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We consider the task of reference mining: the detection, extraction and classification

of references within the full text of scholarly publications. Reference mining brings

forward specific challenges, such as the need to capture the morphology of highly

abbreviated words and the dependence among the elements of a reference, both

following codified reference styles. This task is particularly difficult, and little explored,

with respect to the literature in the arts and humanities, where references are mostly

given in footnotes. We apply a deep learning architecture for reference mining from the

full text of scholarly publications. We explore and discuss three architectural components:

word and character-level word embeddings, different prediction layers (Softmax and

Conditional Random Fields) and multi-task over single-task learning. Our best model

uses both pre-trained word embeddings and characters embeddings, and a BiLSTM-

CRF architecture. We test our solution on a dataset of annotated references from the

historiography on Venice and, using a linear-chain CRF classifier as a baseline, we show

that this deep learning architecture improves by a considerable margin. Furthermore,

multi-task learning performs almost on par with a single-task approach. We thus confirm

that there are important gains to be had by adopting deep learning for the task of

reference mining.

Keywords: reference mining, natural language processing, conditional random fields, deep learning, recurrent

neural networks, bibliometrics, arts and humanities, history

1. INTRODUCTION

Reference mining (or parsing) is a Natural Language Processing (NLP) task focused on
the detection, extraction and classification of bibliographic references and their constituent
components from scholarly literature. It is a necessary step toward the creation of relational citation
data, a task commonly performed in view of building citation indexes (Garfield, 1979). Compared
to other NLP tasks, reference mining stands in the broader category of sequence labeling problems,
which includes among others Part Of Speech (POS) tagging and Named Entity Recognition (NER).
Traditional machine learning methods for sequence labeling tasks, including Hidden Markov
Models (HMM) and (linear-chain) Conditional Random Fields (CRF), depend on a considerable
amount of external knowledge in the form of hand-engineered features and task-specific resources
like gazetteers and lexicons. However, these resources are costly to produce and are not easy to
adapt to variations of a given task, especially so because they require expert human knowledge.
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In recent years deep learning, or the use of deep neural
network models trained on large amounts of data, has been
changing the whole field of machine learning, considerably
improving on most tasks (LeCun et al., 2015; Schmidhuber,
2015). Yet the openly available non-commercial tools for
reference parsing still mostly rely on previous-generation
techniques (Tkaczyk et al., 2018). Quite consequently, this paper
contribution is to take a deep learning approach by applying
current state-of-the-art architectures for sequence labeling to the
specific task of reference mining.

A further motivation for the use of deep learning comes
from the scholarly domain which we interest ourselves into:
the arts and humanities. Where reference mining applications
targeting most scientific publications need to focus on relatively
uniform reference lists, scholarly publications in the arts and
humanities are more varied in this respect (Sula andMiller, 2014;
Colavizza et al., 2017). A set of challenges must be considered:
references are made to (at least) both primary and secondary
sources, and primary sources are by definition more varied than
secondary ones. References can happen anywhere in the text of a
publication, especially so in footnotes, and not just in reference
lists. In this case, references are often given once in full form
and abbreviated thereafter. It must also be noted that it is not
customary to cite primary sources in reference lists. Lastly, the
variety of publication venues, languages, scholarly communities
in the arts and humanities is broader, making reference practices
and styles less uniform. For these and other reasons, the scholarly
literature from the arts and humanities is still not well indexed
(Mongeon and Paul-Hus, 2016) nor studied (Ardanuy, 2013)
using citation data.

We consider and compare several components of a recurrent
neural network architecture for reference mining. In particular,
we experiment with different approaches in the input layer,
by considering both character and word-level embeddings. We
also test a Conditional Random Field instead of the canonical
Softmax prediction layer. Finally, we experiment with multi-
task learning in order to test whether the learning our best
model does is shared across different tasks. All models are built
around a single BiLSTM layer, a proven key ingredient in a
variety of sequence labeling tasks.Wemake two implementations
available, one using Keras (Chollet et al., 2015) (relying on
TensorFlow as back-end), and another directly in TensorFlow
(Dean et al., 2015), in order to facilitate the reuse of results
and further experimentation.1 Our experiments are based on
a published dataset of annotated references from a corpus of
publications on the history of Venice (Colavizza and Romanello,
2017).

This paper is organized as follows. We briefly discuss previous
work in section 2, then introduce the task of reference mining
and the dataset in section 3. In the same section, a CRF baseline
model is discussed. Section 4 describes the general architecture
we propose and test in all its components. Section 5 contains
our results, as well as the details of the best architecture and
model configuration, with its validation. We finally conclude in
section 6.

1Keras version 2.1.1 and TensorFlow version 1.4.0.

2. RELATED WORK

In a recent survey and evaluation, several non-commercial
reference parsing tools, Tkaczyk et al. (2018) found that the best
three performing ones all use a CRF approach: GROBID (Lopez,
2009), CERMINE (Tkaczyk et al., 2015) and ParsCit (Councill
et al., 2008). All three benefit from task-specific tuning using extra
annotated data, with GROBID showing the best off-the-shelf
results. Indeed seven out of the total of thirteen surveyed tools use
a CRF approach, while the rest mainly adopt regular expressions.
To date, all published non-commercial reference mining tools
rely on these or rule-based methods2. Heckmann et al. (2016)
attempted to tackle some of the main challenges to be found
in humanities literature, namely: “multilingual citation entries,
lack of data redundancy, inconsistencies, and noise from OCR
input.” Their knowledge-based approach relying onMarkov logic
networks was found to substantially outperform a CRF baseline.
A useful insight for the task at hand also came from Körner
et al. (2017), where a CRF is used to classify lines of text
containing references in advance to considering their constituent
tokens. The proposed method, RefExt, outperformed several
above-mentioned state-of-the-art solutions.

