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Subject categories of scholarly papers generally refer to the knowledge domain(s) to which
the papers belong, examples being computer science or physics. Subject category
classification is a prerequisite for bibliometric studies, organizing scientific publications
for domain knowledge extraction, and facilitating faceted searches for digital library search
engines. Unfortunately, many academic papers do not have such information as part of
their metadata. Most existing methods for solving this task focus on unsupervised learning
that often relies on citation networks. However, a complete list of papers citing the current
paper may not be readily available. In particular, new papers that have few or no citations
cannot be classified using such methods. Here, we propose a deep attentive neural
network (DANN) that classifies scholarly papers using only their abstracts. The network is
trained using nine million abstracts from Web of Science (WoS). We also use the WoS
schema that covers 104 subject categories. The proposed network consists of two bi-
directional recurrent neural networks followed by an attention layer. We compare our
model against baselines by varying the architecture and text representation. Our best
model achieves micro-F1 measure of 0.76 with F1 of individual subject categories ranging
from 0.50 to 0.95. The results showed the importance of retraining word embedding
models to maximize the vocabulary overlap and the effectiveness of the attention
mechanism. The combination of word vectors with TFIDF outperforms character and
sentence level embedding models. We discuss imbalanced samples and overlapping
categories and suggest possible strategies for mitigation. We also determine the subject
category distribution in CiteSeerX by classifying a random sample of one million academic
papers.

Keywords: text classification, text mining, scientific papers, digital library, neural networks, citeseerx, subject
category classification

1 INTRODUCTION

A recent estimate of the total number of English research articles available online was at least 114million
(Khabsa and Giles, 2014). Studies indicate the number of academic papers doubles every 10–15 years
(Larsen and von Ins, 2010). The continued growth of scholarly papers increases the challenges to accurately
find relevant research papers, especially when papers in different subject categories (SCs) are mixed in a
search engine’s collection. Searches based on only keywords may no longer be the most efficient method
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(Matsuda and Fukushima, 1999) to use. This often happens when the
same query terms appear in multiple research areas. For example,
querying “neuron” in Google Scholar returns documents in both
computer science and neuroscience. Search results can also belong to
diverse domains when the query terms contain acronyms. For
example, querying “NLP” returns documents in linguistics
(meaning “neuro-linguistic programming”) and computer
science (meaning “natural language processing”). If the SCs of
documents are available, the users can narrow search results by
specifying an SC, which effectively increases the precision of the
query results, assuming SCs are accurately assigned to documents.
Also, delineation of scientific domains is a preliminary tasks of
many bibliometric studies at the meso-level. Accurate
categorization of research articles is a prerequisite for
discovering various dimensions of scientific activity in
epistemology (Collins, 1992) and sociology (Barnes et al., 1996),
as well as the invisible colleges, which are implicit academic
networks (Zitt et al., 2019). To build a web-scale knowledge
system, it is necessary to organize scientific publications into a
hierarchical concept structure, which further requires
categorization of research articles by SCs (Shen et al., 2018).

As such, we believe it is useful to build a classification system that
assigns SCs to scholarly papers. Such a system could significantly
impact scientific search and facilitate bibliometric evaluation. It can
also help with Science of Science research (Fortunato et al., 2018), an
area of research that uses scholarly big data to study the choice of
scientific problems, scientist career trajectories, research trends,
research funding, and other research aspects. Also, many have
noted that it is difficult to extract SCs using traditional topic
models such as Latent Dirichlet Allocation (LDA), since it only
extracts words and phrases present in documents (Gerlach et al.,
2018). An example is that a paper in computer science is rarely given
its SC in the keyword list.

In this work, we pose the SC problem as one of multiclass
classifications in which one SC is assigned to each paper. In a
preliminary study, we investigated feature-based machine learning
methods to classify research papers into six SCs (Wu et al., 2018).
Here, we extend that study and propose a system that classifies
scholarly papers into 104 SCs using only abstracts. The core
component is a neural network classifier trained on millions of
labeled documents that are part of the WoS database. In
comparison with our preliminary work, our data is more
heterogeneous (more than 100 SCs as opposed to six), imbalanced,
and complicated (data labels may overlap). We compare our system
against several baselines applying various text representations, machine
learning models, and/or neural network architectures.

