153, and 154 (proportion

mediated = 16.3%). No statistically significant NIE was found for

the disparity in PTB. No exposure–mediator(s) or mediator–

mediator interaction was found for any of the aforementioned

analyses (p-values for interactions >0.05).

As secondary analysis, the outcomes stratified by further

specified Hispanic origin or Asian background are provided in

Supplementary Table S2. Several subgroups had shorter mean

gestational ages at delivery than non-Hispanic White

participants. Among them, those reporting Filipino background

also had higher mean WQS index levels than non-Hispanic

White women (Supplementary Figure S4). Mediation analysis

results comparing Filipino to non-Hispanic White women are

provided in Supplementary Table S3. The proportion mediated

by WQS index for the shorter gestational age at delivery was

16% (95% CI: −11%, 61%) when comparing the n = 45 women

with Filipino background with non-Hispanic White women.

The results from the sensitivity analyses to evaluate the

robustness of our main results are shown in the Supplementary

Materials. In summary, evaluating PTB in subcategories showed

no significant findings (Supplementary Table S4), and
frontiersin.org
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TABLE 3 Estimates of direct and indirect effects mediated through a weighted quantile sum exposure index of PBDEs for the associations of race and
ethnicity with gestational age at delivery and preterm birth.

Race and
ethnicity

Adjusteda β (95% CIb) for gestational age at delivery, weeks

Natural direct
effect (βNDE)

Natural indirect
effect (βNIE)

Controlled direct effects (CDEs), fixing the WQS
index at the 25th percentile, median, and 75th

percentile

Total effect
(βTE)

Proportion
mediated
(PM), %

βCDE(25th) βCDE(median) βCDE(75th)
Non-Hispanic
White

REF REF REF REF REF REF REF

Non-Hispanic
Black

−0.26 (−0.51, −0.01) −0.04 (−0.07, 0.00) −0.18 (−0.46, 0.10) −0.23 (−0.49, 0.02) −0.32 (−0.57,
−0.07)

−0.30 (−0.54,
−0.05)

11.8% (−3.8%,
27.5%)

Hispanic 0.07 (−0.18, 0.32) −0.01 (−0.03, 0.01) 0.12 (−0.16, 0.40) 0.09 (−0.17, 0.34) 0.03 (−0.23, 0.29) 0.06 (−0.19, 0.31) −20.7% (−123.7%,
82.2%)

Asian/Pacific
Islander

−0.05 (−0.32, 0.21) −0.01 (−0.03, 0.02) −0.02 (−0.32, 0.28) −0.04 (−0.31, 0.23) −0.08 (−0.35, 0.20) −0.06 (−0.32, 0.20) 13.1% (−50.6%,
76.7%)

Adjusteda OR (95% CIb) for preterm birth

Natural direct
effect (ORNDE)

Natural indirect
effect (ORNIE)

Controlled direct effects (CDEs), fixing the WQS
index at the 25th percentile, median, and 75th

percentile

Total effect
(ORTE)

Proportion
mediated
(PM), %

ORCDE(25th) ORCDE(median) ORCDE(75th)
Non-Hispanic
White

REF REF REF REF REF REF REF

Non-Hispanic
Black

1.79 (0.98, 3.25) 1.02 (0.98, 1.06) 1.77 (0.89, 3.52) 1.78 (0.95, 3.32) 1.79 (0.98, 3.25) 1.82 (1.00, 3.31) 4.0% (−5.1%,
13.1%)

Hispanic 0.89 (0.45, 1.75) 1.01 (0.99, 1.03) 0.83 (0.38, 1.83) 0.85 (0.42, 1.73) 0.89 (0.45, 1.75) 0.90 (0.46, 1.77) −7.4% (−60.1%,
45.2%)

