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Although the understanding of the causes of infertility is the key to its successful

treatment, recent studies have shown that as many as 50% of male-caused

infertility cases are considered idiopathic. The microbial colonization of the

male reproductive system was shown to be associated with reduced male

reproductive fitness. Investigation of the seminal microbiome, however,

remains challenging. This article aimed to improve this situation by creating

the first comprehensive review of literature on the metagenomic methods

(including the pre-analytical and analytical approaches) used in the research

on human seminal bacteriome (total bacterial DNA in the matrix), published in

2018–2024. A total of 29 studies addressing the analysis of the human

seminal bacteriome were identified. The analysis typically involved DNA

extraction from the supernatant using commercial kits, amplification of the

gene for 16S rRNA, and sequencing of amplicons. Where the separation of

seminal plasma was performed, centrifugation was the dominant method used

for this purpose. The significant heterogeneity in individual steps of

methodological approaches in the analysis of the human seminal bacteriome

complicates the comparison of results among studies and the establishment

of standard procedures, hindering clinical advancements. For this reason, a

protocol for the analysis of the human seminal plasma bacteriome is

proposed here, which could lead to improved comparability of results among

studies and make future research more efficient. This protocol is founded on

rigorous quality control measures, compliance with the WHO laboratory

manual for sample collection, extensive pretreatment involving mechanical

and enzymatic lysis, DNA extraction using the QIAamp DNA Mini Kit (Qiagen),

and short-read sequencing conducted on the MiSeq platform (Illumina).

KEYWORDS

methodology, bacteriome, ejaculate, sperm, semen, bacteriospermia, spermiogram,

fertility

1 Introduction

Since the early 1950s, a noticeable decline in fertility rates across Europe has been

observed, irrespective of cultural or social contexts (1). A surge in research focused on
reproductive health has followed, intending to shed light on this phenomenon. Recent

meta-analyses have reinforced the hypothesis that the seminal microbiota plays a crucial
role in reproductive health (2). As a part of this effort, the reproductive microbiome,

particularly the bacteriome, i.e., the total bacterial genetic information in a matrix (in
this case, seminal plasma) at a given time, has emerged as a possible culprit of the
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decline. Infections of the urogenital tract directly associated with its
microbial colonization are responsible for approximately 15%

of male infertility cases (3–6). However, this number should not
be regarded as definitive, as research (in particular) on

asymptomatic infections, remains limited, and such infections are
currently regarded as having minimal clinical significance (7, 8).

On the other hand, certain bacteria have been associated with
various mechanisms that negatively impact reproductive capacity.

These mechanisms include the direct adhesion of bacteria to
spermatozoa (9–11), effects mediated by their products (12), or

adverse outcomes resulting from the increased presence of
leucocytes (13–16) despite the absence of clinical manifestations.

An improved understanding of the interactions between the
seminal fluid and spermatozoa could lead to better identification
of infections and, in effect, the possibility of successful treatment.

In general, symptoms tend to increase with increasing bacterial
abundance (13, 17–19). Conversely, reduced diversity of seminal

bacteriome is generally considered a sign of dysbiosis (20). The
interest in this field has increased over the last decade, with the

current experimental studies primarily focusing on the
correlation between sperm quality and bacteriome diversity and

composition (21–44).
With this increasing intensity of research on microbial

colonization of the male reproductive tract, there is an
urgent need to evaluate and standardize methodological

approaches to enhance the accuracy of microbiome analyses.
The advent of next-generation sequencing (NGS) pushed

traditional microbiological examination methods using
culture media and biochemical tests into the background for

research purposes, although they still hold an important
place in clinical practice. Nevertheless, Mardanov et al.

reported that culture methods can detect only approximately
1% of all microbial taxa (45). This, in conjunction with the

problematic culture of anaerobic bacteria (46) that are ever-
present in seminal bacteriome (17, 22, 34), makes these

methods unsuitable for the analysis of bacteriome in a
matrix as complex as seminal fluid. Therefore, the authors

of this review decided to focus on culture-independent
methods used for bacteriome research. Presently, 16S rRNA

amplicon sequencing is the predominant method employed
in the study of the bacteriome due to a combination of

analytical precision and cost-effectiveness. Such analysis of
the human seminal bacteriome can be supplemented or

substituted with targeted analyses of bacterial DNA, paving
the way for clinical applications in diagnosing reproductive

tract diseases and predicting male fertility.

This review article aims to (i) summarize the pre-analytical and
analytical approaches used in the metagenomic analyses of the

human seminal bacteriome, (ii) critically evaluate their pros and
cons, and (iii) propose a workflow for the metagenomic analyses

of seminal bacteriome reflecting the current state of the art, which
could be used for future experimental studies. All of this should

contribute to more accurate research on the seminal bacteriome in
male reproductive health (while, of course, leaving space for

individual researchers to adjust the workflow to their needs). This
would increase the legitimacy of the studies performed in this field

(47) as well as the comparability of results for future meta-analyses.

2 Literature research

The PubMed database was searched using keywords “(seminal

OR sperm OR ejaculate) AND (microbiome OR microbiotic OR
microbiotix OR microbiota OR microbiomes OR bacterium OR
microbiology OR bacterial) OR (bacteriospermia)”, with

additional criteria for article selection as follows: (i) only original
articles, (ii) published from 2018 onwards to ensure the up-to-

date metagenomic methods and knowledge in the dynamic field
of molecular biology, and (iii) conducted on human subjects.