SC classification is usually based on a universal schema for a
specific domain or for all domains. Many schemas for scientific
classification systems are publisher domain specific. For example,
ACM has its own hierarchical classification system1, NLM has
medical subject headings2, and MSC has a subject classification
for mathematics3. The most comprehensive and systematic

classification schemas seem to be from WoS4 and the Library
of Congress (LOC)5. The latter was created in 1897 and was
driven by practical needs of the LOC rather than any
epistemological considerations and is most likely out of date.

To the best of our knowledge, our work is the first example of
using a neural network to classify scholarly papers into a
comprehensive set of SCs. Other work focused on
unsupervised methods and most were developed for specific
category domains. In contrast, our classifier was trained on a
large number of high quality abstracts from WoS and can be
applied directly to abstracts without any citation information. We
also develop a novel representation of scholarly paper abstracts
using ranked tokens and their word embedding representations.
This significantly reduces the scale of the classic Bag of Word
(BoW) model. We also retrained FastText and GloVe word
embedding models using WoS abstracts. The subject category
classification was then applied to the CiteSeerX collection of
documents. However, it could be applied to any similar collection.

2 RELATED WORK

Text classification is a fundamental task in natural language
processing. Many complicated tasks use it or include it as a
necessary step, such as part-of-speech tagging, e.g., Ratnaparkhi
(1996), sentiment analysis, e.g., Vo and Zhang (2015), and
named entity recognition, e.g., Nadeau and Sekine (2007).
Classification can be performed at many levels: word, phrase,
sentence, snippet (e.g., tweets, reviews), articles (e.g., news
articles), and others. The number of classes usually ranges
from a few to nearly 100. Methodologically, a classification
model can be supervised, semi-supervised, and unsupervised.
An exhaustive survey is beyond the scope of this paper. Here we
briefly review short text classification and highlight work that
classifies scientific articles.

Bag of words (BoWs) is one of the most commonly used
representations for text classification, an example being
keyphrase extraction (Caragea et al., 2016; He et al., 2018).
BoW represents text as a set of unordered word-level tokens,
without considering syntactical and sequential information. For
example, Nam et al. (2016) combined BoW with linguistic,
grammatical, and structural features to classify sentences in
biomedical paper abstracts. In Li et al. (2010), the authors
treated the text classification as a sequence tagging problem
and proposed a Hidden Markov Model used for the task of
classifying sentences into mutually exclusive categories, namely,
background, objective, method, result, and conclusions. The task
described in García et al. (2012) classifies abstracts in biomedical
databases into 23 categories (OHSUMED dataset) or 26
categories (UVigoMED dataset). The author proposed a bag-
of-concept representation based on Wikipedia and classify
abstracts using the SVM model.

1https://www.acm.org/about-acm/class
2https://www.ncbi.nlm.nih.gov/mesh
3http://msc2010.org/mediawiki/index.php?title�Main_Page

4https://images.webofknowledge.com/images/help/WOS/hp_subject_category_
terms_tasca.html
5https://www.loc.gov/aba/cataloging/classification/
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Recently, word embeddings (WE) have been used to build
distributed dense vector representations for text. Embedded
vectors can be used to measure semantic similarity between
words (Mikolov et al., 2013b). WE has shown improvements in
semantic parsing and similarity analysis, e.g., Prasad et al. (2018).
Other types of embeddings were later developed for character level
embedding (Zhang et al., 2015), phrase embedding (Passos et al.,
2014), and sentence embedding (Cer et al., 2018). Several WE
models have been trained and distributed; examples are word2vec
(Mikolov et al., 2013b), GloVe (Pennington et al., 2014), FastText
(Grave et al., 2017), Universal Sentence Encoder (Cer et al., 2018),
ELMo (Peters et al., 2018), and BERT (Devlin et al., 2019).
Empirically, Long Short Term Memory [LSTM; Hochreiter and
Schmidhuber (1997)], Gated Recurrent Units [GRU; Cho et al.
(2014)], and convolutional neural networks [CNN; LeCun et al.
(1989)] have achieved improved performance compared to other
supervised machine learning models based on shallow features
(Ren et al., 2016).