Asian/Pacific
Islander

0.97 (0.47, 2.01) 1.01 (0.98, 1.03) 0.81 (0.35, 1.87) 0.88 (0.41, 1.87) 0.96 (0.47, 1.99) 0.97 (0.47, 2.01) −29.6% (−807.4%,
748.3%)

aAdjusted for maternal age (years), prepregnancy BMI (kg/m2), parity (0, 1, 2+), education level (<college degree, some college/undergraduate, graduate/postgraduate),

marital status (married or living with partner, not married), family income during last year (<$30,000, $30,000–$49,999, $50,000–$99,999, $100,000 or more, not

reported), plasma cotinine level (ng/mL), plasma total lipids (ng/mL), total activity (MET hours per week), sedentary activity (MET hours per week), and acculturation (US

born, recent immigrant, long-term immigrant). Observations with missing covariates were excluded from the adjusted models.
bStandard errors for calculating the 95% CIs obtained using the delta method, based on point estimates obtained using closed-form parameter function estimation.
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evaluating the absolute risk of PTB on the risk difference scale

showed similar findings (Supplementary Table S5). Using g-

estimation yielded similar patterns of mediation (Supplementary

Table S6). Modeling the WQS index as a binary mediator

dichotomized at the median had very little impact on the

indirect effect estimates (Supplementary Table S7). The

associations between PBDE 153 or the WQS index and

gestational age at delivery were linear (p-trend < 0.05,

Supplementary Table S8), and modeling WQS or PBDE 153 as

quantiles showed similar mediation effects (Supplementary

Tables S9, S10). Using a weighted exposure index of 4 PBDEs

(PBDE 28,99, 100, and 153) based on quantile g-computation

analysis (selecting the PBDEs with weights toward an association

with shortened gestational age at delivery, Supplementary

Figure S5) yielded similar mediation patterns as the WQS index

(Supplementary Table S11). Finally, Supplementary Figure S6

showed similar estimates across various magnitudes of potential

mediator measurement error.
4 Discussion

In this multiracial/ethnic cohort of pregnant women in the

United States, we demonstrated shorter gestational age at
Frontiers in Reproductive Health 08
delivery, higher risk of PTB, and higher exposure levels to

PBDEs among non-Hispanic Black than in non-Hispanic White

women, and we evaluated potential mediation by PBDEs for the

racial and ethnic disparities in gestational age at delivery and

PTB utilizing several recently developed causal mediation

approaches. In particular, we observed that a weighted index

summarizing PBDEs as a mixture had a suggestive mediating

role in the Black vs. White disparity in gestational age at delivery

that accounted for 11.8% of the total disparity. No significant

mediation was found for the disparity of PTB, or from evaluating

other forms of PBDE mediators. We also revealed disparities in

gestational age at delivery comparing the Filipino subgroup with

non-Hispanic White women, although no significant mediation

via PBDEs was found. While further validation using larger

datasets are needed, our results point to the possibility of PBDE

mixtures acting as mediators for the existing racial and ethnic

disparities in gestational age at delivery.

Our observation of a higher risk of PTB and shorter mean

gestational age at delivery among non-Hispanic Black women

compared with non-Hispanic White women is consistent with

previous reports (4, 9, 67). However, the PTB risks were lower

than the general population since this study consisted of relatively

healthy, non-obese individuals. We also observed higher average

concentrations of PBDEs comparing non-Hispanic Black with
frontiersin.org
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TABLE 4 Estimates of direct and indirect effects mediated through PBDE 153 concentrations for the associations of race and ethnicity with gestational
age at delivery and preterm birth.

Race and
ethnicity

Adjusteda β (95% CIb) for gestational age at delivery, weeks

Natural direct
effect (βNDE)

Natural
indirect effect

(βNIE)

Controlled direct effects (CDEs), fixing PBDE 153
concentration at the 25th percentile, median,

and 75th percentile

Total effect
(βTE)

Proportion
mediated (PM),

%

βCDE(25th) βCDE(median) βCDE(75th)
Non-Hispanic
White

REF REF REF REF REF REF REF

Non-Hispanic
Black

−0.27 (−0.52,
−0.03)

−0.02 (−0.06, 0.01) −0.18 (−0.45, 0.09) −0.18 (−0.45, 0.09) −0.29 (−0.54,
−0.05)

−0.30 (−0.54, −0.05) 7.9% (−5.4%, 21.1%)