Subsequently, titles and abstracts were screened to identify
relevant articles and only relevant studies that describe the

metagenomic analysis of the complex bacteriome (not just the
analysis of individual clinically significant species) were used as

information sources. This methodological algorithm is illustrated
in Figure 1.

3 Pre-analytical and analytical
approaches used in the metagenomic
analyses of the human seminal
bacteriome

The initial literature search yielded 850 results. After scanning

the titles and abstracts, 41 relevant original articles (13, 14, 19,
21–44, 46, 48–60) listed in the PubMed database and published

since 2018 were identified. Twelve of these studies (13, 14, 19,
48–50, 52–57), however, did not analyze the microbiome but

used microbiological and analytical methods to determine
cultured bacteria; these studies with an alternative approach

using inoculation of the sample on bacteriological media and
analysis of the resulting colonies [mass spectrometry MALDI-

TOF (48–50), VITEK II (13, 14, 19, 52, 54), or microscopic
analysis (13, 14, 19, 48, 50, 53–57)] were excluded from further

analysis, yielding a final set of 29 studies. The predominant focus
of these studies was to explore the relationship between the

seminal bacteriome and various health conditions, particularly
infertility (21–25, 27–31, 33–39, 41–44, 46, 58, 59), prostatitis

(40, 42), vasectomy (51), or cancerous diseases (26, 32). One
study focused on the forensic evaluation of ejaculate (60). The

sample sizes in these studies varied greatly, ranging from five to
285 volunteers/patients. The median size of the study sample was

56 participants.

Abbreviations

NGS, next-generation sequencing; TESE, testicular sperm extraction; PESA,
percutaneous epididymal sperm aspiration; MESA, micro epididymal sperm
aspiration; WHO, World Health Organization; CTAB, cetrimonium bromide
DNA extraction method; MALDI-TOF, matrix-assisted laser desorption/
ionization-time of flight mass spectrometry; WGS, Whole genome
sequencing); DTT, dithiothreitol; RT qPCR, real-time quantitative polymerase
chain reaction; DHPLC, denaturing high-performance liquid chromatography;
MACS, magnet-activated cell sorting; RCF, relative centrifugal force.
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3.1 Pre-analytical phase—collection of
ejaculate sample, its processing, and
storage

Out of the final set of 29 studies, the samples were collected

through ejaculation into a sterile container in 27 studies.
Depending on the design, this was in some studies supplemented

by testicular sperm extraction (TESE) (21, 26, 27), percutaneous
epididymal sperm aspiration (PESA) (21), or micro epididymal

sperm aspiration (MESA) (42). These modified collection methods
were used due to obstructive azoospermia or the need to collect a

sample from a specific part of the male reproductive tract.
Sample collection through ejaculation into a sterile container

was performed, with few exceptions, according to the principles

recommended by the World Health Organization (WHO) (61),
which entails (a) minimizing temperature fluctuation and time

before and during analysis; (b) 2–7 days of sexual abstinence
before the collection (maintaining a constant interindividual

duration); (c) urination, washing the glans penis and hands with
soap, rinsing everything well and drying before the actual

collection; (d) collecting the entire ejaculate fraction into a sterile
plastic or glass container tempered to 20–37°C; (e) processing

the samples within three hours at room temperature; (f) placing
the samples into an environment with a temperature of 37°C as

soon as possible for precise evaluation of the liquefaction time;
and (g) exclusive use of sterile laboratory material, and

classification of all samples as biohazard.
Immediately after collection, the liquefaction of the ejaculate (i.e.,

the rate of proteolytic processes transforming a gel-like ejaculate into

a watery one) at 37°C was usually evaluated. The evaluation of
liquefaction must be completed within one hour of collection (61),

and processing of the ejaculate sample itself immediately follows
(within three hours at room temperature). Alternatively, the

ejaculate samples were stored using cryopreservation methods—
usually at −80°C (21, 27, 28, 38, 44), alternatively at −20°C (33,

46); in one study, samples were frozen at −20°C without any
cryopreservative and then transferred to storage at −196°C (34).

Processing of the ejaculate includes separation of seminal
plasma by centrifugation (22, 32, 38, 46), which partially removes

spermatozoa, and, thus, human genetic information, from the
sample. This step is vital in in vitro fertilization procedures; from

this perspective, including this step is highly suitable if aiming to
examine the microbiome directly associated with these

procedures. The process takes place at room temperature.
Unfortunately, centrifugation parameters were mentioned in

three studies only and the protocol for separating spermatozoa
from seminal plasma was not specified in any of them. Where

centrifugation parameters were provided, the relative centrifugal
forces were 800 g for 15 minutes with repeated centrifugation of

the supernatant at 10,000 g for 10 minutes (32), and 7,000 g for
10 minutes (22). Gradient centrifugation was used in two studies

(38, 46). Samples of seminal plasma for subsequent extraction of
microbial DNA were stored at −80°C (22, 32) or were

immediately used in the analytical phase.
Centrifugation was in two instances supplemented with the

addition of dithiothreitol (DTT; 43 mM) as a reducing agent (23,
33). The purpose of DTT is to disrupt disulfide bridges in the

protein structure, thus lysing the nuclear membrane of
incompletely removed spermatozoa. This leads to the release of

human DNA into the sample; it is, however, necessary to
emphasize that unless whole-genome sequencing is used as the
subsequent analysis, this poses no problem for bacterial

identification using other methods (such as 16S rRNA PCR).