As deep learning started to gain momentum in recent years,
attention has been given to the use of unsupervised feature
extraction techniques in a variety of NLP tasks, mainly in
the form of word embeddings, which lead to state-of-the-art
results when used to augment, rather than replace, hand-crafted
features (Collobert et al., 2011). More recent work on sequence
labeling tasks relies instead on deep learning techniques such
as convolutional or recurrent neural network models (CNNs
LeCun et al., 1989 and RNNs Rumelhart, 1986, respectively),
without the need for any hand-crafted features (Kim, 2014;
Huang et al., 2015; Zhang et al., 2015; Chiu and Nichols, 2016;
Lample et al., 2016; Ma and Hovy, 2016; Yang et al., 2016;
Strubell et al., 2017). RNNs in particular, typically rely on a neural
network architecture built using one or more Bidirectional Long-
Short Term Memory (BiLSTM) layers, as this type of neural
cell provides for variable-length memory allowing the model
to capture relationships within sequences of proximal words.
Such architectures have achieved state-of-the-art performance
for both POS and NER tasks on popular datasets (Reimers
and Gurevych, 2017b). Current state-of-the-art architectures
for sequence labeling include the use of a CRF prediction
layer (Huang et al., 2015) and the use of character-level word
embeddings to complement word embeddings, trained either
with CNNs (Ma and Hovy, 2016) or BiLSTM RNNs (Lample
et al., 2016). Character-level word embeddings have indeed been
shown to perform well on a variety of NLP tasks (Dos Santos
and Gatti de Bayser, 2014; Kim et al., 2015; Zhang et al., 2015).
Attention mechanisms have also been proposed for the same
tasks (Rei et al., 2016; Shen and Lee, 2016). In this paper we will
apply, tune and compare two architectures (Lample et al., 2016;
Ma and Hovy, 2016) to the specific task of reference mining.

2An exception is Neural ParsCit https://github.com/opensourceware/Neural-

ParsCit, a yet unpublished adaptation of the architecture proposed in Lample et al.

(2016) for the task of reference parsing.
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3. TASK DEFINITION, DATASET, AND
BASELINE MODEL

A bibliographic reference is a contiguous sequence of text where
all the necessary information on a citation to any primary
or secondary source is contained. Most typically, previous
scholarship and primary evidence such as archival documents or
works of art and literature can be cited in arts and humanities
scholarly literature. What constitutes necessary information is
relative: usually, the first citation to a source contains all
information necessary for its unambiguous identification, a
substantial part of this same information can be dropped or
abbreviated in subsequent citations to the same source within the
same publication.

A reference is usually composed of several information
components, such as the author, title or publisher of a cited
publication, encoded in a systematic way following some editorial
guidelines specific to the venue and time of publication (e.g.,
using double quotes or italics for the title). An example of a
reference is

G. Ostrogorsky, History of the Byzantine

State, Rutgers University Press, 1986.

This reference has four components: the author’s name,
title, publisher and year of publication. In this example, the
components are separated by a comma and the author’s name is
abbreviated using initials followed by a dot. The same reference
might be given elsewhere following a different reference style,
defined as: “a specific combination of elements in a reference,
such as author and title, encoded in a predefined way” (Colavizza
et al., 2017, p. 4). For example, it might be given as “Ostrogorsky,
G. (1986). History of the Byzantine State, Rutgers University Press,”
where the combination of elements as well as their encoding has
changed.

If we consider a text as a stream of tokens organized into lines
(sequences of characters separated by white space), the goal of
reference mining is to:

• Detect that a token is part of a reference. A token part of a
reference can be anywhere, most typically in footnotes.
• Extract a reference, i.e., individuate its first and last tokens

(begin-end).
• Optionally classify a full reference and its constituent

components: in our case, a reference might be to a primary
or secondary source (this information is useful for further
processing steps such reference disambiguation to establish
citations, as this step typically relies on existing catalogs look-
up), and each reference might contain a variety of components
(author, title, archive and record group, etc.).

In this article we consider all three actions, and use the
processing unit (sequence) of the line of text. Our motivation
to use sequences as lines of text is given by the need to parse
the full-text of publications in order to capture footnotes, and
the irregular positioning of references therein. The extraction
and detection of references is done using begin-end token
classification to mark, respectively, the beginning and end of a
reference within a stream of tokens.With respect to classification,

two annotation schemes (tags) are considered: specific and
generic. A specific annotation identifies a component of a
reference, such as author or title. A generic annotation refers to
the typology of the cited source, distinguishing among primary
sources, books and other contributions such as journal articles.
More in detail, given the plain text of a publication, our goal
is to assign the most likely tag to each token (token by token
classification). We define three tasks as follows:

• Task 1: reference components. Each token is classified using
a taxonomy of 27 specific tags, unevenly represented in the
annotated dataset, which include a non-reference tag. The
taxonomy is given and discussed in Colavizza and Romanello
(2017) and in the accompanying code repository. The reason
to have 27 tags is mainly the presence of references to
archival documentation, which requires a classification on
its own.
• Task 2: reference typology. Each token is classified according

to the generic annotation scheme. As mentioned above, tags
include: primary sources (e.g., archival documents), secondary
sources (books), andmeta-sources, i.e., publications contained
within other publications (e.g., journal articles). Furthermore,
begin, end and in reference tags are prepended to a generic
tag, and an out of reference tag is used too. For example, b-
secondary marks the first token of a reference to a book-form
publication.
• Task 3: reference span. Each token is classified simply using the

begin, end, in and out schema. For example, e-r marks the last
token of a reference.