Classifying SCs of scientific documents is usually based on
metadata, since full text is not available for most papers and
processing a large amount of full text is computationally
expensive. Most existing methods for SC classification are
unsupervised. For example, the Smart Local Moving
Algorithm identified topics in PubMed based on text similarity
(Boyack and Klavans, 2018) and citation information (van Eck
and Waltman, 2017). K-means was used to cluster articles based
on semantic similarity (Wang and Koopman, 2017). Thememetic
algorithm, a type of evolutionary computing (Moscato and Cotta,
2003), was used to classify astrophysical papers into subdomains
using their citation networks. A hybrid clustering method was
proposed based on a combination of bibliographic coupling and
textual similarities using the Louvain algorithm-a greedy method
that extracted communities from large networks (Glänzel and
Thijs, 2017). Another study constructed a publication-based
classification system of science using the WoS dataset
(Waltman and van Eck, 2012). The clustering algorithm,
described as a modularity-based clustering, is conceptually
similar to k-nearest neighbor (kNN). It starts with a small set
of seed labeled publications and grows by incrementally
absorbing similar articles using co-citation and bibliographic
coupling. Many methods mentioned above rely on citation
relationships. Although such information can be manually
obtained from large search engines such as Google Scholar, it
is non-trivial to scale this for millions of papers.

Our model classifies papers based only on abstracts, which are
often available. Our end-to-end system is trained on a large
number of labeled data with no references to external
knowledge bases. When compared with citation-based
clustering methods, we believe it to be more scalable and portable.

3 TEXT REPRESENTATIONS

For this work, we represent each abstract using a BoW model
weighted by TF-IDF. However, instead of building a sparse
vector for all tokens in the vocabulary, we choose word
tokens with the highest TF-IDF values and encode them

using WE models. We explore both pre-trained and re-
trained WE models. We also explore their effect on
classification performance based on token order. As
evaluation baselines, we compare our best model with off-the-
shelf text embedding models, such as the Unified Sentence
Encoder [USE; Cer et al. (2018)]. We show that our model
which uses the traditional and relatively simple BoW
representation is computationally less expensive and can be
used to classify scholarly papers at scale, such as those in the
CiteSeerX repository (Giles et al., 1998; Wu et al., 2014).

3.1 Representing Abstracts
First, an abstract is tokenized with white spaces, punctuation, and
stop words were removed. Then a list A of word types (unique
words) wi is generated after lemmatization which uses the
WordNet database (Fellbaum, 2005) for the lemmas.

A � [w1,w2,w3 . . .wn]. (1)

Next the listAf is sorted in descending order by TF-IDF giving
Asorted. TF is the term frequency in an abstract and IDF is the
inverse document frequency calculated using the number of
abstracts containing a token in the entire WoS abstract corpus.

Asorted � [w1′,w2′,w3′ . . .wn′]. (2)

Because abstracts may have different numbers of words, we
chose the top d elements from Asorted to represent the abstract.
We then re-organize the elements according to their original
order in the abstract forming a sequential input. If the number of
words is less than d, we pad the feature list with zeros. The final
list is a vector built by concatenating all word level vectors
v→′k, k ∈ {1,/, d} into a DWE dimension vector. The final
semantic feature vector Af is:

Af � [ v→′1, v
→
′2, v

→
′3 . . . v

→
′d] (3)

3.2 Word Embedding
To investigate how different word embeddings affect
classification results, we apply several widely used models. An
exhaustive experiment for all possible models is beyond the scope
of this paper. We use some of the more popular ones as now
discussed.

GloVe captures semantic correlations between words using
global word-word co-occurrence, as opposed to local information
used in word2vec (Mikolov et al., 2013a). It learns a word-word
co-occurrence matrix and predicts co-occurrence ratios of given
words in context (Pennington et al., 2014). Glove is a context-
independent model and outperformed other word embedding
models such as word2vec in tasks such as word analogy, word
similarity, and named entity recognition tasks.

FastText is another context-independent model which uses
sub-word (e.g., character n-grams) information to represent
words as vectors (Bojanowski et al., 2017). It uses log-bilinear
models that ignore the morphological forms by assigning distinct
vectors for each word. If we consider a word w whose n-grams
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are denoted by gw, then the vector zg is assigned to each n-gram
in gw. Each word is represented by the sum of the vector
representations of its character n-grams. This representation
is incorporated into a Skip Gram model (Goldberg and Levy,
2014) which improves vector representation for morphologically
rich languages.