3.2 Analytical phase—extraction of
microbial DNA from human seminal plasma

In all included bacteriome studies, the analysis was based on

evaluating bacterial DNA (21–44, 46, 51, 58–60). In 22 cases, a

FIGURE 1

Flowchart of the methodological approach used in the literature

review (created with bioRender.com).
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commercial kit based on the spin column principle (21–28, 30, 31,
34, 35, 37–42, 46, 58–60) was used. Alternative solutions included

the phenol-chloroform extraction (36, 43, 44), the Trizol LS reagent
protocol (Invitrogen, USA) (32), a protocol utilizing cetrimonium

bromide (CTAB) (29), and the NucliSENS easyMAG system
(BioMèrieux, USA) (33) working on the principle of binding

magnetic silica particles to the nucleic acid and their subsequent
separation in the magnetic field.

The extraction procedures for obtaining microbial DNA from
seminal plasma can be modified or combined. To achieve better

cell lysis prior to the DNA extraction, pre-treatment using
proteinase K with phosphate buffer and/or bead beating methods

using glass, ceramic, or metal particles was utilized in eleven
studies (21, 23, 25, 27–30, 34, 39, 41, 59).

The QIAampDNAmini kit (Qiagen, USA/Germany/Switzerland)

was the most commonly used one (22, 23, 35, 46). The manufacturer’s
instructions were typically adhered to, except for one study where (due

to the low total amount of bacterial DNA in the sample), the amounts
of reagents were changed while maintaining ratios (27). In another

study, an additional step of washing during centrifugation (8,000 g;
1 min) prior to the use of the ZymoBIOMICS DNA Microprep kit

(Zymo Research, USA) was added (59). The CTAB method was
used in one study (29), the Trizol LS Reagent protocol (Invitrogen,

USA) for the extraction of small RNA in another (32).
In several studies, Tris buffer and proteinase K were used for

sample pre-treatment before phenol-chloroform extraction (36,
43, 44). In one study (32), DNA extraction was preceded by

sample homogenization and cell lysis using the TissueLyser LT
(Qiagen) homogenizer with the addition of 400 μl of Tris buffer.

Besides the aforementioned methods, in one case, the
NucliSENS® easyMAG® (Biomerieux, USA) system was used

according to the manufacturer’s instructions (33).

3.3 Analytical phase—analysis of DNA
extracted from human seminal plasma

The methods of bacteriome analysis used in the analyzed
studies differed in their ability to determine taxonomic units. In

four studies, PCR served for qualitative and/or quantitative
determination of bacterial DNA. These included single-target

qPCR (24, 25, 46) and multiplex qPCR (25, 31). Multiplex qPCR
was used in studies targeting the analysis of specific difficult-to-

culture bacteria, especially from the Mycoplasmataceae family, as
well as Gardenella vaginalis, Sneathia sanguinegens, Bacteroides

fragilis, and Megasphaera (25, 31). Amplification of the gene for
16S rRNA followed by NGS was the most common method (23

studies) (22, 23, 27–30, 32–41, 43, 44, 46, 51, 58–60). In some
cases, it was supplemented with real-time (RT) qPCR (30, 33). In

one study, these PCR products were analyzed using denaturing
high-performance liquid chromatography (DHPLC) (42).

When amplifying the gene for 16S rRNA for subsequent
sequencing (22, 23, 27–30, 32–41, 43, 44, 46, 51, 58–60), conditions

were set depending on the chosen primers and master mix
requirements. The choice of variable regions for PCR amplification

itself presents a source of a certain variability among studies.

Predominantly, PCRs focused on the V3–V4 (27, 28, 35, 37, 38, 40,
60) and V1–V9 regions (34, 59), although some researchers focused

on the V3 (33), V4 (21, 30), V6 (58), V3–V6 (22), V3-V5 (26),
V1-V3 (41), V1–V2 (23, 29, 39, 51), V2–V3 (46), or V4–V6 (44)

regions. Nested PCR was used in two studies to reduce non-specific
primer binding to DNA sequences outside the observed segments

(26, 33). In both instances, the DNA was amplified to be sequenced
[pyrosequencing and sequencing on the Ion Torrent PGM platform

(Life Technologies, USA)]. One of these studies employed the V3–5
region for amplification (26), the other used just the V3 area (33).

Before the actual analysis, an additional step of amplicon
purification was mentioned in 15 studies. AMPure XP beads

(Beckman Coulter, Italy/USA) in one (23, 27, 32, 37–39, 44, 60)
or two (26) cycles were the most commonly used of these
methods. Other techniques included AxyPrep DNA Gel extraction

kit (Axygen) (35), QIAquick column (Qiagen, USA) (51),
NucleoMag NGS Clean-up (Macherey-Nagel, France) (41), and, in

two cases, Zymo-Spin IC column (Zymo Research, USA) (34, 59).
Sequencing techniques play a dominant role in seminal

microbiome analysis. Illumina products are the most commonly
used for this purpose, including platforms such as the MiSeq

system (fourteen studies) (23, 27, 28, 30, 34–36, 38–41, 44,
51, 60), HiSeq 2000 (two studies) (21, 58), HiSeq 2500 (one

study) (29), HiSeq 4000 (one study) (32), and NovaSeq 6000
(Illumina Co., USA) (one study) (37). Besides Illumina products,

sequencing using MinION (Oxford Nanopore Technologies) was
employed as an alternative in one case (59). Pyrosequencing was

applied in two studies, using the platforms Roche 454-GS Junior
(Roche, USA) (26) and Roche 454 FLX (Roche, USA) (46). The

Ion Torrent PGM (Thermo Fisher Scientific, USA) procedure
was employed in two studies (22, 33).