The different tasks are illustrated in Figure 1, using the example
given above.

3.1. Dataset
We use a published dataset containing more than 40,000
annotated references from a corpus of publications on the
historiography on Venice. The corpus includes books and
journal articles published from the 19th century to 2014. It
considers publications in a variety of languages: mostly Italian,
followed by English, French, German, Spanish and Latin. The
annotated corpus includes references taken from reference lists
and footnotes, as a consequence, a considerable variety of
referencing styles and referred sources is present. Annotated
references for every publication are a representative sample of
the total amount. For reasons of copyright, this dataset does
not contain the full text of publications, but only the text lines
where a reference (or part of it) appears; therefore some lines
of text include out-of-reference tokens, preceding or following a
reference (these tokens are important to learn to assign begin-end
tags). Full details, including corpus acquisition and annotation
sampling strategy and procedure, are given in Colavizza and
Romanello (2017) 3.

A new export of this dataset is used here, prepared as follows.
Initially, every publication with annotated references is randomly

3The dataset and accompanying code are available in, respectively GitHub: https://

github.com/dhlab-epfl/LinkedBooksReferenceParsing and Zenodo: http://doi.org/

10.5281/zenodo.579679
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FIGURE 1 | Example of a reference annotated according to tasks 1–3. Task 1 covers reference components, task 2 considers the span of a reference plus its general

typology, task 3 instead only considers the span of a reference. We use a clear-cut example for illustration purposes, yet in fact most references given in footnotes

have text before and afterwards, often on the same line.

allocated in a train, test or validation set, with an 80/10/10 split
respectively4. The number of references in each set does not
precisely follow the same proportion, as different publications
have a varied amount of annotated references. Nevertheless, a
publication-level split is important in order to reduce reference
style data snooping. Next, the annotated lines of plain text for
every publication are considered independently and split into
tokens using the NLTK word-punkt tokenizer (Bird et al., 2009),
thus considering several punctuation symbols as a separate token.
The dataset is at this point composed of a set of lines of text,
which will be parsed independently, each including at least part of
a reference, split into tokens and associated with the annotation
schemes of the different tasks. By all means, a reference can be
part of multiple lines of text. The choice of considering lines
of text independently reduces the dependency window that the
classification method can rely upon, and is to be considered a
limitation of this study.

This reprocessed dataset is made available using the CoNLL
convention: each line in a file (test, train and validation)
corresponds to a token in a sequence (original line of text),
and sequences are separated by a blank line. Each token line
contains the token surface form followed by the corresponding
tags for each task, separated by a white space. To encode the
relative position of a token in a reference, the IOBE convention
is used, where i-label stands for a token inside a reference
(not begin or end), o outside, b-label if the token is the first
of a reference and e-label the last. The IOBE is a variant
of the more common IOB scheme. Using a more expressive
tagging scheme like IOBE has been shown to marginally improve
model performance (Ratinov and Roth, 2009; Dai et al., 2015)
and ease the retrieval of references spanning across several
lines.

4Sometimes in the literature what we refer as test dataset, to assess the results of

training, is named development dataset, and the validation dataset, what we use at

the end to test for generalization, is named test dataset. We will use what we call

test dataset for development and what we call validation dataset for final testing.

Our example “G. Ostrogorsky, History of the Byzantine State,
Rutgers University Press, 1986,” assuming it spans a single line
(sequence), is encoded as:

G author b-secondary b-r

. author i-secondary i-r

Ostrogorsky author i-secondary i-r

, author i-secondary i-r

History title i-secondary i-r

of title i-secondary i-r

the title i-secondary i-r

Byzantine title i-secondary i-r

State title i-secondary i-r

, title i-secondary i-r

Rutgers publisher i-secondary i-r

University publisher i-secondary i-r

Press publisher i-secondary i-r

, publisher i-secondary i-r

1986 year e-secondary e-r

. year e-secondary e-r

3.2. CRF Baseline
We train and test a Conditional Random Field (Lafferty et al.,
2001) baseline using the same dataset. The CRF classifier is
trained over a rich set of hand-crafted features considering a size-
two bi-directional window: the features for a token at position t in
a sequence include features extracted for the two preceding and
two following tokens too, that is positions t−2, t−1, t+1, t+2,
following previous work where the specificities of applying CRF
to the humanities are amply discussed (Colavizza and Romanello,
2017). This model is trained with Stochastic Gradient Descent
applying both L1 and L2 regularization, using the CRFSuite
package (Okazaki, 2007)5. The code and training details are given
in this work’s accompanying repository. The best cross-validated

5We used the CRFsuite implementation from sklearn-crfsuite, version 0.3.6

available at https://github.com/TeamHG-Memex/sklearn-crfsuite.
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configuration of this model yields the following F1 validation
scores for each task:6

Task 1 gives an F1 score of 82.63%
(precision 82.88%, recall 82.76%).