SciBERT is a variant of BERT, a context-awareWEmodel that
has improved the performance of many NLP tasks such as
question answering and inference (Devlin et al., 2019). The
bidirectionally trained model seems to learn a deeper sense of
language than single directional transformers. The transformer
uses an attention mechanism that learns contextual relationships
between words. SciBERT uses the same training method as BERT
but is trained on research papers from Semantic Scholar. Since
the abstracts from WoS articles mostly contain scientific
information, we use SciBERT (Beltagy et al., 2019) instead of
BERT. Since it is computationally expensive to train BERT
(4 days on 4–16 Cloud TPUs as reported by Google), we use
the pre-trained SciBERT.

3.3 Retrained WE Models
Though pretrained WE models represent richer semantic
information compared with traditional one-hot vector
methods, when applied to text in scientific articles the
classifier does not perform well. This is probably because the
text corpus used to train these models are mostly fromWikipedia
and Newswire. The majority of words and phrases included in the
vocabulary extracted from these articles provides general
descriptions of knowledge, which are significantly different
from those used in scholarly articles which describe specific
domain knowledge. Statistically, the overlap between the
vocabulary of pretrained GloVe (six billion tokens) and WoS
is only 37% (Wu et al., 2018). Nearly all of the WE models can be
retrained. Thus, we retrained GloVe and FastText using 6.38
million abstracts inWoS (by imposing a limit of 150k on each SC,
see below for more details). There are 1.13 billion word tokens in
total. GloVe generated 1 million unique vectors, and FastText
generated 1.2 million unique vectors.

3.4 Universal Sentence Encoder
For baselines, we compared with Google’s Universal Sentence
Encoder (USE) and the character-level convolutional network
(CCNN). USE uses transfer learning to encode sentences into
vectors. The architecture consists of a transformer-based
sentence encoding (Vaswani et al., 2017) and a deep
averaging network (DAN) (Iyyer et al., 2015). These two
variants have trade-offs between accuracy and compute
resources. We chose the transformer model because it
performs better than the DAN model on various NLP tasks
(Cer et al., 2018). CCNN is a combination of character-level
features trained on temporal (1D) convolutional networks
[ConvNets; Zhang et al. (2015)]. It treats input characters in
text as a raw-signal which is then applied to ConvNets. Each
character in text is encoded using a one-hot vector such that the
maximum length l of a character sequence does not exceed a
preset length l0.

4 CLASSIFIER DESIGN

The architecture of our proposed classifier is shown in Figure 1.
An abstract representation previously discussed is passed to the
neural network for encoding. Then the label of the abstract is
determined by the output of the sigmoid function that aggregates
all word encodings. Note that this architecture is not applicable
for use by CCNN or USE. For comparison, we used these two
architectures directly as described from their original
publications.

LSTM is known for handling the vanishing gradient that
occurs when training recurrent neural networks. A typical
LSTM cell consists of three gates: input gate it , output gate ot
and forget gate f t . The input gate updates the cell state; the
output gate decides the next hidden state, and the forget gate
decides whether to store or erase particular information in
the current state ht . We use tanh(·) as the activation function
and the sigmoid function σ(·) to map the output values into a
probability distribution. The current hidden state ht of
LSTM cells can be implemented with the following
equations:

it � σ(Wixt + Uiht−1 + bi) (4)

f t � σ(Wf xt + Ufht−1 + bf ) (5)

zt � tanh(Wzxt + Uzht−1 + bz) (6)

ct � zt ⊙ it + ct−1 ⊙ f t (7)

ot � σ(Woxt + Uoht−1 + bo) (8)

ht � tanh(ct)⊙ ot (9)

At a given time step t, xt represents the input vector; ct
represents cell state vector or memory cell; zt is a temporary
result. W and U are weights for the input gate i, forget gate f,
temporary result z, and output gate o.