Various library preparation kits were used to prepare libraries,
including the NGSgo kit (GenDx, Netherlands) (34), CATS small

RNA Quick-16S NGS (Diagenode, Belgium) (32), Quick-16S
NGS library prep kit (Zymo Research, USA) (36), Ion Plus

Fragment Ion PGM Hi-Q (Thermo Fisher Scientific, USA) (33),
or Nextera XT (Illumina, USA) (27, 28, 41). Five studies used, in

addition to the above, a control sequencing library, specifically
PhiX (Illumina) (23, 32, 38, 41, 44). The final analysis of outputs

also varied according to the respective bioinformatics pipelines.
Based on the literature review, the general workflow for

analyses of seminal bacteriome is shown in Figure 2, and
methods used in each study are highlighted in Supplementary

Table 1 within Supplementary 1.

4 Critical evaluation of the approaches
used in the metagenomic analyses of
the human seminal bacteriome

4.1 The WHO manual on semen collection
and its application in studying the seminal
microbiome

The WHO laboratory manual for the examination and

processing of human semen has become the gold standard in the
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field (61). However, it is necessary to keep in mind that the manual

primarily focuses on sperm quality assessment and processing
protocols, not on the analysis of seminal plasma. In the reviewed

studies, sample collection was consistently executed through
ejaculation into a sterile container, adhering to WHO guidelines

within the environments of reproductive health clinics.
WHO guidelines recommend the start of the microbial analysis or

freezing of the samples within 3 hours of collection (61). This seems
reasonable as the collection of samples usually happens in external

infrastructures such as in vitro fertilization (IVF) clinics and
adhering to WHO recommendations generally seems to be a good

way of ensuring standardization across studies. This, of course, does
not preclude researchers from more rapid processing, which could be

an even better option if feasible. However, studies examining
bacteriome change in skin swabs and stool samples have not found

any statistically significant change even after 24 hours (62, 63). The
only study focusing on the temporal change in seminal samples

focused on forensic analysis, considering a much longer time frame
(weeks) (64). Still, as a precaution against the introduction of error, it

is reasonable to keep the time from sampling to analysis/storage
constant among samples within a single study. Similarly, collecting

samples at the same time of day could also be recommended to
account for any possible intrapersonal diurnal changes in the

microbiome composition (although no studies have examined this in
seminal samples so far). Lastly, repeated thawing and re-freezing of

samples is not recommended (65).

The length of sexual abstinence before collection presents

another aspect of data collection. WHO recommends 2–7 days of
sexual abstinence prior to sampling (61). Shorter abstinence has

been associated with decreasing bacterial abundance and diversity
(48). Moreover, other factors play a role in changing the

bacteriome composition with abstinence (48). Because of this, it
is reasonable to keep the abstinence period preceding the sample

collection as consistent as possible to ensure the same time for
bacterial growth. This being said, the period should fall within

the WHO-recommended time frame to support comparison
among studies and to reflect the general clinical practice at IVF

clinics. If choosing between shorter and longer abstinence within
this timeframe, the longer time might be beneficial by leading to

higher bacterial abundance, which could be advantageous
considering that the ejaculate is a low-abundant matrix.

In the pre-analytical phase, the separation of the seminal
plasma and microbial DNA from spermatozoa is an optional

approach for minimizing the load of human DNA. However, the
WHO guidelines lack a detailed methodological workflow for

processing seminal plasma samples for microbiome analysis; to
make things worse, most studies fail to specify their processing

techniques. Various methods, such as magnet-activated cell
sorting (MACS), discontinuous density gradient, or direct swim-

up, are available for separating motile and morphologically
normal spermatozoa (61). Nonetheless, these methods can

significantly reduce sperm yield (66), rendering them unsuitable

FIGURE 2

Methods previously used in individual steps of the analysis of human seminal bacteriome (created with bioRender.com). (TESE, testicular sperm

extraction; PESA, percutaneous epididymal sperm aspiration; MESA, microsurgical epididymal sperm aspiration; CTAB, cetrimonium bromide

method; qPCR, quantitative polymerase chain reaction; DHPLC, denaturing high-performance liquid chromatography.).
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for simultaneous spermatozoa and microbiome analyses.
Furthermore, any such manipulation of the sample may alter the

bacterial composition. Reports of spermiogram analyses
conducted according to WHO principles are not common in the

included studies, despite the adherence to the general guideline.
The analytical methods employed for the microbiome studies

varied considerably compared to the more standardized sample
collection procedures.

Samples obtained via TESE, PESA, and MESA methods possess
unique characteristics that must be acknowledged during processing.

For instance, the prostatic fluid´s role in ejaculate liquefaction is
significant (67). If any ejaculate fraction is absent, the workflow

needs to be adjusted to account for the physiological properties of
the matrix. TESE, PESA, and MESA sampling methods are primarily
suitable for microbiome analysis from specific regions of the male

reproductive tract or in cases of obstructive azoospermia precluding
traditional collection methods (42).

4.2 How to process an ejaculate sample and
obtain seminal plasma for microbiome
analysis?

Immediately after collection, the ejaculate sample must be
liquefied to allow the extraction of the microbial genetic material.