Task 2 gives an F1 score of 71.04%
(precision 71.32%, recall 71.1%).

Task 3 gives an F1 score of 92.50%
(precision 92.64%, recall 92.41%).

4. MODEL

We consider a recurrent architecture organized into three layers:
input (word representations), inner and prediction, following
the best performing models for sequence labeling tasks (Lample
et al., 2016; Ma and Hovy, 2016). The network firstly receives
a sequence of (one-hot encoded) words w(1),w(2), ...,w(n) as
input and transforms it into a sequence of dense vectors
x(1), x(2), ..., x(n), using a combination of word and character-level
word embeddings. Secondly, word representations are passed to
a bidirectional LSTM composed of two layers: a forward layer
where the word representations are processed starting with input
representation x(1) to x(n), and a backward layer from x(n) to
x(1). The outputs of these two layers are concatenated and used
in the prediction layer, which outputs a sequence of predictions

ŷ(1), ŷ(2), ..., ŷ(n) for each initial input word w(1),w(2), ...,w(n). We
remark that we refer to words from now on, to adopt the most
common terminology in the literature, where in practice generic
tokens are considered.

4.1. Input Layer
The input layer combines word and character-level word
embeddings for each input token in a sequence, in order to create
a word representation.

4.1.1. Word Embeddings
Word embeddings are a common staple of sequence classification
tasks, and are often trained over large corpora likeWikipedia7 or
Reuters8, in order to embed richer information than just using
task-specific data. Yet considering the dataset used in this project,
publicly available embeddings will likely not help. Instead, word
embeddings were pre-trained using Word2Vec (Mikolov et al.,
2013a,b) on the full contents of all the publications from which
our references were extracted. We used the Gensim Word2vec
implementation (Řehůřek and Sojka, 2010), a window of 5
words and the skip-gram model. The vectors are trained for
all words appearing at least five times in the dataset, while less
frequent words have been regrouped under an unknown token
$UNK$ and all digits have been merged into a $NUM$ token.
We tested word embeddings with a dimensionality of 100 and

6Here c1 and c2 refer to the model coefficients for L1 and L2 regularization,

respectively. For task 1 cross validated parameters were set at c1=1.3099

and c2=0.0773; c1=0.9298 and c2=0.0229 for task 2; c1=2.1334 and

c2=0.0142 for task 3.
7https://nlp.stanford.edu/projects/glove/
8https://www.cs.umb.edu/~smimarog/textmining/datasets/

300. Word embeddings can be randomly initialized and trained
with the model, pre-trained and kept fix, or pre-trained and
further trained with the model. The pre-trained word embedding
vocabulary comprises 727,902 words, of which 51,569 are actually
used in the published dataset.

4.1.2. Character-Level Word Embeddings
Tokens part of references contain relevant information at the
orthographic and morphological levels, such as prefixes and
suffixes and the use of punctuation or abbreviations. Given the
relative small amount of annotated data at hand, it is likely
the case that these features will not be learned at the word
level in a satisfactory way. Conversely, character-level word
embeddings can help into learning task-specific features at this
level, with fewer examples. These features have in particular
found useful application to deal with out-of-vocabulary words
and morphologically rich languages (Dos Santos and Zadrozny,
2014). Furthermore, character-level word embeddings can help
reduce the impact of OCR errors and help deal with rare words.
Character-level word embeddings are a representation of a word
from the compounded representation of sequences of characters
the word is composed of. They can be learned either via CNNs
or BiLSTMs. The character-level word embeddings are trained
by first considering randomly initialized character embeddings.
In the CNN case, we then feed them to a single 1d convolution
layer followed by a max pool layer, using a filter stride of 1 and
various widths. Alternatively, we use a BiLSTM and concatenate
its outputs.

4.1.3. Word Representation Architecture
Figure 2 describes the architecture to build a word representation
input made of the concatenation of a word embedding and a
character-level word embedding trained with a BiLSTM. The
word embeddings consist of a lookup to the precomputed
Word2Vec embeddings, or randomly initialized ones, and
the character-level word embeddings are computed through
additional neural network layers as described above. The final
word representation is a concatenation of its word embedding
and character-level word embedding.

To prevent the model from too strongly depending on
word and character-level word embeddings, dropout layers are
added after the BiLSTM or CNN layers (for character-level
word embeddings) and after word and character-level word
embeddings are concatenated. More generally, as sketched in
Figure 3, dropout layers are applied on several components of
the final model. Dropout is a regularization technique where
randomly selected neurons are turned off during training. It helps
to prevent overfitting and to avoid the model to depend to heavily
on individual neurons (Srivastava et al., 2014).

4.2. Inner Layer
Long-Short TermMemory cells (LSTM) are part of the Recurrent
Neural Networks (RNN) family, designed to account for flexibly
long memory dependences (Hochreiter and Schmidhuber, 1997).
LSTMs overcome in part the limitations of vanilla RNNs, such
as the practically short memory dependence and the tendency to
suffer from vanishing or exploding gradients (Bengio et al., 1994).
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FIGURE 2 | The word representation architecture using both pre-trained word embeddings and BiLSTM character-level word embeddings, used in the example to

construct the representation of the word “Romeo.” Rectangles are used for inputs, sequences of squares for vectors, rounds for neuron cells and dashed lines for

dropout connections.

