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4Faculty of Exact Sciences, University of Bejaia, Bejaia, Algeria
Background: The integration of deep learning (DL) and time-lapse imaging
technologies offers new possibilities for improving embryo assessment and
selection in clinical in vitro Fertilization (IVF).
Objectives: This scoping review aims to explore the range of deep learning
model applications in the evaluation and selection of embryos monitored
through time-lapse imaging systems.
Methods: A total of 6 electronic databases (Scopus, MEDLINE, EMBASE, ACM
Digital Library, IEEE Xplore, and Google Scholar) were searched for peer-
reviewed literature published before May 2024. We adhered to the PRISMA
guidelines for reporting scoping reviews.
Results: Out of the 773 articles reviewed, 77 met the inclusion criteria. Over the
past four years, the use of DL in embryo analysis has increased rapidly. The
primary applications of DL in the reviewed studies included predicting embryo
development and quality (61%, n= 47) and forecasting clinical outcomes, such
as pregnancy and implantation (35%, n= 27). The number of embryos involved
in the studies exhibited significant variation, with a mean of 10,485
(SD = 35,593) and a range from 20 to 249,635 embryos. A variety of data types
have been used, namely images of blastocyst-stage embryos (47%, n= 36),
followed by combined images of cleavage and blastocyst stages (23%, n= 18).
Most of the studies did not provide maternal age details (82%, n= 63).
Convolutional neural networks (CNNs) were the predominant deep learning
architecture used, accounting for 81% (n= 62) of the studies. All studies
utilized time-lapse video images (100%) as training data, while some also
incorporated demographics, clinical and reproductive histories, and IVF cycle
parameters. Most studies utilized accuracy as the discriminative measure
(58%, n= 45).
Conclusion: Our results highlight the diverse applications and potential of deep
learning in clinical IVF and suggest directions for future advancements in embryo
evaluation and selection techniques.
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1 Introduction

Infertility affects approximately 17.5% of the global adult

population, with roughly one in six individuals experiencing

infertility issues during their lifetime (1). in vitro fertilization

(IVF) is a widely used fertility treatment that involves ovarian

stimulation, oocyte retrieval, fertilization, and embryo culture in

controlled conditions before either transferring the embryos to

the uterus or cryopreserving them for future treatments. Despite

advancements in IVF and related technologies, the success rates

per cycle remain relatively low, with significant variations

depending on patient and treatment characteristics (2, 3).

Recently, many clinics have adopted time-lapse imaging (TLI)

systems, an emerging technology that allows for the continuous

monitoring and recording of detailed and dynamic information

on embryonic development while maintaining stable culture

conditions (4, 5). A TLI system includes an incubator with

an integrated microscope and cameras connected to an

external computer. Embryo images are captured at defined

intervals and at various focal planes throughout the culture

period. These images are compiled into a video, enabling

detailed morphological and morphokinetic evaluations of

embryo development.

Embryo assessment is a critical yet challenging step in IVF, as

improving the ability to select embryos with the highest

implantation potential can increase pregnancy rates (6).

However, conventional evaluation methods face several limitations.

Manual grading is subjective and prone to inter-observer

variability, leading to inconsistent assessments. Static

morphological grading systems, such as Gardner’s blastocyst

grading, provide only limited predictive insights, as they

evaluate embryos at a single time point rather than tracking

developmental patterns. Morphokinetic analysis, which monitors

cell division timings, adds predictive value but remains labor-

intensive, inconsistent, and difficult to standardize across clinics.

Furthermore, manual evaluations are not scalable for high-

throughput IVF settings, requiring significant time and expertise.

These limitations contribute to suboptimal embryo selection and

lower IVF success rates (7). Therefore, the availability of more

automated, objective, accurate, cost-effective, and user-friendly

software for embryo assessment and selection using time-lapse

imaging data could significantly empower embryologists to make

more efficient clinical decisions.

The emergence of artificial intelligence (AI) technologies

and computational methods, such as deep learning (DL),

offers promising solutions for overcoming challenges in embryo

assessment at different embryonic developmental stages,

potentially increasing IVF success rates (8) (Figure 1). Deep

neural networks, particularly convolutional neural networks

(CNN), provide an efficient alternative to traditional computer

vision-based approaches and have shown great promise in

biomedical and diagnostic applications (8, 9). This is mainly due

to their ability to automate embryo assessment, which eliminates

inter- and intra-observer variances and allows for the analysis of

vast amounts of data. By identifying subtle patterns that may

be overlooked by humans, these DL models can offer more
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accurate predictions of embryo viability and implantation

potential (10–12).

Previous reviews (9, 13–16) on artificial intelligence models in

embryology provide valuable insights yet have several significant

limitations that this current review aims to address. Firstly,

most recent reviews (9, 13–16) were generic, covering a broad

range of machine learning models and computer vision

techniques, rather than focusing specifically on deep learning

algorithms, which are more sophisticated and potentially more

effective. Secondly, many of these studies (13, 15) were

narrative reviews that did not adhere to a systematic approach,

limiting the reproducibility and reliability of their findings.

Additionally, previous reviews (9, 13–16) often included a

combination of static images and time-lapse video images,

whereas our review exclusively focuses on time-lapse images,

which can provide more dynamic and comprehensive insights

into embryo development. Furthermore, the number of studies

included in previous reviews (9, 13–16) was very limited, with a

maximum of 30 studies, which could affect the depth and

breadth of their conclusions. In contrast, our review specifically

addresses the application of deep learning within the context of

time-lapse imaging, providing a more focused and up-to-date

synthesis of available studies. We expand on previous work by

including a significantly larger number of studies (n = 77),

thereby offering a more comprehensive analysis of recent

advancements in deep learning-based embryo evaluation.

Additionally, our review systematically examines key

characteristics of deep learning models, including their

architectures, training methodologies, and validation strategies,

providing insights that were previously overlooked in the

literature. By refining the scope to exclusively analyze time-

lapse imaging applications, we highlight the unique

characteristics of AI model architectures and applications

associated with using dynamic imaging data for embryo

assessment, further reinforcing the relevance of AI-based

approaches in reproductive medicine.

In this paper, we aim to provide a focused and comprehensive

review of the application of deep learning and time-lapse imaging

in embryo assessment. Specifically, this review seeks to answer the

following research questions:

1. What are the prevalent applications of deep learning techniques

in embryo evaluation and selection using time-lapse imaging?

2. What are the key characteristics of deep learning models used for

embryo evaluation and selection, including model architectures,

training data types, validation methods, and evaluation metrics?

3. What are the specific characteristics of the embryo populations

and time-lapse imaging platforms used for training deep

learning models?

4. What future directions can enhance deep learning solutions to

meet the needs of IVF timelapse embryology and facilitate the

translation of research into clinical practice?