Liquefaction is a process facilitated by prostatic serine proteases
capable of breaking down the (predominantly) fibrin matrix

present in the ejaculate. The duration of liquefaction is a critical
diagnostic criterion linked to spermiogram quality, with certain

microbial taxa potentially influencing the speed and quality of this
process (68). Maintaining the optimal conditions for liquefaction,

particularly the temperature of 37°C immediately after collection,
is essential. The liquefaction typically occurs within 15–

30 minutes; failure of its completion within 60 minutes may
indicate a pathological condition (61). Orbital movement (e.g.,

using an orbital mixer) can make the process more efficient.
To ensure representative sampling, the entire volume of the

sample should be homogenized before further processing. This
can be achieved through 15–30 s of swirling movement

(manually or with an orbital mixer). Working with ejaculate can
pose ethical complexities compared to working with seminal

plasma alone, necessitating the removal of human DNA prior to
nucleic acid extraction, although lysed spermatozoa do not

interfere with the PCR amplification of the gene for 16S rRNA
(21, 23–30, 33–44, 46, 51, 58–60). Centrifugation methods are

commonly employed for this purpose, but there is considerable
variability in parameters across studies, particularly regarding the

relative centrifugal force (RCF). Temperature conditions are
usually not described, with room temperature being the standard

when mentioned.
Two primary centrifugation approaches are recognized:

gradient centrifugation and simple centrifugation. However, only
two reviewed studies reported the use of a density gradient (38,

46). Gradient centrifugation is more complex and costly;
however, if using parameters according to the specific parameters

outlined in the WHO manual (200–400 g for 15–20 minutes

using 40% and 80% gradients) (61), a lower fraction of
spermatozoa is separated from seminal plasma (note the different

purpose of the WHO guideline). This, on the one hand, better
prevents undesirable separation of the microbiota but, on the

other, does not reliably remove spermatozoa and human DNA
from the sample. However, as mentioned above, this does not

necessarily pose a problem as from the perspective of 16S rRNA
amplification, no separation of spermatozoa from the seminal

plasma is necessary. Hence, if aiming to analyze the ejaculate
itself, none of the centrifugation methods described in the

literature can be recommended as the risk-to-benefit ratio is
unreasonable. The risk of removing an unknown amount of

bacteria with unknown composition is too high; moreover, the
elimination of sperm cells is ineffective, leaving a significant
amount of sperm cells as well as of free human DNA in the

supernatant (69), which prevents meaningful metagenomic
analysis anyway.

If the methodology (such as the utilization of a metagenomic
approach) or external factors (such as ethical concerns) demand

the removal of spermatozoa, it would be probably better to resort
to methods that have been successfully used in other matrices,

despite the fact that, with one exception, they have not yet been
tested on ejaculate samples (which, in any case, calls for

performing such methodological studies). Even there, however, it
is necessary to be careful regarding the choice of the separation

method. Filtration utilized, for example, for the depletion of
epithelial cells from saliva (70) might be suboptimal as it cannot

remove free DNA (69). Selective depletion of host DNA in
seminal samples might be a more suitable approach. However,

this approach has been sparsely tested on ejaculate samples. This
depletion can be achieved by selective lysis of eukaryotic cell wall

using reagents such as saponin, Triton X-100, or Tween 20
(71–73), followed by the degradation of free-floating DNA using

either Dnase I (74, 75) or benzonase nuclease that has greater
toleration to working conditions (69). The intricacy of this

approach, however, lies in the composition of the sperm cell
wall. Spermatozoa have a specific cell wall structure containing a

higher percentage of polyunsaturated fatty acids (76), which
makes the success of the lysis likely; so far, nevertheless, it has

been verified in just a single study using the QIAmp DNA
Microbiome kit (Qiagen, USA) (28). Moreover, it reportedly

decreases bacterial abundance in low-abundant samples (69) and
can be only applied on fresh samples (not frozen as freezing

could cause the disruption of the bacterial cell wall as well).
Enzymatic depletion of eukaryotic DNA based on specific

enzymes targeting methylated CpG regions after the DNA release
from a cell is another (at least theoretically) possible option (77).
The pitfall of this method, however, might lie in the specific way

human DNA is stored within the spermatozoa. This DNA not
only possesses characteristic methylome (78) but is also stored in

a protamin-bound structure, which could complicate the process.
However, no commercially available kit has been so far tested for

this application, which, again, calls for methodological research
in this area. Finally, the utilization of Oxford Nanopore MinION

and Crisp-Cas9 technology represent promising concepts for the
future; they need to be validated before use (69).
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4.3 DNA extraction from human seminal
plasma

The extraction of microbial nucleic acid from the sample is an

essential step in the analysis of the human seminal microbiome.
PCR-based amplification techniques surpass the culture-based

techniques in allowing the detection of non-culturable
microorganisms, thus providing a more comprehensive view of

the microbial landscape within the seminal fluid.
The efficacy of microbial DNA extraction is influenced by

several factors, including sample quality, microorganism lysis
(often supplemented with bead beating), and the purification of

genetic material from proteins and other substances.
The lysis of bacterial cells was suggested to be a more

important step for maximizing the DNA yield than recovery
steps (79–82). Utilizing enzymatic (83, 84) and/or mechanical

lysis (81, 85, 86) was reported to yield higher amounts of
bacterial DNA from the sample compared to no pretreatment.
The combination of the aforementioned procedures is reported

to slightly reduce the abundance of bacterial DNA; on the other
hand, it improves the representativeness (and, therefore, the

accuracy of subsequent determination) of microbiota in oral (83,
87) and gut (84) samples. The increase in bacterial DNA

abundance after the use of enzymatic lysis is likely because of the
ability of lysozymes to disrupt peptidoglycans of Gram-positive

bacteria; on the other hand, the slight decrease in DNA
abundance after the mechanical lysis is probably associated with

a loss of a part of the sample during the procedure (83).
A combination of several lysis enzymes (lysozyme, mutanolysin,

staphilysin) seems to perform even better than the use of
lysozyme alone (84). The use of the correct size of beads for