GRU is similar to LSTM, except that it has only a reset gate rt
and an update gate zt . The current hidden state ht at a given
timestep t can be calculated with:

zt � σ(Wzxt + Uzht−1 + bz) (10)

rt � σ(Wrxt + Urht−1 + br) (11)

~ht � tanh(Whxt + Uh(rt ⊙ ht−1) + bh) (12)

ht � (1 − zt)⊙ ht−1 + zt ⊙ ~ht (13)

with the same defined variables. GRU is less computationally
expensive than LSTM and achieves comparable or better
performance for many tasks. For a given sequence, we train
LSTM and GRU in two directions (BiLSTM and BiGRU) to
predict the label for the current position using both historical and
future data, which has been shown to outperform a single
direction model for many tasks.

AttentionMechanismThe attentionmechanism is used to weight
word tokens deferentially when aggregating them into a document
level representations. In our system (Figure 1), embeddings of words
are concatenated into a vector with DWE dimensions. Using the
attention mechanism, each word t contributes to the sentence vector,
which is characterized by the factor αt such that
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αt � exp(uu
t vt)

∑texp(uu
t vt ,) (14)

ut � tanh(W · ht + b) (15)

in which ht � [ h→t ; h
←
t] is the representation of each word after the

BiLSTM or BiGRU layers, vt is the context vector that is
randomly initialized and learned during the training process,
W is the weight, and b is the bias. An abstract vector v is generated
by aggregating word vectors using weights learned by the
attention mechanism. We then calculate the weighted sum of
ht using the attention weights by:

v � ∑
t

αtht . (16)

5 EXPERIMENTS

Our training dataset is from the WoS database for the year
2015. The entire dataset contains approximately 45 million
records of academic documents, most having titles and
abstracts. They are labeled with 235 SCs at the journal level
in three broad categories–Science, Social Science, and Art and
Literature. A portion of the SCs have subcategories, such as
“Physics, Condensed Matter,” “Physics, Nuclear,” and
“Physics, Applied.” Here, we collapse these subcategories,
which reduces the total number of SCs to 115. We do this
because the minor classes decrease the performance of the
model (due to the less availability of that data). Also, we need
to have an “others” class to balance the data samples. We also
exclude papers labeled with more than one category and papers
that are labeled as “Multidisciplinary.” Abstracts with less than
10 words are excluded. The final number of singly labeled
abstracts is approximately nine million, in 104 SCs. The

sample sizes of these SCs range from 15 (Art) to 734k
(Physics) with a median about 86k. We randomly select up
to 150k abstracts per SC. This upper limit is based on our
preliminary study (Wu et al., 2018). The ratio between the
training and testing corpus is 9:1.

The median of word types per abstract is approximately
80–90. As such, we choose the top d � 80 elements from
Asorted to represent the abstract. If Asorted has less than d
elements, we pad the feature list with zeros. The word vector
dimensions of GloVe and FastText are set to 50 and 100,
respectively. This falls into the reasonable value range
(24–256) for WE dimensions (Witt and Seifert, 2017). When
training the BiLSM and BiGRU models, each layer contains 128
neurons. We investigate the dependency of classification
performance on these hyper-parameters by varying the
number of layers and neurons. We varied the number of word
types per abstract d and set the dropout rate to 20% to mitigate
overfitting or underfitting. Due to their relatively large size, we
train the neural networks using mini-batch gradient descent with
Adam for gradient optimization and one word cross entropy as
the loss function. The learning rate was set to 10− 3.

6 EVALUATION AND COMPARISON

6.1 One-Level Classifier
We first classify all abstracts in the testing set into 104 SCs using
the retrained GloVe WE model with BiGRU. The model achieves
a micro-F1 score of 0.71. The first panel in Figure 2 shows the SCs
that achieve the highest F1’s; the second panel shows SCs that
achieve relatively low F1’s. The results indicate that the classifier
performs poorer on SCs with relatively small sample sizes than
SCs with relatively large sample sizes. The data imbalance is likely
to contribute to the significantly different performances of SCs.

FIGURE 1 | Subject category (SC) classification architecture.
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6.2 Two-Level Classifier
To mitigate the data imbalance problems for the one-level
classifier, we train a two-level classifier. The first level classifies
abstracts into 81 SCs, including 80 major SCs and an “Others”
category, which incorporates 24 minor SCs. “Others” contains
the categories with training data < 10k abstracts. Abstracts
that fall into the “Others” are further classified by a second
level classifier, which is trained on abstracts belonging to the
24 minor SCs.