An RNN cell with sigmoid activation and softmax prediction can
be described as follows:

h(t) = σ (b + Wx(t) + Uh(t−1))

ŷ(t) = softmax(c + Vh(t))

where x(t) is the input word representation in position t of the
current sequence, h(t) represents the hidden state at the same
position, b and c are bias vectors andW, U and V are parameter
matrices to be learned. An LSTM instead introduces three gates
to the RNN configuration: an input gate i, a forget gate f, and
an output gate o, in order to provide the cell with a means to
retain information on previous states more effectively. An LSTM
cell with softmax prediction, as implemented in Keras, can be
described as follows:

i(t) = σ (bi + Wix(t) + Uih(t−1))

f(t) = σ (bf + Wf x(t) + Uf h(t−1))

c(t) = f(t) ⊙ c(t−1) + i(t) ⊙ tanh(bc + Wcx(t) + Uch(t−1))

o(t) = σ (bo + Wox(t) + Uoh(t−1))

h(t) = o(t) ⊙ tanh(c(t))

ŷ(t) = softmax(c + Vh(t))

where σ is the element-wise hard-sigmoid function and ⊙ is
the element-wise product. As before, x(t) is the input word
representation in position t of the current sequence and h(t)

represents the hidden state at the same position. x(t) represent
the current cell state, as a function of the forget gate applied to the
previous step cell state, and the input gate applied to a non-linear

transformation (hyperbolic tangent in this case) of a vanilla RNN
internal state. The final hidden state is then given by a product of
the output gate with a further non-linear transformation of the
cell state. The different bias vectors b and c and matrices W, U,
andV are all learned parameters. A BiLSTM ismade of two LSTM
layers, one being fed the input in the original order, the other in
reversed order. The final hidden layer is the concatenation of the

two: h(t) =
[−→
h (t);
←−
h (t)

]

.

Since inputs are processed in temporal order, a possible
shortcoming of LSTMs is their inability to make use of
subsequent context (Hochreiter et al., 2001). Nevertheless,
two LSTMs can be used to process the input in opposite
directions, and their results concatenated. This solution, referred
to as a Bidirectional LSTM (Schuster and Paliwal, 1997), has
shown notable results in a variety of NLP tasks (Graves and
Schmidhuber, 2005; Graves et al., 2013; Huang et al., 2015).

4.3. Prediction Layer
A widely adopted prediction layer for multi-class sequence
labeling tasks relies on the softmax function. Assuming z to be
a vector of unnormalized log probabilities from a linear layer, we
have:

z = c + Vh

softmax(z)i =
ezi

∑

j=1
ezj

The softmax takes every classification decision independently for
every input word, yet sequence labeling tasks seldom present no
dependence between proximal tags. For example in our task 3,
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FIGURE 3 | Sketch of the model architecture for a part of the sequence W. Shakespeare, Romeo and Juliet, Oxford University Press, London,

1914. Rectangles are used for inputs, double rectangles for outputs, sequences of squares for vectors, rounds for neuron cells and dashed lines for dropout

connections.

the tag i-r can never be followed by the tag b-r. More generally,
reference styles entail that few recurring sequences of tags should
be learned and predicted.

Using a CRF layer for predictions enables the model to
perform classification decisions maximizing the (log) likelihood
over the whole sequence of predictions (Lafferty et al., 2001;
Sutton and McCallum, 2011). In the context of sequence labeling
tasks, a linear-chain CRF is trained to predict a sequence
y = (y(1), y(2), ..., y(n)) of known tags for a sequence input
representation X = (x(1), x(2), ..., x(n)). A linear-chain CRF in
this setting uses a combination of unary features for state-
observation pairs, and of binary features for each transition
(Huang et al., 2015). We consider Z to be the n × k matrix of
unnormalized scores from the inner BiLSTM layer, where n is
the number of words in the sequence, k the number of possible

tags (e.g., 27 for task 1). We then consider a square matrix A

of new parameters, such that Ai,j represents the probability of
transitioning from tag i to j in a sequence of predictions. In
HMM terminology, Z is referred to as the emission matrix and
A as the transition matrix. The score for the given sequence
of tag assignments y is then calculated, and its probability over
the space of possible tag prediction sequences ŶX taken with
softmax:

score(X, y) =

n
∑

i=0

Ayi ,yi+1 +

n
∑

i=1

Zi,yi

P(y|X) =
escore(x,y)

∑

ŷ′∈ŶX

escore(x,ŷ
′)
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During training, the score of the correct tag sequence
is maximized using dynamic programming. The best
(maximum a posteriori) tag sequence assignment for a
new input sequence can be computed using the Viterbi
algorithm.

4.4. Multi-Task Learning
Multi-task learning has been considered to train and predict
the three tasks at once, relying on the same architecture. This
technique has proved useful to reach results comparable to
single-task architectures, at a great reduced computational cost
obtained by sharing most of the trained parameters across
multiple tasks (Ruder, 2017). In some instances, multi-task
learning can even improve single-task results. With respect to
reference classification, we expect the inner layers of the network
to learn quite similarly across different tasks, therefore it makes
sense to attempt a multi-task approach.