mechanical lysis is also an important factor, as a size too big can
reduce the amount of extracted DNA (84). It needs to be,

however, mentioned that no methodological study directly
comparing the use of multiple pretreatment techniques in

ejaculate samples has been published so far.
The extraction of microbial DNA itself is typically performed

using commercial kits, in some studies supplemented with a
reducing agent (e.g., DTT) (23, 33) for better protein

denaturation and removal. The selection of commercial DNA
extraction kits is often guided by factors such as ease of use,

reproducibility, and compatibility with downstream applications.
Due to these advantages, commercial kits have become a

preferred method for investigating the seminal bacteriome.
However, the suitability of a specific kit depends on several

factors, particularly the intended method of the extracted DNA
evaluation. As discussed previously, kits that facilitate both the

depletion of host (human) DNA and the extraction of high-
molecular-weight DNA are advantageous for metagenomic

applications. Gant et al. evaluated six commercial kits for their
performance in host DNA depletion and suitability for long-read
sequencing using the Oxford Nanopore MinION platform. The

kits included the NucleoSpin Food Kit, Quick-DNA HMW
MagBead Kit, ZymoBIOMICS DNA Miniprep Kit, QIAamp

PowerFecal Pro Kit, Moss protocol, and DNAexpress Kit. Among
these, the Quick-DNA HMW MagBead Kit was identified as the

most suitable for this application (88). Notably, according to the
manufacturer, this kit is compatible with a variety of biological

fluids, further supporting its versatility for microbiome research.
In another comparative study, Wright et al. evaluated the

performance of several commercial DNA extraction kits—Qiagen
DNeasy PowerSoil Pro Kit, HostZERO Microbial DNA Kit,

PureLink Microbiome Kit, and Qiagen DNeasy Blood and Tissue
Kit—using vaginal samples as the test matrix (89). Their findings

revealed that all tested kits introduced some level of bias in
microbial community profiles. However, the HostZERO

Microbial DNA Kit was identified as the least suitable for vaginal
samples due to its pronounced impact on microbial composition.

No studies comparing the performance of multiple kits for
extracting DNA for microbiome profiling using short-read 16S
rRNA amplicon sequencing in ejaculate samples have been

published so far. However, cautious extrapolation from studies
on vaginal and cervical microbiome may provide some

information as sexual partners were shown to share
approximately 56% of their genital microbiota (30), including

many clinically relevant pathogens. In vaginal microbiome
studies, the DNeasy Blood and Tissue Kit has been reported to

yield a higher DNA quantity compared to the MoBio PowerSoil
Kit, although the latter provided greater microbial diversity in

the resulting data (90). This highlights a trade-off between DNA
yield and community diversity that must be considered when

selecting a kit for specific research objectives. Shibata et al.
conducted a comparative analysis of several DNA isolation kits

on cervical microbiota samples, including the ZymoBIOMICS
DNA Miniprep Kit, QIAamp PowerFecal Pro DNA Kit, QIAamp

DNA Mini Kit, and the IndiSpin Pathogen Kit (91). Their
findings indicated that all tested kits produced comparable results

in terms of microbiome composition, suggesting a degree of
interchangeability for studies involving cervical samples. In the

context of low-biomass samples from the urogenital tract, such
as urine, multiple studies have identified the DNeasy Blood and

Tissue Kit to be the most suitable option for DNA extraction. Its
effectiveness in such matrices has been consistently demonstrated

(92, 93), further supporting its potential application in studies of
the seminal microbiome.

When considering DNA extraction kits for long-read
sequencing of the seminal microbiome, products from Zymo

Research appear to be particularly suitable. On a sample
consisting of Gram-positive Bacillus subtilis and Gram-negative

Escherichia coli, the Quick-DNA HMW MagBead Kit was
reported to be the most effective among several compared in a

recent benchmarking study (88). In ejaculate samples, the
ZymoBIOMICS DNA Miniprep Kit has been recently
successfully employed in the analysis of ejaculate samples (59).

To date, the QIAamp DNA Mini Kit has been the most
commonly used extraction method for short-read 16S rRNA

amplicon sequencing in seminal microbiome studies (22, 23, 35,
46). When comparing 16S rRNA amplicon sequencing in

ejaculate and vaginal samples, it must be noted that ejaculate
typically exhibits lower bacterial load but higher diversity than

vaginal samples (30, 58, 94), which complicates a direct
comparison of the results of different extraction methods. This
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makes it unclear whether higher-yielding kits, such as the DNeasy
Blood and Tissue Kit, or a diversity-optimizing kit, such as the

MoBio PowerSoil Kit, would be more appropriate for ejaculate
samples. Moreover, the ejaculate microbiome shares significant

bacterial overlap with the urinary microbiome (17), for which the
DNeasy Blood and Tissue Kit has been repeatedly recommended,

making this kit another promising candidate for seminal
microbiome studies. At present, however, due to the limited

number of comparative studies directly evaluating extraction
methods in ejaculate samples, it is not yet possible to make

definitive recommendations. However, based on current
literature, the QIAamp DNA Mini Kit is the most commonly

used kit and, therefore, can be considered a reasonable standard
for ongoing research. Still, continued investigation is critically
needed to determine the optimal extraction protocol for ejaculate

samples, which would ultimately contribute to methodological
standardization and improved reproducibility in the field.