5. By synthesizing these aspects, this review aims to provide a

comprehensive understanding of the current state and

potential of deep learning applications in embryo evaluation

and selection.
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FIGURE 1

Process of embryo evaluation using time-lapse imaging and deep learning. This figure illustrates the comprehensive process of embryo evaluation in
clinical in vitro Fertilization (IVF) using time-lapse imaging and deep learning algorithms. The process begins with oocyte fertilization, where the sperm
fertilizes the egg, leading to the formation of a zygote. The zygote is then placed in a time-lapse incubator that continuously monitors its
development. The timelapse incubator captures sequential images of the embryo at various stages of development, including Day 1, Day 2, Day 3,
Day 4, and Day 5 (blastocyst). These images are compiled into time-lapse videos that provide a detailed record of the embryo’s development over
time. The timelapse videos are then inputted into deep learning algorithms, which analyze the data to evaluate various parameters of the
embryos. The deep learning models are trained to assess embryo quality, chromosomal composition, implantation and pregnancy rates, and live-
birth rates. The output from these algorithms helps in the selection of the best embryo for transfer. Finally, the selected embryo is transferred to
the uterus, where it has the potential to develop into a successful pregnancy.
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2 Methods

To achieve the objectives of this study, we carried out a

scoping review in accordance with the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses - Extension for

Scoping Reviews (PRISMA-ScR) guidelines (17). The PRISMA-

ScR Checklist associated with this review is available in

Supplementary Appendix 1. The subsequent sections provide a

comprehensive description of the methods used in this review.
2.1 Search strategy

To identify relevant studies, we conducted searches across six

electronic databases on November 10, 2023: Scopus, MEDLINE (via

Ovid), EMBASE (via Ovid), ACM Digital Library, IEEE Xplore, and

Google Scholar. These databases were selected based on their

extensive coverage of medical, computational, and engineering

literature, ensuring a comprehensive and multidisciplinary search.

Specifically, MEDLINE and EMBASE were chosen for their

authoritative indexing of biomedical and clinical research, Scopus

for its broad interdisciplinary scope, ACM Digital Library and IEEE

Xplore for their focus on AI and computer vision applications, and

Google Scholar to capture additional gray literature and emerging
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studies not indexed in traditional databases. Following this, we set

up a biweekly automatic search to run for seven months, ending on

May 28, 2024. Due to the high volume of results from Google

Scholar, which ranks by relevance, we reviewed only the first 100

entries (10 pages). To ensure a comprehensive review, we also

screened the reference lists of our primary selected studies

(backward reference checking) and included studies that cited our

primary selections (forward reference checking).

Our search query consisted of three primary categories of

terms: terms related to Deep Learning (e.g., artificial intelligence,

deep learning, convolutional neural network, recurrent neural

network), terms related to Time-lapse Imaging (e.g., time-lapse),

and terms related to IVF (e.g., in vitro fertilization, assisted

reproductive technologies, and intracytoplasmic sperm injection).

These categories were structured to ensure the inclusion of all studies

that focus on AI applications in embryo assessment using time-lapse

imaging while minimizing irrelevant results. Detailed search queries

for each database are provided in Supplementary Appendix 2.
2.2 Study eligibility criteria

This review focused on studies that investigated the use of deep

learning and time-lapse imaging for embryo assessment in the IVF
frontiersin.org
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embryology labs. The eligibility criteria were meticulously

developed to ensure a comprehensive and focused review of the

relevant literature for our study.
2.2.1 Inclusion criteria
Studies were considered eligible if they employed deep

learning methods for embryo assessment using time-lapse

imaging to monitor embryo development. Additionally, studies

needed to report data on the performance (e.g., accuracy) of

the applied deep learning methods and involve human

embryos undergoing IVF procedures with a focus on embryo

evaluation. Studies that also compared deep learning methods

to manual preselection by embryologists were included. We

included studies with endpoints related to predictions of

embryo morphology or outcomes, including embryo stage

classification, blastocyst morphology quality and grading,

embryo ploidy, and IVF success rates such as implantation

rate, clinical pregnancy, and live birth rates. In terms of study

design, we included both retrospective and prospective studies.

Eligible publications encompassed peer-reviewed articles,

theses, dissertations, and conference articles, all of which were

required to be published in English. There were no constraints

on the year of publication, age groups, or ethnicities.
2.2.2 Exclusion criteria
We excluded studies that involved nonhuman subjects or

those that used static images rather than time-lapse imaging

for monitoring embryos. Additionally, studies were excluded

if they did not deploy deep learning techniques or relied

solely on traditional machine learning models (e.g., support

vector machines, decision trees, or random forests) or

statistical models. Studies lacking sufficient details about the

specific role of the deep learning technique in the embryo

evaluation process were also excluded. Furthermore, we

excluded studies focusing on outcomes related to embryo

culture medium analysis, as well as those examining post-

IVF cycle outcomes, such as neonatal health and

complications. Regarding the type of publication, we

excluded non-peerreviewed articles, preprints, reviews,

opinion papers, research letters, commentaries, editorials,

case studies, conference abstracts, posters, and protocols.
2.3 Study selection

The study selection process was conducted in three phases.

Initially, duplicates were removed from the retrieved studies

using EndNote X9. Subsequently, we screened the titles and

abstracts of the remaining articles. In the final phase, the

full texts of the shortlisted studies were thoroughly

evaluated. The selection process was independently

conducted by two reviewers, with any disagreements resolved

by consultation with a third reviewer. To evaluate the level

of agreement between the two reviewers, we used Cohen’s

kappa (18). The resulting kappa values were 0.66 for title
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and abstract screening and 0.78 for full-text screening,

indicating substantial agreement.
2.4 Data extraction

Two reviewers independently used Microsoft Excel to collect

data on study metadata, study design, embryology and time-lapse

characteristics, and AI methods. Any disagreements were

resolved through discussion. The data extraction form for this

review was piloted with ten studies and is available in

Supplementary Appendix 3.
2.5 Data synthesis

We synthesized the extracted data from the included studies

using a narrative approach, providing a comprehensive summary

through text, tables, and figures. Initially, we described the

characteristics of the included studies, covering aspects such as

publication characteristics, study type and sites, participants, and

data sources. Next, we detailed the applications and outcomes,

including both main and specific applications as well as the

outcome measures used in the studies. We then summarized the

embryology and time-lapse imaging characteristics, focusing on

embryo populations, the time-lapse platform employed, and the

annotation standards used. Finally, we detailed the deep learning

model characteristics, including the architectures of the deep

learning algorithms, input data types, validation methods, and

performance metrics.
3 Results

3.1 Search results

Figure 2 illustrates the search results from the pre-selected

databases, which initially yielded 773 articles. After identifying

and removing 225 duplicates (29%), 548 articles (71%)

remained for further review. The titles and abstracts of these

remaining articles were screened, leading to the exclusion of

345 articles (45%). Of the remaining 203 records (26%), we

were unable to obtain the full text for 8 records (1%). Full-text

screening of the remaining 195 articles (25%) led to the

exclusion of 121 articles (15%) for various reasons described

in Figure 2. Additionally, 3 more articles were identified as

relevant through backward and forward referencing, resulting

in a total of 77 articles (10%) for inclusion in this review (11,

12, 19–42, 10, 43–48, 7, 49–91).
3.2 Characteristics of the included studies

3.2.1 Publication characteristics
Studies included in this review were published across 20

countries, highlighting the global interest in the application
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FIGURE 2

Flow chart of the study selection process. This figure illustrates the step-by-step process of study identification, screening, and inclusion in the review.
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of deep learning and time-lapse imaging in the embryology

lab, as shown in Figure 3. Asia leads with 29 studies,

constituting 38% of the total, with significant

contributions from China (16%, n = 13) and Japan (10%,

n = 8). Europe follows with 26 studies, accounting for 34%

of the total, with notable contributions from Denmark

(6%, n = 5), and Italy and France each contributing

4 studies (5%). North America contributed 16 studies,

making up 21% of the total.