6.3 Baseline Methods
For comparison, we trained five supervised machine learning
models as baselines. They are Random Forest (RF), Naïve Bayes
(NB, Gaussian), Support Vector Machine (SVM, linear and
Radial Basis Function kernels), and Logistic Regression (LR).
Documents are represented in the same way as for the DANN
except that no word embedding is performed. Because it takes an
extremely long time to train these models using all data used for
training DANN, and the implementation does not support batch
processing, we downsize the training corpus to 150k in total and
keep training samples in each SC in proportion to those used in

DANN. The performance metrics are calculated based on the
same testing corpus as the DANN model.

We used the CCNN architecture (Zhang et al., 2015), which
contains six convolutional layers each including 1,008 neurons
followed by three fully connected layers. Each abstract is
represented by a 1,014 dimensional vector. Our architecture
for USE (Cer et al., 2018) is an MLP with four layers, each of
which contains 1,024 neurons. Each abstract is represented by a
512 dimensional vector.

6.4 Results
The performances of DANN in different settings and a
comparison between the best DANN models and baseline
models are illustrated in Figure 3. The numerical values of
performance metrics using the two-level classifier are tabulated
in Supplementary Table S1. Below are the observations from
results.

(1) FastText + BiGRU + Attn and FastText+BiLSTM + Attn
achieve the highest micro-F1 of 0.76. Several models achieve
similar results:GloVe + BiLSTM + Attn (micro-F1 � 0.75),

FIGURE 2 | Number of training documents (blue bars) and the corresponding F1 values (red curves) for best performance (top) and worst performance (bottom)
SC’s. Green line shows improved F1’s produced by the second-level classifier.
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GloVe + BiGRU + Attn (micro-F1 � 0.74), FastText + LSTM
+ Attn (micro-F1 � 0.75), and FastText + GRU + Attn
(micro-F1 � 0.74). These results indicate that the attention
mechanism significantly improves the classifier performance.

(2) Retraining FastText and GloVe significantly boosted the
performance. In contrast, the best micro-F1 achieved by
USE is 0.64, which is likely resulted from its relatively low
vocabulary overlap. Another reason could be is that the single
vector of fixed length only encodes the overall semantics of
the abstract. The occurrences of words are better indicators of
sentences in specific domains.

(3) LSTM and GRU and their bidirectional counterparts exhibit
very similar performance, which is consistent with a recent
systematic survey (Greff et al., 2017).

(4) For FastText + BiGRU + Attn, the F1 measure varies from
0.50 to 0.95 with a median of 0.76. The distribution of F1
values for 81 SCs is shown in Figure 4. The F1 achieved by
the first-level classifier with 81 categories (micro-F1 � 0.76) is
improved compared with the classifier trained on 104 SCs
(micro-F1 � 0.70)

(5) The performance was not improved by increasing the GloVe
vector dimension from 50 to 100 (not shown) under the
setting of GloVe + BiGRU with 128 neurons on two layers
which is consistent with earlier work (Witt and Seifert, 2017).

(6) Word-level embedding models in general perform better
than the character-level embedding models (i.e., CCNN).
CCNN considers the text as a raw-signal, so the word vectors
constructed are more appropriate when comparing
morphological similarities. However, semantically similar
words may not be morphologically similar, e.g., “Neural
Networks” and “Deep Learning.”

(7) SciBERT’s performance is 3–5% below FastText and GloVe,
indicating that re-trained WE models exhibit an advantage
over pre-trained WE models. This is because SciBERT was
trained on the PubMed corpus which mostly incorporates
papers in biomedical and life sciences. Also, due to their large
dimensions, the training time was greater than FastText
under the same parameter settings.

(8) The best DANN model beats the best machine learning
model (LR) by about 10%.