4.4 Sequencing analyses of human seminal
bacteriome

The conditions of PCR done on the microbial DNA preceding

sequenation need to be chosen depending on the specific master
mix and primers. The advent of long-read sequencing

technologies has opened new possibilities for studying bacterial
communities by allowing the amplification and analysis of the

full-length gene for 16S rRNA, rather than focusing solely on its
hypervariable regions. This approach enhances taxonomic

resolution, particularly at the species level, while maintaining
comparable accuracy at higher taxonomic levels such as genus

and family (95–99). However, long-read sequencing remains
technically demanding and requires the use of third-generation

sequencing platforms such as PacBio (95) or Oxford Nanopore
Technologies’ MinION (96, 100). To date, the number of studies

investigating the use of sequencing platforms on seminal
microbiome is severely limited. A comparison of the Illumina

MiSeq and the ONT MinION platform reported no significant
differences in the identification of abundant taxa between

platforms (34, 59). However, differences in low-abundant taxa
were observed, likely due to the disproportionate impact of

sequencing errors on taxa with low relative abundance. Notably,
both studies detected distinct bacterial community structures at

the genus level, which may reflect sequencing biases intrinsic to
each platform (101, 102). Still, looking forward, long-read

sequencing appears to be a promising direction for seminal
microbiome research.

Nevertheless, in short-read sequencing workflows, the choice of
hypervariable region for PCR amplification remains an important

consideration. Currently, no consensus exists on the optimal
region, and different regions offer varying degrees of taxonomic

resolution and bacterial coverage (103–107). Moreover, there are
no comparative data specifically evaluating hypervariable regions

in the context of ejaculate samples. When using short-read
sequencing, it is well-established that no single hypervariable

region can capture the full diversity of bacterial taxa (83). It was

suggested that a correct combination of hypervariable regions
could improve final results (108); however, multiple studies

indicate that the impact of hypervariable region selection is
generally less significant than that of DNA extraction methods

(83, 109). Furthermore, the optimal region may vary depending
on the biological sample (83, 104, 109–111).

As there are no studies directly addressing the performance of
individual hypervariable regions in ejaculate samples, cautious

extrapolation from vaginal microbiome research can help here
as mentioned above. Even though the V1–V3 (112, 113) regions

are the most commonly used in vaginal microbiome studies, the
V3–V4 regions were shown to perform better than V1–V2

regions (112, 113).
Unlike in vaginal samples, the V3–V4 regions are currently the

most frequently employed in ejaculate microbiome studies.

Importantly, none of these studies reported issues regarding the
resolution power of the V3–V4 region in practice. Given its

consistent performance, widespread use, and supportive findings
from related vaginal microbiome studies, it can be concluded that

the V3–V4 region appears to be a suitable target for bacterial
profiling of ejaculate samples. Nevertheless, long-read sequencing

technologies offer superior taxonomic resolution and represent a
promising advancement for future seminal microbiome research.

The analysis of microbial DNA is typically conducted following
standardized recommendations by the manufacturers of the

sequencing tools. The dominance of Illumina (used in more than
75% of studies performing sequencing analyses of seminal

bacteriome) underscores the status of that company as the leader
in (not only) seminal microbiome analysis.

Based on current evidence, the continued use of Illumina
MiSeq for seminal microbiome studies can be recommended due

to its established performance, broad adoption, and availability of
validated protocols. Looking ahead, a gradual shift toward third-

generation sequencing platforms can be anticipated, driven by
improving error rates, enhanced protocols, and the superior

resolution they offer. Nevertheless, it is true that platform
selection is often determined not only by technical performance

but also by availability, cost, and institutional bioinformatic
support. Importantly, with the exception of two seminal

microbiome studies, most comparative data cited here are derived
from other body site microbiomes, highlighting the need for

further research specifically targeting the seminal microbiome to
optimize platform selection.

4.5 Quality control

Contamination remains a persistent concern in microbiome
research, particularly in studies involving low-biomass samples,

where the relative contribution of contaminants increases as the
endogenous microbial signal decreases (114–116). Alarmingly,

contaminants are frequently detected within laboratory reagents,
especially DNA extraction kits, which can introduce exogenous

bacterial DNA and compromise data integrity (115). Additional
major sources of contamination include well-to-well cross-

contamination during sample processing (117) and
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environmental contamination originating from laboratory surfaces
and the surrounding air (115).

To mitigate contamination and improve laboratory reliability,
several best practices have been established. These include regular

environmental (surface wipe) testing, routine monitoring of sample
positivity rates, incorporation of process controls, tracking of

laboratory issues or complaints, and ensuring sufficient personnel
training. The physical separation of workstations based on the

workflow stage is another practice recommended to prevent cross-
contamination (118). Additionally, randomization of sample

placement on plates has been shown to reduce well-to-well
contamination (117). Strict sterilization protocols and the use of

laminar flow hoods or biosafety cabinets during sample handling
should be considered essential components of contamination
prevention, particularly in 16S rRNA amplicon sequencing workflows.