As shown in Table 1, the vast majority of the included

studies were journal articles, accounting for 82% (n = 63) of

the publications. Regarding the year of publication, there

was a noticeable increase in research output over the last

few years. The majority of studies were published in 2023
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(29%, n = 22) and 2022 (26%, n = 20), indicating a recent

surge in research activity. For 2024, the number of studies

(4%, n = 3) reflects only those published between January

and May, suggesting that the full year’s output may follow

the upward trend observed in recent years.
3.2.2 Study type and sites
The vast majority of the included studies (94%, n = 72) were

retrospective in nature, with a small proportion being a

combination of retrospective and prospective (5%, n = 4) or

solely prospective (1%, n = 1). Regarding the study sites (clinics),

47% (n = 36) were conducted at a single site, while 21% (n = 16)

were multi-site studies.
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FIGURE 3

Geographical distribution of included studies. The number inside each circle represents the count of studies from that region. Color coding is used for
visual distinction and does not indicate any categorical grouping.
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3.2.3 Participants and data sources
The studies varied significantly in terms of the number

of participants, with a mean of 2,154 (SD = 5,589) and a

range from 14 to 34,620 participants or cycles. However,

nearly half of the studies (49%, n = 38) did not report the number

of participants or cycles. The average maternal age of patients

was reported in only 18% (n = 14) of the studies, with a mean

age of 35.7 years (SD = 3.1). Data sources were predominantly

private (99%, n = 76), with only one study (1%) utilizing both

public and private sources. Supplementary Appendix 4

provides detailed characteristics of each included study.
3.3 Applications and outcomes

The primary applications of the studies included

monitoring embryo development, assessing and grading embryo

quality (61%, n = 47), predicting pregnancy and implantation

outcomes (35%, n = 27), and determining embryo

chromosomal composition (31%, n = 24). Specific applications

ranged from morphologic and morphometric analysis (27%, n = 21)

and stage classification (26%, n = 20) to blastocyst formation and

expansion (24%, n = 19), blastocyst grading (15%, n = 12), and

implantation rate prediction (13%, n = 10). Outcome measures

primarily focused on embryo and blastocyst morphology quality

and grading (45%, n = 35) and successful IVF outcomes (45%,

n = 35). The gold standard (ground truth) used in these studies was

primarily determined by embryologists (54%, n = 42), as shown in

Table 2. Supplementary Appendix 5 shows applications and

outcomes details in each included study.
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3.4 Embryology and time-lapse
characteristics

3.4.1 Embryo population and time-lapse platforms
As shown in Table 3, the number of embryos involved

in the studies exhibited significant variation, with a

mean of 10,485 (SD = 35,593) and a range from 20 to

249,635 embryos. Additionally, the studies demonstrated

considerable diversity in terms of the days of embryo

development assessed. The majority of studies focused on

the blastocyst stage (47%, n = 36), followed by studies on

both cleavage and blastocyst stages combined (23%, n = 18).

Time-lapse technology was predominantly used, with

EmbryoScope being the most common (71%, n = 55). Other

platforms such as Miri (5%, n = 4) and GERI (4%, n = 3)

were less frequently utilized. The interval for time-lapse

imaging varied, with the most common interval being

10 min (26%, n = 20).
3.4.2 Annotation standards
The annotation standards used in the studies also varied, with

the Gardner criteria being the most frequently applied (28%,

n = 22). However, more than half of the studies (63%, n = 49) did

not report the annotation standard used. Regarding commercial

software, iDAScore was the most commonly used, appearing in

16% (n = 13) of the studies. Notably, 73% (n = 58) of the studies

did not use any commercial software. Supplementary Appendix 6

includes embryology and time-lapse characteristics in each

included study.
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TABLE 1 Characteristics of the included studies.

Feature Number of studies (%) Study references

Year of publication
2024 3 (4%) (29, 71, 85)

2023 22 (29%) (12, 21, 22, 30, 35, 40, 42, 47, 50, 53, 61, 65, 69, 70, 74, 78, 80, 81, 84, 86, 88, 90)

2022 20 (26%) (23, 24, 31, 32, 34, 36–38, 10, 45, 46, 7, 51, 57, 66, 68, 73, 82, 87, 91)

2021 14 (18%) (11, 19, 20, 25, 27, 33, 48, 49, 59, 60, 64, 77, 83, 89)

2020 5 (6%) (26, 28, 44, 58, 63)

2019 10 (13%) (39, 41, 43, 52, 55, 56, 62, 72, 75, 79)

2017 2 (3%) (67, 76)

2016 1 (1%) (54)

Type of publication
Journal article 63 (82%) (12, 21–35, 37–42, 10, 43–48, 7, 49, 50, 52, 53, 55–57, 59–61, 63, 64, 69, 70, 72, 82, 84, 87)

Conference paper 14 (18%) (19, 20, 36, 51, 54, 58, 63, 64, 69, 70, 72, 82, 84, 87)

Study type
Retrospective 72 (94%) (11, 12, 19–26, 28–33, 35, 36, 39–42, 10, 43–48, 7, 49–91)

Retrospective and
prospective

4 (5%) (27, 37, 38)

Prospective 1 (1%) (34)

Single/Multi-site
Single site 36 (47%) (11, 23, 25, 27, 29, 30, 32, 35, 42, 10, 43, 45, 46, 48, 7, 49, 51, 61, 62, 66, 67, 70, 71, 73, 76, 78, 80, 83, 85,

87–91)

Multi-site 16 (21%) (12, 21, 22, 24, 26, 28, 37, 38, 40, 41, 50, 55–57, 79, 82)

NR 25 (32%) (19, 20, 31, 33, 36, 39, 44, 47, 52–54, 58–60, 63, 64, 68, 69, 72, 74, 75, 77, 81, 84, 86)

Number of participants (patients/cycles)
Mean (Standard Deviation) 2,154 (5,589) (21–23, 25, 26, 28–32, 35–38, 40, 41, 10, 43, 45, 46, 48, 7, 51, 53, 56, 85–88)

Range 14–34,620

NR 38 (49%) (19, 20, 24, 27, 33, 34, 39, 42, 44, 47, 49–52, 55, 57, 58, 60–65, 67, 68, 72, 74–76, 78, 80, 82, 84–88, 90)

Patients’ maternal age
Mean (standard deviation) 35.7 (3.1) (24, 25, 28, 10, 53, 56, 60, 66, 69, 71, 79, 81, 89, 90)

Range 18–52

NR 63 (82%) (11, 12, 26, 27, 29–42, 43–52, 54, 55, 57–59, 61–65, 67, 68, 70, 72–78, 80, 82–88, 91)