Hispanic 0.05 (−0.20, 0.30) 0.01 (−0.01, 0.03) 0.07 (−0.21, 0.34) 0.07 (−0.21, 0.34) 0.05 (−0.21, 0.30) 0.06 (−0.19, 0.31) 18.4% (−52.2%,
77.6%)

Asian/Pacific
Islander

−0.07 (−0.33, 0.19) 0.01 (−0.01, 0.02) −0.06 (−0.35, 0.23) −0.06 (−0.35, 0.23) −0.07 (−0.33, 0.19) −0.06 (−0.32, 0.20) −9.0% (−57.8%,
39.8%)

Adjusteda OR (95% CIb) for preterm birth (cutoff: 37 weeks)

Natural direct
effect (ORNDE)

Natural
indirect effect

(ORNIE)

Controlled direct effects (CDEs), fixing PBDE 153
concentration at the 25th percentile, median,

and 75th percentile

Total effect
(ORTE)

Proportion
mediated (PM),

%

ORCDE(25th) ORCDE(median) ORCDE(75th)
Non-Hispanic
White

REF REF REF REF REF REF REF

Non-Hispanic
Black

1.81 (0.99, 3.32) 1.01 (0.98, 1.04) 1.92 (0.97, 3.79) 1.92 (0.97, 3.79) 1.81 (0.99, 3.31) 1.82 (1.00, 3.33) 1.3% (−5.0%, 7.6%)

Hispanic 0.89 (0.45, 1.78) 0.99 (0.94, 1.04) 0.91 (0.42, 1.97) 0.91 (0.42, 1.97) 0.89 (0.45, 1.78) 0.88 (0.45, 1.76) 7.3% (−50.4%, 64.9%)

Asian/Pacific
Islander

0.98 (0.48, 2.03) 0.99 (0.97, 1.01) 0.90 (0.39, 2.07) 0.90 (0.39, 2.07) 0.98 (0.48, 2.03) 0.97 (0.47, 2.01) 33.9% (−911.4%,
979.2%)

aAdjusted for maternal age (years), prepregnancy BMI (kg/m2), parity (0, 1, 2+), education level (<college degree, some college/undergraduate, graduate/postgraduate),

marital status (married or living with partner, not married), family income during last year (<$30,000, $30,000–$49,999, $50,000–$99,999, $100,000, or more, not

reported), plasma cotinine level (ng/mL), plasma total lipids (ng/mL), total activity (MET hours per week), sedentary activity (MET hours per week), and acculturation (US

born, recent immigrant, long-term immigrant). Observations with missing covariates were excluded from the adjusted models.
bStandard errors for calculating the 95% CIs obtained using the delta method, based on point estimates obtained using closed-form parameter function estimation.
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non-Hispanic White women, which aligned with previous studies

that reported similar disparity patterns among certain PBDEs (e.g.,

28, 47, 99, and 100) (36, 68). This disparity may be explained by

differences in social and contextual factors contributing to sources

of PBDE exposures, such as differences in residential

neighborhoods (69), housing (e.g., indoor dust) (70), and furniture

PBDE exposures (68). Furthermore, we observed higher mean

levels of four PBDE congeners and ∑PBDEs in those who

delivered preterm compared with non-preterm, suggesting that

PBDEs, either individually or as mixtures, might be potential

mediator(s) accounting for part of the disparities in PTB or

gestational age at delivery. In our causal mediation analyses, we

found that a weighted index of all PBDEs (i.e., the WQS index)

accounted for 11.8% of the total Black vs. White disparity in

gestational age at delivery. Particularly, we found that the CDEs

were closer to the null when fixing everyone’s WQS index at lower

levels, suggesting the potential benefit in reducing the existing

disparity in gestational age at delivery by intervening on PBDE

levels in the entire population. Conversely, the proportion

mediated by the WQS index for the Black vs. White disparity in

PTB was only 4% (and non-significant), which could be explained

either by lower statistical power owing to a limited number of

events, or that the magnitude of mediation for gestational age at

delivery might be relatively small to make a noticeable impact on

the risk of PTB in this healthier population. Given this is the first
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study that evaluated the potential mediation role of PBDEs for

this disparity, future studies of larger sample sizes or conducted

among a higher-risk population might be needed to validate our

findings. Past studies have revealed other mediators (such as

socioeconomic and health factors, and access to healthcare) for the

racial and ethnic disparity in PTB, but a large proportion of the

disparity remained (9–11, 71–73). If PBDEs truly mediate part of

the racial and ethnic disparity in length of gestation or PTB, then

this class of chemicals might be an additional modifiable factor to

help further alleviate this disparity.