Our multi-task architecture is identical to a single-task one
up to the hidden layer outputs included. Afterwards, a separate
prediction layer is created for each task. The loss function to be
optimized is the sum of the losses of each task layer. Considering
a softmax prediction layer, and the output h(t) of the hidden layer
at step t, we have:

ŷ
(t)
1 = softmax

(

c1 + V1h
(t)
1

)

ŷ
(t)
2 = softmax

(

c2 + V2h
(t)
2

)

ŷ
(t)
3 = softmax

(

c3 + V3h
(t)
3

)

The model thus has few extra parameters to learn, namely bias
vectors c and matrices V.

5. EXPERIMENTS

In this section we detail the experiments conducted on variants
of the neural network architecture under consideration, as well as
the fine tuning of our best final model (5.1). We then validate and
discuss the results (5.2). For bothmodel selection and fine tuning,
task 1 has been considered. Furthermore we used early epoch
stopping on the F1 test score with a waiting window of 5 epochs
without improvements, and a maximum number of 25 epochs.
Both code and dataset are released publicly (see data availability
statement).

5.1. Architecture
Three main variants of the architecture were considered in turn:
(1) word embeddings (presence or absence, pre-trained or not,
further trained or not); (2) character-level word embeddings
(presence or absence, BiLSTM or CNN), (3) prediction layer
(softmax or CRF). The best components were selected based on
the F1 score on testing data9. Results reported in Table 1 indicate
that the best architecture uses pre-trained word embeddings
which are further trained on the specific task, BiLSMT character-
level word embeddings and a CRF prediction layer. The

9The F1 score is the harmonic mean of precision and recall calculated considering

every classification action independently.

TABLE 1 | Results of the experiments on the model architecture.

Word embeddings Character features Output F1 score

Txrain word2vec BiLSTM crf 88.36

Train word2vec crf 87.36

Train word2vec CNN crf 87.29

Word2vec BiLSTM crf 86.85

Word2vec CNN crf 86.16

Train word2vec BiLSTM softmax 86.12

Train BiLSTM crf 86.10

Word2vec BiLSTM softmax 85.96

Train crf 85.88

Train CNN crf 85.56

Train word2vec CNN Softmax 85.47

Train word2vec Softmax 85.41

Word2vec crf 84.95

word2vec CNN Softmax 84.45

Train BiLSTM softmax 83.99

Word2vec Softmax 83.91

Train CNN Softmax 83.61

BiLSTM crf 83.06

Train Softmax 83.06

BiLSTM Softmax 82.05

CNN crf 78.23

CNN Softmax 75.28

Configurations are sorted according to the F1 testing score, in decreasing order. A blank
cell indicates that the specific component was not included.

TABLE 2 | Configuration for the experiments on model architecture.

Layer Parameter Value

Word embeddings Dimensionality 300

Min word frequency 5

Character-level word embeddings Embedding dimensionality 100

BiLSTM dimensionality 100

BiLSTM Dimensionality 64

CRF Metric Viterbi

Early stopping Max waiting 5

Max number of epochs 25

Model Optimizer—CRF prediction RMSprop

Optimizer—Softmax prediction Adam

Dropout 0.5

Learning rate 0.001

Decay 0

Batch size 50

experiments on the architecture of the model always used the
configuration given in Table 2, following Lample et al. (2016).

Word embeddings can be integrated in a model architecture
in three ways:

1. Train: Word embeddings initialized at random and trained.
This configuration is also known in the literature as random
initialization.
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TABLE 3 | Results of the fine-tuning of the best multi-task architecture, over the batch size, the dimensionality of the inner BiLSTM and the rate of dropout.

Batch size Dropout BiLSTM size Training Validation Training Validation Training Validation

Task I Task I Task II Task II Task III Task III

100 0.5 200 0.8597 0.8613 0.8010 0.7990 0.9396 0.9316

30 0.5 200 0.8840 0.8952 0.8236 0.8077 0.9073 0.9053

70 0.5 200 0.8804 0.8885 0.8166 0.8005 0.9455 0.9391

100 0.7 200 0.8693 0.8837 0.8044 0.8052 0.9460 0.9359

30 0.7 200 0.8701 0.8776 0.8051 0.8015 0.9039 0.8998

100 0.5 100 0.8817 0.8882 0.8157 0.8107 0.9386 0.9323

100 0.5 30 0.8606 0.8671 0.8021 0.7778 0.9113 0.9076

2. Word2vec: pre-trained Word2vec embeddings without
further task-specific tuning. Also known as static word
embeddings.

3. Train Word2vec: Word embeddings initialized with pre-
trained Word2vec embeddings and further tuned on the
specific task during training. Also known as non-static word
embeddings.

Our results strongly support the use of word embeddings, and
also indicate that the pre-trained word embeddings carry useful
information for the task at hand.

The contribution of character-level word embeddings is
instead less impactful, especially as there seems to be a substantial
overlap with the contribution of word embeddings: there is only
a 1% gain in the best model using both word and BiLSTM
character-level word embeddings. Notably, the CNN approach
appears to perform less well then the BiLSTM, despite the fact
that the gain in speed of a CNN architecture is considerable
(3 times faster training, on average). We therefore confirm the
relatively low impact of character-level word embeddings, as
previously discussed in the literature (Reimers and Gurevych,
2017b), but find that a BiLSTM slightly outperforms a CNN
approach for our task.