Data sources
Private 76 (99%) (11, 12, 19–42, 10, 43–48, 7, 49–58, 65, 67–91)

Public and private 1 (1%) (82)

Public 0 (0%) -

NR: Not Reported.
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3.5 Deep learning models characteristics

3.5.1 Deep learning architectures
As shown in Table 4, the predominant deep learning

architecture used in the studies was convolutional neural

networks (CNNs), which accounted for 81% (n = 62) of the

studies. Recurrent neural networks (RNNs) were employed

in 16% (n = 10) of the studies. Figure 4 shows the

prevalence of different DL models used in the three main

applications. ResNet, I3D, and LSTM models show higher

usage, especially in embryo development and quality

assessment, indicating a preference for these models in this

application area.
3.5.2 Input data types
All studies used video image features as training data (100%,

n = 77). Additionally, some studies incorporated demographics
Frontiers in Reproductive Health 07
(14%, n = 11) and IVF cycle parameters (6%, n = 6). A small

number of studies (3%, n = 2) utilized a more

comprehensive dataset that included image features,

demographics, clinical and reproductive history, IVF cycle

parameters, and male data (Table 5).
3.5.3 Validation methods and performance
metrics

For validation of the deep learning models, the hold-out

method was the most common, used in 62% (n = 48) of the

studies. The performance of the deep learning models was

evaluated using various metrics. Accuracy (ACC) was the most

commonly reported metric, used in 58% (n = 45) of the studies.

Additionally, the area under the receiver operating characteristic

curve (AUC-ROC) was used in 57% (n = 44) of the studies.

Supplementary Appendix 7 shows deep learning models

characteristics in each included study.
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TABLE 2 Applications and outcomes of deep learning-assisted embryo assessment.

Feature Number of studies
(%)

Study references

Main applications
Embryo development/quality assessment/
grading

47(61%) (11, 22, 24, 26, 27, 29–38, 42, 10, 43, 45–48, 49–53, 56, 57, 59–62, 72, 74, 76, 77, 80, 82–87,
89, 91)

Pregnancy/implantation prediction 27(35%) (12, 19, 20, 23–28, 38, 40, 41, 7, 50, 57, 65, 67, 68, 72, 74, 77, 79, 81, 86, 88, 90, 91)

Embryo chromosomal composition 25(32%) (21, 27, 29, 33, 34, 39, 10, 43–46, 54, 56, 58, 62–65, 69, 70, 75, 78, 80, 86, 88)

Specific application
1. Embryo Development/Quality Assessment/
Grading
a. Morphologic/morphometric

21(27%) (12, 24, 26, 27, 29–31, 33–36, 42, 43–45, 48, 50, 51, 74, 83)

b. Stage classification 20(26%) (21, 27, 33, 34, 39, 10, 43, 45, 46, 54, 58, 62–65, 69, 70, 75, 78, 80)

c. Blastocyst formation and expansion 19(24%) (27, 30–34, 36, 38, 10, 43, 45, 47, 49, 51–53, 57, 61, 83)

d. Blastocyst grading 11(14%) (30, 37, 38, 43, 50–53, 56, 57, 61, 83)

e. Pronuclear staging/segmentation 4(5%) (10, 44, 58, 89)

f. Cytoplasm segmentation/ZP segmentation 4(5%) (58, 80, 82, 89)

g. Usable blastocysts 2(3%) (43, 60)

2. Pregnancy/Implantation prediction
a. Implantation rate 9 (12%) (12, 19, 20, 26, 57, 67, 72, 79, 91)

b. FH pregnancy prediction 10 (13%) (24, 27, 28, 38, 40, 41, 57, 74, 81, 90)

c. Live-birth prediction 8 (10%) (23, 25, 7, 65, 68, 77, 86, 88)

3. Embryo chromosomal composition
a. Ploidy status 4 (5%) (19, 29, 57, 86, 88)

Outcome measure
Embryo/blastocyst morphology quality/grading 35 (45%) (11, 22, 24, 26, 31–38, 42, 10, 46–48, 51, 52, 54–56, 58–61, 66, 73, 76, 82–87, 89)

Successful IVF 35 (45%) (12, 19–21, 23–28, 30–32, 37, 38, 40, 41, 43, 7, 49, 50, 57, 65, 67, 68, 71, 72, 74, 77, 79, 81, 86,
88, 90, 91)

Ploidy status 4 (5%) (29, 57, 86, 88)

Reference standard
Embryologists 42 (54%) (11, 22, 24, 26, 27, 29, 31–39, 42, 10, 44–48, 51–55, 60, 61, 63, 66, 69, 74, 75, 78, 80, 82–84,

86, 87, 89)

Ultrasound 19 (25%) (12, 19, 20, 24, 26–28, 37, 38, 40, 41, 43, 50, 56, 57, 67, 79, 90, 91)

Live-birth delivery 14 (18%) (21, 23, 25, 30–32, 38, 7, 49, 65, 68, 70, 71, 86, 88)

PGT-A 4 (5%) (29, 57, 86, 88)

NR 11 (14%) (58, 59, 62, 64, 70, 72, 73, 76, 77, 81, 85)

NR: Not Reported; FH: Fetal Heartbeat; ZP: Zona Pellucida; IVF: in vitro Fertilization; PGT-A: Preimplantation Genetic Testing for Aneuploidies.
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4 Discussion

4.1 Main findings

In this scoping review, we aim to provide a focused and

comprehensive analysis of the application of deep learning and time-

lapse imaging in embryo assessment. Specifically, we investigate the

characteristics of deep learning models used for evaluating and

selecting embryos monitored through time-lapse imaging, examining

the characteristics of the included studies, target applications,

outcomes, and features of embryology and time-lapse platforms.

The field of DL-powered embryo imaging research is relatively

recent and has experienced steady growth, with publications

increasing approximately fourfold from 2020 to 2023.

Interestingly, there was a decline in the number of studies from

2019 to 2020, possibly due to the disruptions caused by the

COVID-19 pandemic. However, the subsequent years saw a

significant increase, highlighting the growing recognition and

interest in this field.
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Most studies originate from high-income countries (70%, 54

studies), using datasets from top-tier laboratories equipped with

time-lapse incubators, providing what is considered the ideal

dataset (optimal lab conditions, culture systems, and embryo

transfer practitioners). These ideal conditions allow for effective

testing of deep learning models for outcome prediction.

However, in the real world, not all labs are equipped with time-

lapse incubators, and many other factors influence outcomes.

This poses challenges to the generalizability of the results.

Therefore, datasets should reflect variations in patient

demographics and IVF success determinants to improve

applicability. The data used in DL models range from tens to

hundreds of thousands of cycles or patients, with larger datasets

generally providing more reliable results. However, a significant

amount of unreported data, particularly concerning patients’

maternal age (82%, 63 studies), and the use of single-center datasets

(47%, 36 studies) are limitations of these studies. Additionally, most

studies use private datasets (99%), restricting reproducibility. These

factors limit the generalizability of the models and hinder
frontiersin.org
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TABLE 3 Embryology and time-lapse characteristics.