Similarly to previous literature (5), we did not observe significant

differences in gestational age at delivery or PTB comparing Hispanic

or Asian/Pacific Islander women with non-Hispanic women.

However, we did find a 38 per 1,000 births higher risk of PTB

and 0.5-week shorter mean gestational age at delivery comparing a

subgroup of Filipino women with non-Hispanic White women,

which was consistent with previous studies showing that Filipino

women had higher relative risk of PTB (compared with non-

Hispanic White) than other Asian subgroups (74). Despite these

Filipino women also having higher exposure levels to PBDEs, the

results from mediation analysis were non-significant. This might

be due to the small number of participants with various Asian

backgrounds, although we could not rule out the possibility that

there might be unmeasured confounding such as cultural,

psychosocial, or early life factors that are driving this disparity,
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TABLE 5 Estimates of direct and indirect effects mediated through concentrations of all six PBDE congeners (PBDE 28, 47, 99, 100, 153, and 154) for the
associations of race and ethnicity with gestational age at delivery and preterm birth.

Race and
ethnicity

Adjusteda β (95% CIb) for gestational age at delivery, weeks

Natural direct
effect (βNDE)

Natural indirect
effect (βNIE)

Controlled direct effects (CDEs), fixing all
chemical concentrations at the 25th percentile,

median, and 75th percentile

Total effectc

(βTE)
Proportion

mediated (PM),
%

βCDE(25th) βCDE(median) βCDE(75th)
Non-Hispanic
White

REF REF REF REF REF REF REF

Non-Hispanic
Black

−0.25 (−0.54,
−0.02)

−0.05 (−0.16, 0.05) −0.25 (−0.53, 0.02) −0.14 (−0.47, 0.17) −0.27 (−0.61,
−0.03)

−0.29 (−0.57,
−0.11)

16.3% (−16.2%, 81.1%)

Hispanic 0.05 (−0.19, 0.27) 0.01 (−0.05, 0.08) 0.20 (−0.07, 0.46) 0.23 (−0.02, 0.52) −0.05 (−0.33, 0.21) 0.06 (−0.17, 0.26) 10.4% (−233.6%,
335.5%)

Asian/Pacific
Islander

−0.04 (−0.29, 0.20) −0.03 (−0.14, 0.05) 0.06 (−0.28, 0.36) 0.12 (−0.22, 0.43) −0.13 (−0.43, 0.15) −0.07 (−0.39, 0.18) 44.8% (−203.2%,
212.7%)

Adjusteda OR (95% CIb) for preterm birth

Natural direct
effect (ORNDE)

Natural indirect
effect (ORNIE)

Controlled direct effects (CDEs), Fixing all
chemical concentrations at the 25th percentile,

median, and 75th percentile

Total effectc

(ORTE)
Proportion

mediated (PM),
%

ORCDE(25th) ORCDE(median) ORCDE(75th)
Non-Hispanic
White

REF REF REF REF REF REF REF

Non-Hispanic
Black

1.66 (0.93, 3.16) 1.04 (0.93, 1.15) 1.66 (0.93, 3.21) 1.66 (0.93, 3.20) 1.67 (0.93, 3.19) 1.73 (1.03, 3.04) 9.7% (−27.8%, 47.3%)

Hispanic 0.89 (0.51, 1.75) 1.01 (0.52, 1.74) 0.89 (0.51, 1.76) 0.89 (0.51, 1.76) 0.89 (0.51, 1.75) 0.90 (0.52, 1.74) −8.7% (−150.4%,
170.8%)