For each experiment, the use of negative and positive controls
plays a crucial role in ensuring valid interpretation of results and

prevention of erroneous conclusions (116, 119). Negative controls

help identify environmental contamination, while positive controls
or an internal standard ensure that a negative result is not due to

procedural errors. These controls were widely utilized in the
studies, both during microbial DNA extraction (23, 25–28, 34,

37–39, 59, 60) and during PCR amplification (25, 35, 38, 39, 41,
43, 44). In several papers, authors even resorted to using

alternative analytical methods to validate their results and to rule
out the inadequacy of their primary techniques (25, 59). The

incorporation of MOCK microbial communities (MOCKs) as in

situ positive standards is a strategy widely adopted for

contamination control, assessment of protocol-associated biases,
and validation of bioinformatic pipelines (116, 120, 121). MOCKs,

composed of known microbial taxa, provide a benchmark for
evaluating experimental and analytical steps, allowing researchers
to detect unexpected taxa indicative of contamination and to

gauge the reliability of sequencing and taxonomic assignment.
Post-sequencing computational tools also play a crucial role in

identifying and removing contaminant sequences. Tools such as

FIGURE 3

An illustration of our proposed workflow for analyzing the human seminal bacteriome (created with bioRender.com). (1) Collection of ejaculate

following the guidelines outlined in the WHO Laboratory Manual for the Examination and Processing of Human Semen (61). (2) Assessment of

ejaculate quality in adherence to the WHO Laboratory Manual (61). (3) Extraction of bacterial DNA using the QIAamp DNA Mini Kit (Qiagen). (4)

Amplification of the gene for 16S rRNA, focusing on the V3-V4 variable region (27, 28, 35, 37, 38, 40, 60). (5) Sequencing of the amplified

products on the MiSeq platform (Illumina, USA). (6) Bioinformatic and statistical analysis and interpretation of the raw data obtained.
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Decontam use statistical models to distinguish true biological signals
from contaminants based on the frequency and prevalence across

sample types (116, 122, 123), GRIMER (124) offers interactive
tools for identifying potential sources of contamination and

visualizing microbial profiles, while SourceTracker employs
Bayesian methods to trace the origin of microbial communities,

aiding in the attribution of contamination to environmental or
reagent sources (116). The significance of these controls cannot be

overstated, and the fact that some studies failed to report them
does not necessarily imply non-use.

At this point, it is crucial to emphasize the importance of
performing analyses that would provide a head-to-head

comparison of the approaches currently employed in studying
the human seminal bacteriome. Such a comprehensive evaluation
would enhance analytical accuracy as well as the reliability and

comparability of findings across studies. These efforts can pave
the way for more robust conclusions and foster a deeper

understanding of the human seminal microbiota, ultimately
contributing to advancements in both basic and applied

microbiological research.

5 Recommended workflow for the
metagenomic analysis of human
seminal bacteriome

Standardization of protocols is a central theme highlighted

throughout this work. Based on the considerations discussed, it is
recommended that sample collection follows WHO guidelines,

particularly in maintaining a consistent abstinence period that
falls within the range of 2–7 days as recommended by WHO;

within a single study, however, an even narrower window should
be aimed for to minimize interindividual variability. It could be

assumed that the duration of abstinence towards the upper limit
of the WHO range may be beneficial as it might increase the

absolute amount of bacteria in the ejaculate samples. Figure 3
shows the workflow of the most commonly utilized methodical

approach for analyzing the human seminal bacteriome.
Although third-generation sequencing platforms offer superior

resolution and greater potential compared to second-generation
technologies, their limited accessibility and adoption currently hinder

their widespread use in standard workflows. The third-generation
long-read sequencing should be, therefore, adopted in future studies

as the technology matures and becomes more broadly available. For
now, however, the authors of this review propose a standardized

protocol based on short-read sequencing, which is more commonly
used and supported by established workflows:

Samples should be processed within three hours of collection or
stored at −80 °C to ensure sample integrity. Unless metagenomic

analysis specifically requires otherwise, avoiding the separation of
spermatozoa may be beneficial for microbiome analysis (especially

when 16S rRNA is concerned, for which human DNA poses no
interference) as partial removal of microbiota may occur during

such separation. For sample pretreatment, a combined approach
using bead-beating and enzymatic lysis is recommended, ideally

utilizing a cocktail of lytic enzymes. DNA should then be

extracted using the QIAamp DNA Mini Kit (Qiagen), which offers
reliable performance in similar low-biomass samples.

For short-read sequencing, primers targeting the V3–V4
hypervariable regions of the gene for 16S rRNA appear to be the

most suitable for seminal samples. Following library preparation,
sequencing should be performed using the MiSeq platform

(Illumina), as supported by current evidence.
To ensure data quality and monitor contamination, both positive

and negative controls should be incorporated into the workflow,
alongside the inclusion of a MOCK microbial community. When

combined with strict adherence to good laboratory practices and,
where possible, the application of appropriate bioinformatics tools,

this approach should enable adequate contamination control and
reproducibility in seminal microbiome studies.

6 Conclusion

The analysis of the human seminal bacteriome is an emerging
field that has significant implications for understanding male

fertility. Our review underscores the importance of methodological
rigor in studying the seminal bacteriome, particularly through the

amplification of the gene for 16S rRNA followed by sequencing,
which has emerged as the standard approach.

However, a notable heterogeneity in the metagenomic
approaches employed across studies calls for the standardization

of protocols. This can facilitate performing meta-analyses
combining individual studies, ultimately advancing our

understanding of the role of the human seminal microbiota in
fertility disorders and male reproductive health. To be able to

create such standardized workflows, methodological studies
comparing the performance of various protocols need to be

performed. Such efforts will not only improve our understanding
of the seminal microbiota but also pave the way for potential

therapeutic interventions addressing male infertility.
As a standardized protocol for metagenomic analysis of human

seminal bacteriome, we recommend that sample collection be
performed in accordance with the WHO laboratory manual,

followed by pretreatment combining mechanical disruption and
enzymatic lysis. For DNA extraction, the QIAamp DNA Mini

Kit (Qiagen) is advised. Library preparation should target the
V3–V4 hypervariable regions of the gene for 16S rRNA, which,

in our assessment, are best analyzed using the MiSeq sequencing
platform (Illumina).
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