Feature Number of studies (%) Study references

Number of embryos
Mean (Standard
Deviation)

10,485 (35,593) (11, 12, 19–35, 40–42, 10, 43–48, 7, 49–51, 53–61, 63–67, 69, 71–75, 77, 79, 80, 87–91)

Range 20–249,635

NR 16 (21%) (36–39, 52, 62, 68, 70, 76, 78, 81–86)

Embryo stage
Pronuclear stage
(D1)

1 (1%) (89)

Cleavage stage
(D1- D4)

5 (6%) (21, 29, 67, 71, 90)

Blastocyst stage
(D5- D7)

36 (47%) (20, 22, 24, 30–32, 35, 37, 38, 41, 10, 43, 45, 47–53, 56, 57, 59–61, 65, 74, 75, 79, 81, 82, 84, 85, 88, 91)

Cleavage and
blastocyst

18 (23%) (12, 19, 25, 27, 33, 40, 44, 46, 54, 58, 64, 70, 72, 73, 77, 78, 80, 86)

NR 17 (22%) (11, 23, 26, 28, 34, 36, 39, 42, 55, 62, 63, 66, 68, 69, 76, 83, 87)

Time-lapse technology used
EmbryoScope 55 (71%) (11, 12, 19–33, 41, 42, 10, 43, 45–48, 7, 49, 52, 53, 55–59, 61, 62, 64–67, 71, 73–79, 81–83, 87, 89–91)

Miri 4 (5%) (34, 35, 39, 75)

GERI 3 (4%) (37, 38, 40)

Others (Primo
Vision, Eeva,
Olympus IX71)

3 (4%) (54, 82, 86)

NR 14 (18%) (36, 44, 50, 51, 60, 63, 68–70, 72, 80, 84, 85, 88)

Time-lapse interval (minutes)
5 3 (4%) (39, 54, 75)

7 1 (1%) (67)

10 20 (26%) (11, 12, 21, 22, 27, 29, 41, 10, 43, 46, 56, 57, 62, 68, 71, 73, 77, 86, 87, 89)

15 12 (16%) (19, 20, 24, 29, 33, 56, 57, 63, 68, 69, 77, 87, 91)

20 4 (5%) (55, 58, 64, 73)

30 2 (3%) (12, 74)

NR 41 (53%) (23, 25, 26, 28, 30–32, 34–38, 40, 42, 44, 47, 48, 7, 49–53, 59–61, 65, 66, 70, 72, 76, 78–85, 88, 90)

Annotation standard
Gardner 22 (28%) (22, 24, 30–32, 37, 38, 40–42, 10, 43, 53, 55–57, 65, 71, 72, 77, 81, 88)

ASEBIR 4 (5%) (25, 27, 40, 73)

Alpha ESHRE
Consensus

2 (3%) (21, 33)

NR 49 (63%) (11, 12, 19, 20, 23, 26, 28, 29, 34–36, 39, 44–48, 7, 49–52, 54, 58–60, 62–64, 66–70, 72, 74–76, 78–80, 82–87, 89–91)

Commercial software
iDAScore 13 (16%) (12, 21, 24, 30, 10, 43, 50, 53, 57, 59, 71, 81, 90)

KIDScore 3 (4%) (27, 74, 88)

CHLOETM 2 (3%) (31, 32)

IVY 2 (3%) (41, 79)

CNTK 1 (1%) (44)

No software
reported

57 (74%) (11, 19, 20, 22, 23, 25, 26, 29, 33–40, 42, 45–48, 7, 49, 51, 52, 54–56, 58, 60–70, 72–78, 80, 82–87, 89, 91)

NR: Not Reported; D1: Day 1; D4: Day 4; D5: Day 5; D7: Day 7.
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systematic evaluation of robustness and potential biases. Biases in

these datasets stem from multiple sources, including demographic

homogeneity, clinical practice variations, and data preprocessing

inconsistencies. For example, models trained predominantly on

datasets from high-income countries may not generalize well to

lower-resource settings where laboratory conditions and patient

populations differ significantly. Moreover, patient selection bias—

where certain demographic groups are underrepresented—can lead

to disparities in model performance. Algorithmic biases may also
Frontiers in Reproductive Health 09
emerge from skewed labeling practices or feature imbalances, such

as reliance on clinical parameters that do not equally affect all

patient subgroups. To mitigate these biases, several strategies should

be employed. First, diversifying datasets by integrating data from

multiple geographic regions, clinical settings, and patient

backgrounds can enhance model robustness. Second, implementing

bias detection techniques, such as fairnessaware machine learning

frameworks, can systematically assess and quantify disparities in

model performance across different subgroups. Finally, explainable
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TABLE 4 Deep learning models characteristics.

Feature Number of studies (%) Study references

Input training data
Image features 77 (100%) (11, 12, 19–42, 10, 43–48, 7, 49–91)

Demographics 11 (14%) (12, 22, 23, 29, 37, 40, 48, 67, 74, 88, 91)

IVF cycle parameters 5 (6%) (22, 23, 40, 88, 91)

Clinical and reproductive history 4 (5%) (22, 29, 40, 90)

Male data 3 (4%) (22, 40, 91)

Main deep learning architecture
CNNs 62 (81%) (11, 12, 19–21, 24, 26, 29, 30, 34–40, 42, 10, 43, 45, 46, 48, 7, 49–63, 65,

66, 68–75, 77, 78, 80–90)

RNNs 10 (16%) (23, 33, 42, 45, 56, 60, 64, 74, 83, 91)

DNNs 9 (12%) (22, 23, 25, 28, 41, 47, 67, 76, 79)

Transformers 3 (4%) (70, 78, 86)

NR 4 (5%) (27, 31, 32, 44)

Specific deep learning architecture
ResNet 21 (27%) (11, 20, 34, 36–38, 40, 45, 46, 48, 7, 51, 58, 61, 62, 64, 66, 68, 69, 73, 87)

I3D 13 (17%) (12, 21, 24, 30, 10, 43, 50, 53, 57, 59, 71, 81, 90)

LSTM 10 (13%) (23, 30, 42, 45, 56, 60, 64, 74, 83, 91)

Unet 5 (6%) (36, 49, 51, 63, 82)

VGGNet 6 (8%) (35, 73–75, 83, 84)

AlexNet 5 (6%) (39, 62, 70, 75, 84)

Xception 5 (6%) (11, 46, 52, 56, 83)

DenseNet 4 (5%) (35, 60, 66, 83)

MLP 5 (6%) (22, 23, 25, 67, 73)

Unspecified CNN 5 (6%) (19, 54, 72, 88, 89)

Unspecified DNN 5 (6%) (28, 41, 47, 76, 79)

EfficientNet 3 (4%) (34, 51, 70)

Inception 3 (4%) (34, 55, 83)

MobileNet 3 (4%) (34, 65, 83)

R-CNN 2 (3%) (37, 58)

YOLO 2 (3%) (78, 80)

AMSNet 2 (3%) (29, 87)

Others (ABN, AMCFNet, BYOL, CNNg, DeepLab, DETR,
GRU, LBCNN, IVFormer, MFS,NASNet, Swin-T, TSM)