Asian/Pacific
Islander

0.97 (0.41, 1.93) 1.00 (0.92, 1.09) 0.97 (0.41, 1.95) 0.97 (0.41, 1.95) 0.97 (0.40, 1.94) 0.97 (0.41, 2.02) 4.8% (−100.2%,
103.3%)

aAdjusted for maternal age (years), pre-pregnancy BMI (kg/m2), parity (0, 1, 2+), education level (<college degree, some college/undergraduate, graduate/postgraduate),

marital status (married or living with partner, not married), family income during last year (<$30,000, $30,000–$49,999, $50,000–$99,999, $100,000, or more, not

reported), plasma cotinine level (ng/ml), plasma total lipids (ng/mL), total activity (MET hours per week), sedentary activity (MET hours per week), and acculturation (US

born, recent immigrant, long-term immigrant). Observations with missing covariates were excluded from the adjusted models.
b95% CIs obtained using the bootstrapping method, based on point estimates obtained using direct counterfactual imputation estimation.
cTE estimates slightly differ from Tables 3, 4 since causal imputation and bootstrap methods were used for models with multiple mediators.
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especially when more than half of the Filipino women in this study

were immigrants. Future studies with more specific focus on these

racial/ethnic minority subgroups that collect acculturation-related

variables are needed to further explore this mediation.

In this study, we compared three different approaches of

incorporating PBDEs as potential mediators of racial and ethnic

disparities in gestational age at delivery and PTB: reducing to a

WQS index, selecting a single PBDE 153 congener according to

prior knowledge and its relative importance from the hierarchical

BKMR selection, and including six PBDE congeners as multiple

mediators. Overall, the estimated proportion mediated via the single

PBDE 153 congener was smaller than that via the WQS index. This

is possibly owing to the limitation of selecting mediator(s) a priori

based on the mediator-outcome association alone, which might

leave out important mediator(s) weakly associated with the

outcome that may also contribute to the indirect effect. The

estimated proportion jointly mediated by multiple PBDEs was

higher than the proportion mediated by the WQS index, but with

much wider CIs due to potential overfitting or multicollinearity.

Our example showed that the WQS approach carries the advantage

of reducing the PBDEs to a single score to avoid overfitting or

multicollinearity, while preserving the information from each
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congener, serving as a suitable approach to explore the overall

contribution of a chemical mixture to a health disparity question (28).

We acknowledge several limitations of this study. First, this

study consisted of women with low-risk of adverse health

outcomes at baseline and without obesity, so our findings might

not be fully generalizable to the overall US population. Second,

unmeasured confounding was inevitable, such as other geographic,

psychosocial, or lifestyle factors. Third, statistical power was

limited when evaluating potential mediation within certain

subgroups. Lastly, we were not able to directly measure historical

or contemporary environmental racism or adverse environments

in these data that are contributing to (or on the causal pathway

for) the observed disparities where race and ethnicity act as a

proxy for these complex processes (75). Further studies are needed

to inform interventions on the policies and systems level.

This study has many unique strengths. First, this study utilized

a prospective cohort design in a large, racially/ethnically diverse

population with clinically validated outcomes and a

comprehensive set of covariates. Second, we applied different

statistical approaches to evaluate mediation(s) through individual

as well as mixtures of PBDEs. Third, efforts were made to

evaluate mediation for disparities in subcategories of PTB, or
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among other under-studied racial and ethnic subgroups (e.g., based

on Asian backgrounds). Lastly, we conducted various sensitivity

analyses to validate the robustness of our findings.
5 Conclusions

In conclusion, in this multiracial/ethnic cohort of pregnant

women in the United States, we found that non-Hispanic Black

women had shorter gestational ages at delivery, higher risk of

PTB, and higher exposures to PBDEs compared with non-

Hispanic White women. Our mediation analysis provided

suggestive evidence that the Black vs. White disparity in

gestational age at delivery might be partially mediated by

disparities in exposures to PBDEs. Lowering the PBDE exposures

at the population level may help reduce this disparity.
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