FIGURE 3 | Top: Micro-F1’s of our DANNmodels that classify abstracts into 81 SCs. Variants of models within each group are color-coded. Bottom: Micro-F1’s of
our best DANN models that classify abstracts into 81 SCs, compared with baseline models.
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We also investigated the dependency of classification
performance on key hyper-parameters. The settings of GLoVe
+ BiGRU with 128 neurons on two layers are considered as the
“reference setting.” With the setting of GloVe + BiGRU, we
increase the neuron number by factor of 10 (1,280 neurons on
two layers) and obtained marginally improved performance by
1% compared with the same setting with 128 neurons. We also
doubled the number of layers (128 neurons on four layers).
Without attention, the model performs worse than the
reference setting by 3%. With the attention mechanism, the
micro-F1 � 0.75 is marginally improved by 1% with respect to
the reference setting. We also increase the default number of
neurons of USE to 2048 neurons for four layers. The micro-F1
improves marginally by 1%, reaching only 0.64. The results
indicate that adding more neurons and layers seem to have
little impact to the performance improvement.

The second-level classifier is trained using the same neural
architecture as the first-level on the “Others” corpus. Figure 2
(Right ordinate legend) shows that F1’s vary from 0.92 to 0.97
with a median of 0.96. The results are significantly improved by
classifying minor classes separately from major classes.

7 DISCUSSION

7.1 Sampling Strategies
The data imbalance problem is ubiquitous in both multi-class
and multi-label classification problems (Charte et al., 2015).
The imbalance ratio (IR), defined as the ratio of the number of
instances in the majority class to the number of samples in the
minority class (García et al., 2012), has been commonly used to
characterize the level of imbalance. Compared with the
imbalance datasets in Table 1 of (Charte et al., 2015), our
data has a significantly high level of imbalance. In particular,
the highest IR is about 49,000 (#Physics/#Art). One commonly
used way to mitigate this problem is data resampling. This

method is based on rebalancing SC distributions by either
deleting instances of major SCs (undersampling) or
supplementing artificially generated instances of the minor
SCs (oversampling). We can always undersample major SCs,
but this means we have to reduce sample sizes of all SCs down
to about 15 (Art; Section 5), which is too small for training
robust neural network models. The oversampling strategies
such as SMOTE (Chawla et al., 2002) works for problems
involving continuous numerical quantities, e.g., SalahEldeen
and Nelson (2015). In our case, the synthesized vectors of
“abstracts” by SMOTE will not map to any actual words
because word representations are very sparsely distributed
in the large WE space. Even if we oversample minor SCs
using semantically dummy vectors, generating all samples
will take a large amount of time given the high
dimensionality of abstract vectors and high IR. Therefore,
we only use real data.

7.2 Category Overlapping
We discuss the potential impact on classification results
contributed by categories overlapping in the training data. Our

FIGURE 4 | Distribution of F1’s across 81 SC’s obtained by the first level classifier.

TABLE 1 | Results of the top 10 SCs of classifying one million research papers in
CiteSeerX, using our best model.

Rank Subject categories Fraction (%)

1 Biology 23.85
2 Computer science 19.17
3 Mathematics 5.06
4 Engineering 4.97
5 Public environment 3.45
6 Physics 3.16
7 Environmental sciences 1.81
8 Astronomy astrophysics 1.79
9 Neurosciences neurology 1.52
10 Chemistry 1.47
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initial classification schema contains 104 SCs, but they are not all
mutually exclusive. Instead, the vocabularies of some categories
overlap with the others. For example, papers exclusively labeled as
“Materials Science” and “Metallurgy” exhibit significant overlap
in their tokens. In the WE vector space, the semantic vectors
labeled with either category are overlapped making it hard to
differentiate them. Figure 5 shows the confusion matrices of the
closely related categories such as “Geology,” “Mineralogy,” and
“Geochemistry Geophysics.” Figure 6 is the t-SNE plot of
abstracts of closely related SCs. To make the plot less
crowded, we randomly select 250 abstracts from each SC as
shown in Figure 5. Data points representing “Geology,”
“Mineralogy,” and “Geochemistry Geophysics” tend to spread
or are overlapped in such a way that are hard to be visually
distinguished.