14 (18%) (11, 26, 28, 41, 42, 47, 70, 76–79, 83, 85, 86)

Validation method
Hold-out 48 (62%) (11, 12, 21, 25, 27, 29, 30, 34–36, 38, 39, 41, 42, 10, 44, 7, 49, 50, 52, 53,

55, 56, 58–62, 64–67, 70–73, 76, 78–81, 83–85, 87, 88, 90)

K-fold 31 (40%) (19, 20, 22–24, 28, 31–33, 37, 40, 43, 45–48, 7, 51, 54, 57, 63, 68, 69, 74,
75, 77, 79, 82, 86, 89, 91)

Performance metric
ACC 45 (58%) (11, 19, 20, 22, 23, 33–40, 42, 44–46, 48, 51, 52, 54–56, 58, 60–65, 69, 70,

72–76, 78, 80, 82–84, 87, 89, 91)

AUC-ROC 44 (57%) (11, 12, 21–30, 37, 38, 40, 42, 48, 7, 50–53, 55, 57, 59–61, 65–69, 71, 73,
74, 77, 79, 81, 86–88, 90, 91)

PREC 20 (26%) (19, 20, 22, 23, 33, 35, 36, 42, 58, 59, 68, 69, 73, 75, 78, 80, 82, 84, 89, 91)

REC 20 (26%) (19, 20, 22, 23, 33, 35, 36, 42, 58, 59, 68, 69, 73, 75, 78, 80, 82, 84, 89, 91)

SENS 9 (12%) (22, 33, 37, 40, 44, 70, 72, 73, 78)

F1 9 (12%) (22, 23, 33, 35, 42, 73, 78, 84, 91)

p-value 9 (12%) (31, 32, 41, 10, 43, 49, 71, 85, 88)

SPES 8 (10%) (11, 22, 33, 70, 72, 73, 78, 86)

Jaccard-Index 3 (4%) (19, 20, 82)

MSE 3 (4%) (62, 83)

Others (AUPRC, FPR, NPV, MCC, Dice, r, PPV, MAE) 8 (10%) (22, 45, 68, 70, 74, 78, 82, 91)

NR 1 (1%) (47)

ABN, Attention-Based Network; ACC, Accuracy; AMCFNet, Attention Mechanism Convolutional Fusion Networks; AMSNet, Adaptive Multi-Scale Network; AUC-ROC, Area Under the Curve -

Receiver Operating Characteristic; AUPRC, Area Under the Precision Recall Curve; BYOL, Bootstrap Your Own Latent; CNN, Convolutional Neural Network; CNNg, CNN+Genetic Algorithm;

DeepLab, Deep Labelling; DenseNet, Densely Connected Convolutional Networks; DETR, Detection Transformer; Dice, Dice coefficient; DNN, Deep Neural Network; EfficientNet, Efficient
Neural Network; F1, F Score; FPR, False Positive Rate; GRU, Gated Recurrent Unit; I3D, Inflated 3D Convolutional Network; Inception, Inception Network; IVF, in vitro Fertilization; IVFormer,

Intermediate Visual Transformer; Jaccard-Index, Jaccard similarity coefficient; LBCNN, Learned Binary Convolutional Neural Network; LSTM, Long Short-Term Memory; MAE, Mean Absolute

Error; MCC, Matthews Correlation Coefficient; MFS, Multi-Frequency Series; MLP, Multi-Layer Perceptron; MobileNet, Mobile Neural Network; MSE, Mean Squared Error; NASNet, Neural

Architecture Search Network; NR, Not Reported; NPV, Negative Predictive Value; PPV, Positive Predictive Value; PREC, Precision; R-CNN, Regions with Convolutional Neural Networks; R,
Correlation Coefficient; REC, Recall; ResNet, Residual Network; RNN, Recurrent Neural Network; SENS, Sensitivity; SPES, Specificity; Swin-T, Swin Transformer; TSM, Temporal Shift Module;

Unet, U-Net Convolutional Network; VGGNet, Visual Geometry Group Network; Xception, Extreme Inception; YOLO, You Only Look Once.
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FIGURE 4

Distribution of deep learning (DL) models across Various embryo assessment applications. The chart illustrates the prevalence of different DL models
used in three key applications: (1) Embryo Development, Quality Assessment, and Grading, (2) Embryo Chromosomal Composition, and (3) Pregnancy
& Implantation Prediction. Numbers inside the bubbles represent the number of studies. Bubbles without numbers indicate a count of 1 study.
Abbreviations- ABN, Attention-Based Network; AMCFNet, Attention Mechanism Convolutional Fusion Networks; AMSNet, Adaptive Multi-Scale
Network; BYOL, Bootstrap Your Own Latent; CNN, Convolutional Neural Network; CNNg, CNN + Genetic Algorithm; DeepLab, Deep Labelling;
DenseNet, Densely Connected Convolutional Networks; DETR, Detection Transformer; DNN, Deep Neural Network; EfficientNet, Efficient Neural
Network; GRU, Gated Recurrent Unit; I3D, Inflated 3D Convolutional Network; Inception, Inception Network; IVFormer, Intermediate Visual
Transformer; LBCNN, Learned Binary Convolutional Neural Network; LSTM, Long Short-Term Memory; MLP, Multi-Layer Perceptron; MobileNet,
Mobile Neural Network; NASNet, Neural Architecture Search Network; R-CNN, Regions with Convolutional Neural Networks; ResNet, Residual
Network; RNN, Recurrent Neural Network; Swin-T, Swin Transformer; TSM, Temporal Shift Module; Unet, U-Net Convolutional Network; VGGNet,
Visual Geometry Group Network; Xception, Extreme Inception; YOLO, You Only Look Once.
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TABLE 5 Data types used by the included studies.

Data type Number of
studies (%)

Study
references

TL image features 77 (100%) (11, 12, 19–48, 7,
49–91)

TL image features + clinical and
reproductive history

1 (1%) (90)

TL image features + demographics 5 (5%) (12, 37, 48, 67,
74)

TL image features + demographics + clinical
and reproductive history

1 (1%) (29)

TL image features + demographics + IVF
cycle data

2 (3%) (23, 88)

TL image features + demographics + IVF
cycle data + male partner data

1 (1%) (91)

TL image features + demographics + IVF
cycle data + male partner data + clinical and
reproductive history

2 (3%) (22, 40)

IVF, in vitro Fertilization; TL, Time-lapse.
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AI (XAI) methods should be leveraged to identify and correct sources

of bias, ensuring that predictions align with clinically relevant factors

rather than spurious correlations.

The majority of publications on the use of DL-powered TLI

models in ART focused on embryo assessment (61%, 47 studies).

These studies show promise in supporting embryologists’

decisionmaking for ranking or selecting embryos for

cryopreservation or transfer. However, only 35% (27 studies)

used deep learning models for predicting pregnancy and

implantation, which are the ultimate goals of IVF treatments.

For instance, 8 studies (10%) applied DL models for predicting

live birth. This focus on short-term endpoints in the literature,

due to the accessibility of data, paves the way for future

automation of IVF laboratories. Moreover, developing

associations and prediction models for clinical outcomes is

increasingly complex, involving not only embryo viability but

also various implantation-related factors related to

female biology.