With respect to the prediction layer, as expected the CRF
approach consistently outperforms the softmax, yielding a gain
of above 2% when compared with an identical architecture
using non-static word embeddings and BiLSTM character-level
word embeddings. This result follows from the intuition that tag
predictions are not independent in a reference. We eventually
tested a multi-task architecture where all layers are shared across
the three tasks, besides for the prediction one. Our results are
quite encouraging, with performances lowering on average less
than 0.5% from the equivalent single-task architecture (Table 3).
It follows that the input and inner layers learn a set of parameters
which are to a large degree shared across tasks.

As discussed in the previous section, the best model is a
BiLSTM-CRF network with word embeddings and character-
level word embeddings. We fine-tuned this architecture over a
set of parameter ranges using grid search, with results presented
in Table 4.

The results reported in Table 4 outline the importance of
the BiLSTM dimensionality. The best predictions were achieved
with a dimensionality of 100 and a medium rate of dropout
(0.5), without affecting the running time. The batch size is

TABLE 4 | Results of the fine-tuning of the best architecture, over the batch size,

the dimensionality of the inner BiLSTM and the rate of dropout.

Batch Dropout BiLSTM Testing F1 score

100 0.5 200 89.09

30 0.5 200 88.96

70 0.5 200 88.95

70 0.7 200 88.61

100 0.2 200 88.51

100 0.7 200 88.41

100 0.5 80 88.36

70 0.2 200 88.19

30 0.2 200 88.08

30 0.2 80 88.00

70 0.5 80 87.97

70 0.2 80 87.89

30 0.5 80 87.84

100 0.2 80 87.78

30 0.2 40 87.63

30 0.7 200 87.32

100 0.5 40 87.23

70 0.5 40 87.17

100 0.7 80 86.81

70 0.7 80 86.80

70 0.2 40 86.79

30 0.5 40 86.71

100 0.2 40 86.70

30 0.7 80 86.29

100 0.7 40 84.60

70 0.7 40 83.68

30 0.7 40 83.55

the parameter with the most influence on the training time:
the smaller the batch, the longer the training. A second round
of fine-tuning on the best model yielded some further minor
improvements, given in Table 5. Eventually, Table 6 reports the
final configuration of our best model.

5.2. Evaluation
We report in what follows the validation of the best model, and a
discussion of the errors. Some figures and tables are given in the
Appendix.
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TABLE 5 | Results of the further fine-tuning of the best architecture, over the

batch size, the dimensionality of the inner BiLSTM and the rate of dropout.

Batch Dropout BiLSTM Testing F1 score

100 0.5 400 89.56

200 0.5 400 89.24

100 0.5 600 89.13

100 0.5 300 88.99

100 0.5 200 88.89

200 0.5 300 88.61

TABLE 6 | Configuration of the final best model.

Layer Parameter Value

Word embeddings Dimensionality 300

Min word frequency 5

Character-level word embeddings Embedding dimensionality 100

BiLSTM dimensionality 100

BiLSTM Dimensionality 400

CRF Metric Viterbi

Early stopping Max waiting 5

Max number of epochs 25

Model Optimizer RMSprop

Dropout 0.5

Learning rate 0.001

Decay 0

Batch size 100

• On Task 1 (Table 7), the model achieves an F1 score of 89.66%
on the validation dataset, outperforming our CRF baseline
by +7.03%. The model performs particularly well on the
two most represented tags (title and author): these two tags
combined account formore than the 2/3 of the dataset. All tags
with 500 or more examples in the validation dataset perform
quite well, at the exception of the o and publisher tags. The
o tags are probably both not well represented and difficult to
grasp (too generic). When compared with the CRF baseline, in
Table S1 (Appendix), the neural network approach performs
better for the title and author tags, and the vast majority of the
rest, especially so for the publisher and o tags.
• On Task 2 (Table 8), the model achieves an F1 score of 81.51%

on the validation dataset, and outperforms the CRF baseline
by+10.47% (Table S2 in Appendix). The model performs well
overall for the most represented tags in the dataset, such as
the i- tags, but it shows issues with the begin and end primary
annotations, that are often difficult to capture. The lower
results of the model on this task, if compared with tasks 1 and
3, suggests that distinguishing between primary or secondary
references might not be a sequence labeling problem but a
classification one, over the entire line/reference.
• On Task 3 (Table 9), the model achieves an F1 score of 95.09%

on the validation dataset, and outperforms the CRF baseline
by +2.59% (Table S3 in Appendix). In particular, the model

TABLE 7 | Classification report for Task 1.

Precision Recall f1-score Support

Abbreviation 0.1333 0.0460 0.0684 87

Archivalreference 0.8163 0.4878 0.6107 328

Archive_lib 0.2857 0.8235 0.4242 17

Attachment 0.0000 0.0000 0.0000 0

Author 0.8928 0.9742 0.9317 4581

Box 1.0000 1.0000 1.0000 6

Cartulation 0.0000 0.0000 0.0000 10

Column 1.0000 1.0000 1.0000 6

Conjunction 0.4778 0.7167 0.5733 120

Date 0.6667 0.3158 0.4286 19

Filza 0.8333 0.2143 0.3409 70

Folder 0.0000 0.0000 0.0000 0

Foliation 0.0000 0.0000 0.0000 0

Numbered_ref 0.0000 0.0000 0.0000 87

o 0.8066 0.4445 0.5732 1379

Pagination 0.9504 0.9801 0.9650 1154

Publicationnumber-year 0.8874 0.8767 0.8820 665

Publicationplace 0.9569 0.9421 0.9494 1555

Publicationspecifications 0.4068 0.3982 0.4025 329

Publisher 0.8941 0.8196 0.8552 937

Ref 0.2576 0.4722 0.3333 36

Registry 0.7447 1.0000 0.8537 35

Series 0.7949 0.7209 0.7561 43

Title 0.9390 0.9651 0.9519 13744

Tomo 0.3030 0.3030 0.3030 33

Volume 0.7822 0.5254 0.6286 335

Year 0.9088 0.9582 0.9328 1601

Avg/total 0.9006 0.9022 0.8966 27177

TABLE 8 | Classification report for Task 2.