One way to mitigate this problem is to merge overlapped
categories. However, special care should be taken on whether
these overlapped SCs are truly strongly related and should be
evaluated by domain experts. For example, “Zoology,”
“PlantSciences,” and “Ecology” can be merged into a single SC
called “Biology” (Gaff, 2019; private communication). “Geology,”
“Mineralogy,” and “GeoChemistry GeoPhysics” can be merged
into a single SC called “Geology.” However, “Materials Science”
and “Metallurgy” may not be merged (Liu, 2019; private
communication) to a single SC. By doing the aforementioned

merges, the number of SCs is reduced to 74. As a preliminary
study, we classified the merged dataset using our best model
(retrained FastText + BiGRU + Attn) and achieved an
improvement with an overall micro-F1 score of 0.78. The
classification performance of “Geology” after merging has
improved from 0.83 to 0.88.

7.3 Limitations
Compared with existing work, our models are trained on a
relatively comprehensive, large-scale, and clean dataset from
WoS. However, the basic classification of WoS is at the
journal level and not at the article level. We are also aware
that the classification schema of WoS may change over time.
For example, in 2018, WoS introduced three new SCs such as
Quantum Science and Technology, reflecting emerging research
trends and technologies (Boletta, 2019). Tomitigate this effect, we
excluded papers with multiple SCs and assume that the SCs of
papers studied are stationary and journal level classifications
represent the paper level SCs.

Another limitation is the document representation. The BoW
model ignores the sequential information. Although we
experimented on the cases in which we keep word tokens in
the same order as they appear in the original documents, the
exclusion of stop words breaks the original sequence, which is the
input of the recurrent encoder. We will address this limitation in

FIGURE 5 | Normalized Confusion Matrix for closely related classes in which a large fraction of “Geology” and “Mineralogy” papers are classified into
“GeoChemistry GeoPhysics” (A), and a large fraction of Zoology papers are classified into “biology” or “ecology” (B), a large fraction of “TeleCommunications,”
“Mechanics” and “EnergyFuels” papers are classified into “Engineering” (C).
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future research by encoding the whole sentences, e.g., Yang et al.
(2016).

8 APPLICATION TO CITESEERX

CiteSeerX is a digital library search engine that was the first to
use automatic citation indexing (Giles et al., 1998). It is an
open source search engine that provides metadata and full-text
access for more than 10 million scholarly documents and
continues to add new documents (Wu et al., 2019). In the
past decade, it has incorporated scholarly documents in
diverse SCs, but the distribution of their subject categories
is unknown. Using the best neural network model in this work
(FreeText + BiGRU + Attn), we classified one million papers
randomly selected from CiteSeerX into 104 SCs (Table 1). The
fraction of Computer Science papers (19.2%) is significantly
higher than the results in Wu et al. (2018), which was 7.58%.
The F1 for Computer Science was about 0.94 for Computer
Science which is higher than this work (about 0.80).
Therefore, the fraction may be overestimated here. However
Wu et al. (2018), had only six classes and this model classifies
abstracts into 104 SCs, so although this compromises the
accuracy (by around 7% on average), our work can still be
used as a starting point for a systematic SC classification. The
classifier classifies one million abstracts in 1,253 s implying
that will be scalable on multi-millions of papers.

9 CONCLUSION

We investigated the problem of systematically classifying a large
collection of scholarly papers into 104 SC’s using neural network
methods based only on abstracts. Our methods appear to scale
better than existing clustering-based methods relying on citation
networks. For neural network methods, our retrained FastText or
GloVe combined with BiGRU or BiLSTM with the attention
mechanism gives the best results. Retraining WE models and
using an attention mechanism play important roles in improving
the classifier performance. A two-level classifier effectively
improves our performance when dealing with training data
that has extremely imbalanced categories. The median F1’s
under the best settings are 0.75–0.76.

One bottleneck of our classifier is the overlapping categories.
Merging closely related SCs is a promising solution, but should be
under the guidance of domain experts. The TF-IDF
representation only considers unigrams. Future work could
consider n-grams or concepts (n≥ 2) and transfer learning to
adopt word/sentence embedding models trained on non-
scholarly corpora (Arora et al., 2017; Conneau et al., 2017).
One could investigate models that also take into account stop-
words, e.g., Yang et al. (2016). One could also explore alternative
optimizers of neural networks besides Adam, such as the
Stochastic Gradient Descent (SGD). Our work falls into the
multiclass classification, which classifies research papers into
flat SCs. In the future, we will investigate hierarchical

FIGURE 6 | t-SNE plot of closely related SCs.
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multilabel classification that assigns multiple SCs at multiple
levels to papers.
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