The amount of data used for developing the DL models

varies widely, ranging from tens to hundreds of thousands of

embryos. Some teams included images from both cleavage

and blastocyst stage embryos (23%, 18 studies), which is

beneficial for constructing robust models. In contrast, nearly

half of the literature (47%, 36 studies) relied solely on

blastocyst images.

Excluding cleavage stage embryos, which in many cases can arrest

before reaching the blastocyst stage, from the training data can make

the models less robust. This exclusion causes the model to miss out

on critical information about early developmental failures and the

deselection of embryos, reducing the diversity of the dataset. The

model can be generalized if the duration of incubation related to

embryo development is included. Most of the literature used the

time-lapse EmbryoScope incubator platform (71%, 55 studies) as it

was the first commercial time-lapse incubator introduced to the

market. This platform’s higher data availability and accessibility,

along with its larger market share and greater R&D investment,

explain its prevalence in the literature. Additionally, 16% (13

studies) of the literature relied on commercially available software
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algorithms such as iDAScore, a ranking-based tool used to predict

the likelihood of a fetal heartbeat. It is important to reflect that deep

learning methods, including commercially available tools that

employed multisite datasets, can still be considered “black boxes”.

This is because their interpretations are not transparent and are

often based solely on rankings. Notably, most of the literature did

not rely on commercially available software (74%, 57 studies). This

suggests that DL research in ART is still highly experimental and

evolving. Researchers are often developing their own algorithms

and methodologies, tailored to their specific datasets and

research objectives, rather than relying solely on pre-existing

commercial solutions.

Convolutional neural networks (CNNs) were widely employed

in 81% of the studies for the analysis of embryonic imaging data.

Unlike regular neural networks, CNNs have neurons arranged in

three dimensions: width, height, and depth, enabling them to

effectively capture spatial hierarchies in images. Recently,

advanced architectures of CNNs, such as residual networks

(ResNet) (92) and Inception (93), have significantly accelerated

the progress of deep learning methods in image classification,

providing enhanced accuracy and robustness. These deep

architectures allow for more efficient processing of complex

visual data, making them particularly well-suited for detailed

analysis required in IVF embryology. Despite CNNs being the

predominant choice, alternative deep learning architectures have

been explored to address specific challenges in embryo

assessment. Recurrent neural networks (RNNs), particularly

Long ShortTerm Memory (LSTM) models, have been applied to

analyze sequential embryo development data, leveraging their

ability to capture temporal dependencies in time-lapse imaging.

Transformerbased models, such as Vision Transformers (ViTs)

and Swin Transformers, have recently emerged as promising

alternatives due to their capability to model long-range

dependencies more effectively than CNNs. Studies suggest that

ViTs may outperform traditional CNNs in some medical

imaging applications by capturing global contextual information

rather than relying solely on localized features. However, their

application in embryo assessment remains limited, likely due to

the high data requirements and computational cost associated

with training transformer models.

An important decision related to the evaluation of the deep

learning models is the selection of the data split strategy. Nearly

half of the studies used the hold-out method for cross-validation,

likely due to its simplicity and computational efficiency. Hold-

out method requires less computational effort than k-fold cross-

validation and provides a consistent benchmark for model

comparison, making it easier to replicate results.

The evaluation of deep learning models for embryo selection

is crucial for assessing their effectiveness, reliability, and

generalizability. Various metrics are employed in the reviewed

studies to evaluate performance. Accuracy, the most commonly

used metric, measures the proportion of correct predictions and

is easily understood. However, it should be used cautiously with

unbalanced datasets. Therefore, it is essential to choose

appropriate metrics, such as AUCROC, precision, recall, or

F1-score, to better evaluate performance in such cases.
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4.2 Research and clinical implications

4.2.1 Need for personalized AI models for
embryology outcomes

Only a small fraction (2 out of 77 studies) utilized a richer

dataset, which included not only embryo images but also

demographics, clinical and reproductive history, IVF cycle

parameters, and male data. This limited use underscores the

need for more research incorporating comprehensive patient

information, such as genetic profiles, lifestyle factors, and

environmental influences. By moving towards more personalized

AI models for predicting embryo viability and outcomes, we

could significantly enhance the accuracy, relevance, and clinical

utility of AI-assisted reproductive technologies, ultimately

improving patient-specific treatment strategies and success rates

in IVF procedures.
4.2.2 Collaboration for public datasets
Notably, 99% of the reviewed studies relied on private datasets,

and only 21% leveraged data from multiple clinics. This

underscores the urgent need for collaboration to create public,

multi-site datasets. - The reliance on private datasets presents

several key challenges, including the lack of external validation,

limited reproducibility, and potential biases introduced by dataset

homogeneity. The limited availability of public datasets hinders

the ability to benchmark deep learning models against a

standardized dataset, making it difficult to assess their true

clinical applicability across diverse populations. Additionally,

private datasets often restrict external researchers from accessing

raw data, reducing opportunities for independent validation and

cross-institutional studies. To address these concerns, there is a

growing need for global initiatives to establish public IVF

datasets that aggregate diverse patient populations, embryology

lab conditions, and clinical outcomes. Encouraging data-sharing

agreements among clinics, implementing privacy-preserving

techniques such as federated learning, and developing

standardized annotation protocols could help mitigate these

limitations. By expanding access to high-quality, diverse training

datasets, future AI models can achieve improved generalizability,

facilitating safer and more equitable AI-driven embryo assessment.
4.2.3 Overcoming deep learning challenges with
large language models

Deep learning models trained on high-resolution time-lapse

imaging data often struggle to adapt to less expensive, portable

optical systems, particularly when data quality is reduced (94).

Additionally, CNNs require large, annotated datasets from the

target domain, which are challenging to generate, especially for

medical devices and newer low-cost, low-resolution hardware.

The evolution of large language models (LLMs) can address

these challenges in creating automated, accurate, and cost-

effective systems for embryo assessments. LLMs can generate

synthetic datasets to supplement limited annotated data, enabling

effective training of deep learning models even with low-

resolution images. Specifically, visual LLMs (95, 96) have the
Frontiers in Reproductive Health 13
potential to improve the processing and interpretation of embryo

images, providing accurate results despite variations in image

quality. Moreover, multimodal LLMs (97) can improve domain

adaptation by learning from diverse data types, including textual

patient clinical and reproductive history, ultrasound images of

the ovaries and uterus, TLI embryo images, lab results, and other

modalities. This multimodal approach has the potential to

enhance the robustness of AI models across various embryology

applications and data qualities.

4.2.4 Challenges in integrating AI models into
clinical IVF workflows

Despite promising advancements, integrating AI-powered

models into routine IVF clinical workflows presents multiple

challenges. One primary concern is the lack of standardized

protocols for incorporating AI-driven embryo assessments into

embryologists’ decision-making processes. While AI models can

assist in ranking embryos based on viability, their acceptance in

clinical settings depends on their interpretability, reliability,

and compatibility with existing workflows. Many embryologists

remain cautious about adopting AI models due to concerns

about automation replacing clinical expertise, especially given

that embryo selection is a nuanced process that considers factors

beyond image-based assessments. Furthermore, AI models need

to be seamlessly integrated into electronic medical record (EMR)

systems and IVF lab software to ensure smooth data exchange

without disrupting current workflows. The interoperability of AI

tools with different embryology platforms remains a technical

challenge. Addressing these issues requires collaboration between

AI developers, clinicians, and embryology software vendors to

ensure that AI-driven embryo assessments complement, rather

than replace, clinical judgment. Pilot studies evaluating AI-

assisted decision-making in real-world IVF labs are crucial to

refining integration strategies and understanding the impact on

workflow efficiency.