Precision Recall f1-score Support

b-meta-annotation 0.7473 0.7500 0.7487 280

b-primary 0.6957 0.3556 0.4706 45

b-secondary 0.7737 0.7022 0.7362 779

e-meta-annotation 0.7970 0.8532 0.8242 879

e-primary 0.4382 0.2335 0.3047 167

e-secondary 0.8399 0.7789 0.8083 1583

i-meta-annotation 0.7594 0.8269 0.7917 8457

i-primary 0.5772 0.8444 0.6857 270

i-secondary 0.8687 0.8475 0.8580 13682

o 0.7950 0.5507 0.6507 1035

Avg/total 0.8181 0.8162 0.8151 27177

improves on the o, begin and in tags, while lowering its
performance on the end tag.

We further discuss the error confusion matrices over the
validation dataset, in order to compare the proportion of
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TABLE 9 | Classification report for Task 3.

Precision Recall f1-score Support

b-r 0.8498 0.7636 0.8044 1104

e-r 0.8963 0.7703 0.8286 1145

i-r 0.9633 0.9904 0.9767 23893

o 0.8491 0.5217 0.6463 1035

Avg / total 0.9515 0.9541 0.9509 27177

classifications gone well or wrong, for each tag. Starting with
Task 1 (Figure S1 in Appendix), we can see how systematic errors
tend to be caused by two reasons: under-represented tags or very
similar encoding styles or contents for different styles. Examples
are the date tag mistaken for a year, or an abbreviation mistaken
for an author (initials). The confusion matrix for Task 2 (Figure
S2 in Appendix), broadly follows along the same lines, further
highlighting how most frequent tags tend to ac as attractors
of wrong classification actions. Indeed, the tag i-secondary is
often misassigned. Interestingly, i-secondary tags are sometimes
predicted as i-meta-annotation, the second most frequent tag in
the training dataset: indeed, their contents are often very similar.
Quite crucially, when a prediction is wrong it is often assigned to
the correct IBOE tag, but the wrong reference type. This would
allow to adopt a voting system to refine a classification at a further
stage. The confusion matrix for Task 3 (Figure S3 in Appendix),
shows that the inside tag is correctly predicted, but reveals a
fragility in the e-r tag predictions. Indeed, a lot of e-r tags are
labeled as i-r by the model. The model also performs poorly in
predicting the out-of-reference o tag.

In conclusion, the neural network model substantially
outperformed the CRF baseline in all tasks, with minor
downgrade of performance on some infrequent tags, but an
important gain on most of the rest. All systematic errors can be
explained either by the important imbalance in the amount of
training examples per tag, or by the similarity in either contents
or referencing styles between some tags.

6. CONCLUSION

In this work, we applied a state-of-the-art deep learning
architecture to the task of reference mining, with a focus on
applications in the arts and humanities. In particular, the model
is trained to extract and parse references within the full text
of publications, such as in footnotes, yet it can be applied
more generally. The final architecture follows previous work in
sequence labeling tasks, by integrating word embeddings and
character-level word embeddings into word representations as
inputs, an inner BiLSTM layer and a CRF prediction layer. As
was shown for a variety of similar tasks, important components
of the network result to be pre-trained word embeddings,
which integrate information on the use of words within a
broader textual corpus, and the CRF prediction layer, which
accounts for the dependency among tag predictions (Reimers
and Gurevych, 2017a). Furthermore, for the specific task at

hand, we showed the relative positive contribution of character-
level word embeddings. Given the importance of morphological
and orthographical features in references, and the lack of large
quantities of annotated data to learn word representations
from, character-level features proved to be a minor yet positive
addition. This model was tested on a dataset of annotated
references extracted from a corpus of scholarly literature on the
history of Venice, and it improved considerably over a CRF
baseline using a rich set of hand-crafted features, with F1 gains
going from+2.59% to+10.47% on different tasks. Furthermore,
a multi-task architecture was found to perform almost on par
on all tasks combined. We released two implementations of
the architecture, in Keras and TensorFlow, along with all the
data we used to train and test it. These results strongly support
the adoption of deep learning methods for the general task of
reference mining.

This work used a relatively small dataset with some
limitations, reflecting the current situation with respect to
reference mining and, more broadly, citation indexing in the arts
and humanities. The dataset contains several sources of noise,
including OCR errors, referencing errors or inconsistencies,
annotation errors. In part for this reason, we consider as the
most important next step for future work to explore how active
learning or semi-supervised learning techniques might be used
in order to maximize the model gain while at the same time
minimizing the costly process of manual annotation (Peters et al.,
2017; Shen et al., 2018). At the same time, we plan to explore
how to align and use existing annotated datasets with coverage
in the arts and humanities (Anzaroot and McCallum, 2013).
Furthermore, it remains to be tested to what extend reference
parsers trained on scientific publications could be adapted for the
literature in the arts and humanities.
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