4.2.5 The importance of model transparency and
interpretability

One of themost pressing challenges in AI-driven embryo selection

is the issue of model transparency. Deep learning models, particularly

convolutional neural networks (CNNs), are often considered “black

boxes,” as their decision-making processes are not easily

interpretable. This lack of transparency raises concerns about trust,

reproducibility, and accountability in clinical decision-making. To

address this, explainable AI (XAI) techniques should be employed to

make model predictions more interpretable to clinicians. Methods

such as Grad-CAM (Gradient-weighted Class Activation Mapping)

and SHAP (Shapley Additive Explanations) can help visualize which

features in embryo images contribute most to AI predictions.

Increasing model transparency will be critical for widespread

clinical adoption.

4.2.6 Ethical considerations in AI-assisted embryo
selection

Embryo selection is an inherently sensitive process with

significant ethical and societal implications. AI-driven ranking
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systems must not inadvertently prioritize certain embryos based on

implicit biases within the training data. Ensuring fairness requires

rigorous bias detection and correction measures during model

development. AI models should also be continuously monitored

for unintended biases, with diverse patient populations included

in validation studies. Another ethical concern relates to informed

consent and patient autonomy. IVF patients should be made

aware of how AI contributes to embryo selection and should

retain the right to make final decisions in consultation with their

clinicians. Transparency in AI recommendations and clear

communication between providers and patients are essential to

maintaining ethical standards in AI-driven reproductive medicine.
4.3 Limitations

This review has several limitations. First, it excluded studies that

used traditional machine learning algorithms, focusing solely on

those employing more sophisticated AI algorithms, specifically

deep learning. Second, studies that utilized static microscopy

images were excluded, with the review concentrating only on those

employing time-lapse imaging. Additionally, only studies published

in English were included, potentially overlooking relevant research

in other languages. Finally, as a scoping review, it did not aim to

evaluate the performance of the deep learning methods included.

A subsequent systematic review with meta-analysis could assess

the effectiveness of these models, potentially by application, time-

lapse platforms, training data types, or other factors.
5 Conclusion

In conclusion, this scoping review provides a detailed and

comprehensive analysis of the application of deep learning and

time-lapse imaging in IVF embryo assessment. Our analysis

included the target applications, outcomes, features of embryology

and time-lapse platforms, and the specifics of the deep learning

model architectures employed. By synthesizing these elements, we

offer an in-depth understanding of the current state and future

potential of AI applications in embryo evaluation and selection.

Despite the progress made, significant challenges remain in

developing AI models that are both generalizable and clinically

robust. Future advancements should prioritize the integration of

diverse and multi-institutional datasets to enhance model reliability

across different populations and laboratory settings. The

development of personalized AI models incorporating patient

demographics, genetic factors, and lifestyle parameters will further

improve predictive accuracy and clinical utility. Additionally,

emerging multimodal AI approaches, including large language

models (LLMs), hold promise for improving domain adaptation,

enabling models to effectively integrate text-based patient data with

embryo imaging for more comprehensive decision support. The

reliance on private datasets remains a major limitation, restricting

reproducibility, external validation, and broader clinical

applicability. To address this, fostering global collaborations to

create public, high-quality, and diverse IVF datasets is essential.
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Implementing privacy-preserving techniques, such as federated

learning, and establishing standardized data-sharing agreements

among clinics can help overcome data accessibility barriers while

maintaining patient confidentiality. Ultimately, expanding AI

applications beyond traditional embryo selection—toward

predicting broader reproductive outcomes, assessing long-term

neonatal health, and integrating AI models into real-world clinical

workflows—will be crucial for the next generation of AI-powered

IVF solutions. By addressing these challenges, future research can

drive more interpretable and clinically impactful AI technologies in

reproductive medicine.
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Glossary

ABN Attention-Based Network
ACC accuracy
AMCFNet Attention Mechanism Convolutional Fusion

Networks
AMSNet Adaptive Multi-Scale Network
ART assisted reproductive technology
AUC-ROC area under the curve - receiver operating

characteristic
AUPRC area under the precision recall curve
BYOL bootstrap your own latent
CNN Convolutional Neural Network
CNNg CNN +Genetic Algorithm
DeepLab deep labelling
DenseNet Densely Connected Convolutional Networks
DETR detection transformer
Dice dice coefficient
DNN Deep Neural Network
EfficientNet Efficient Neural Network
F1 F score
FPR false positive rate
GRU gated recurrent unit
I3D Inflated 3D Convolutional Network
Inception Inception Network
IVF in vitro Fertilization
IVFormer intermediate visual transformer
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Jaccard-Index Jaccard Similarity Coefficient
LBCNN Learned Binary Convolutional Neural Network
LSTM long short-term memory
MAE Mean Absolute Error
MCC Matthews Correlation Coefficient MFS: Multi-

Frequency Series MLP: Multi-Layer Perceptron
MobileNet Mobile Neural Network
MSE Mean Squared Error
NASNet Neural Architecture Search Network
NR not reported
NPV negative predictive value
PPV positive predictive value
PREC precision
R-CNN Regions with Convolutional Neural Networks
R correlation coefficient
REC recall
ResNet Residual Network
RNN Recurrent Neural Network
SENS sensitivity
SPES specificity
Swin-T Swin Transformer
TLI time-lapse imaging
TSM Temporal Shift Module Unet: U-Net

Convolutional Network
VGGNet Visual Geometry Group Network
Xception extreme inception
YOLO you only look once.
frontiersin.org

https://doi.org/10.3389/frph.2025.1549642
https://www.frontiersin.org/journals/reproductive-health
https://www.frontiersin.org/

	Deep learning applications for human embryo assessment using time-lapse imaging: scoping review
	Introduction
	Methods
	Search strategy
	Study eligibility criteria
	Inclusion criteria
	Exclusion criteria

	Study selection
	Data extraction
	Data synthesis

	Results
	Search results
	Characteristics of the included studies
	Publication characteristics
	Study type and sites
	Participants and data sources

	Applications and outcomes
	Embryology and time-lapse characteristics
	Embryo population and time-lapse platforms
	Annotation standards

	Deep learning models characteristics
	Deep learning architectures
	Input data types
	Validation methods and performance metrics


	Discussion
	Main findings
	Research and clinical implications
	Need for personalized AI models for embryology outcomes
	Collaboration for public datasets
	Overcoming deep learning challenges with large language models
	Challenges in integrating AI models into clinical IVF workflows
	The importance of model transparency and interpretability
	Ethical considerations in AI-assisted embryo selection

	Limitations

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References
	Glossary


