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The COVID-19 pandemic constitutes an ongoing worldwide threat to human society and
has caused massive impacts on global public health, the economy and the political
landscape. The key to gaining control of the disease lies in understanding the genetics of
SARS-CoV-2 and the disease spectrum that follows infection. This study leverages
traditional and intelligent bibliometric methods to conduct a multi-dimensional analysis
on 5,632 COVID-19 genetic research papers, revealing that 1) the key players include
research institutions from the United States, China, Britain and Canada; 2) research topics
predominantly focus on virus infection mechanisms, virus testing, gene expression related
to the immune reactions and patient clinical manifestation; 3) studies originated from the
comparison of SARS-CoV-2 to previous human coronaviruses, following which research
directions diverge into the analysis of virus molecular structure and genetics, the human
immune response, vaccine development and gene expression related to immune
responses; and 4) genes that are frequently highlighted include ACE2, IL6, TMPRSS2,
and TNF. Emerging genes to the COVID-19 consist of FURIN, CXCL10, OAS1, OAS2,
OAS3, and ISG15. This study demonstrates that our suite of novel bibliometric tools could
help biomedical researchers follow this rapidly growing field and provide substantial
evidence for policymakers’ decision-making on science policy and public health
administration.
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INTRODUCTION

The COVID-19 pandemic has developed into an unprecedented global crisis that impacts daily lives
and healthcare services provision of human beings. To stop its spread and efficiently control it, the
biomedical research community has responded proactively on multiple fronts, including in the field
of genetic research. By deciphering the genetic mechanisms underlying the body’s response to SARS-
CoV-2 infection, we can arrive at a better understanding of COVID-19 pathogenesis, diagnosis,
treatment, and, potentially, prevention, such as the optimization of vaccine development. In practical
terms, multiple efforts on COVID-19 genetic research have resulted in a substantial amount of
research publications (Chua et al., 2020; Shin et al., 2020; Wrobel et al., 2020; Pairo-Castineira et al.,
2021). However, the downside of this productivity is that the quantity of COVID-19 literature
proliferates and results in difficulties for researchers in comprehending this field’s changing
knowledge landscape, particularly regarding the emerging information on various genes involved
in COVID-19 response.
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Bibliometrics is a subject that deciphers the patterns of
scientific activities by quantitively tracking and measuring
research activities. Traditional bibliometric approaches exploit
statistical models to analyze bibliographic information such as
author entities, keywords and citations and measure scientific
activities. In the medical domain, such approaches have been
successfully examined by multiple studies, such as profiling
research landscapes (Thompson and Walker, 2015; Liao et al.,
2018; Huang et al., 2019; Zhang L. et al., 2020) and discovering/
inferring knowledge associations (Hristovski et al., 2005; Porter
et al., 2020; Wu et al., 2021). Nowadays, artificial intelligence (AI)
and data science techniques have empowered current
bibliometrics with novel capabilities of excavating implicit
knowledge and inferring potential knowledge associations
from bibliometric data, which we named intelligent
bibliometrics (Zhang et al., 2020c).

The intensive growth of COVID-19 publications has triggered
considerable attention from the bibliometrics community. As
part of those studies, Colavizza et al. (2021) profiled the trending
research topics in the early-stage COVID-19 studies to indicate
the initial foci of such studies, Chahrour et al. (2020) presented
descriptive statistics of publication distribution and raised a call
for more observational studies and therapeutic trials, Fry et al.
(2020) revealed how COVID-19 has impacted and reshaped the
worldwide scientific collaboration landscape, Zhang et al. (2021a)
highlighted the disruption and resilience of research topics in
coronavirus studies due to the outbreak of COVID-19. Different
from other COVID-19 bibliometric studies, the study presented
here leverages multiple approaches of intelligent bibliometrics
and focuses specifically on the topic of COVID-19 genetic
research. It utilizes multiple traditional and novel bibliometric
analyses to profile the research landscape of this emerging field.
This study particularly addresses the following questions:

1) Who are the key players in COVID-19 genetic research?
2) What research topics are prevalently addressed in COVID-19

genetic studies?
3) How have the foci of genetic studies changed during the

COVID-19 crisis?
4) What specific genes are frequently highlighted and which ones

are emerging as relatively newly-described entities that may be
potentially important in COVID-19 genetic studies?

To answer these questions, we identified 5,632 COVID-19
genetic research articles within PubMed and applied a three-stage
analysis, including 1) performing co-occurrence analysis to
identify key players and core research topics in the field; 2)
employing a topic tracking method named scientific
evolutionary pathways (SEP) to trace the changing foci of
these research topics over time during the COVID-19
pandemic period; 3) utilizing bio-entity network analytics to
identify key genes and emerging genes in COVID-19 genetic
research. The results also identify top research institutions in this
field and their collaborating patterns, and some potential insights
in terms of science, technology and innovation from the rapidly
growing body of COVID-19 genetic research.

MATERIALS AND METHODS

The research framework of this study is given in Figure 1.

Data Collection
PubMed is a public biomedical literature database developed by
the National Library of Medicine (NIH) and comprises over 32
million medical articles and online books.1,2 Falagas et al. (2008)
recommend PubMed as the optimal bibliometric database for
medical and life sciences, which exactly coheres with the foci of
our study. Its advantage in biomedical information retrieval is
providing specialized functions like Medical Subject Heading
(MeSH) search and biomedical filters (including the species
filter we used in this work) to return precise results. While
consideringWeb of Science (WoS) is also a well-recognized data
source in traditional bibliometric studies, we compared the search
results ofWoS and PubMed using the same search string (the filter
and MeSH terms excluded) and noted that 93% of our collected
data are indexed by WoS, indicating a wide coverage of PubMed
data. Given that circumstances, in our study, we only exploited the
PubMed database as our data source.

Using the search strategy below, we collected a dataset of the genetic
research performed on COVID-19 and SARS-CoV-2 from PubMed:

(“"COVID-19/genetics”[MeSH Terms] OR
((“genes”[MeSH Terms] OR “genetics”[MeSH Terms]
OR “gene”[All Fields] OR “genes”[All Fields] OR
“genome”[All Fields] OR “genetics”[All Fields]) AND
(“COVID-19”[All Fields] OR “SARS-Cov-2”[All
Fields]))) AND (humans [Filter])

Search date: 08/03/2021

The search yielded 5,632 publications related to COVID-19
genetic research. We restricted the species to human since our
primary goal is only to explore the important human genes act in
COVID-19 infection.

Key Player Identification and Research
Landscape Profiling
Co-occurrence visualization, a type of science map, is a classical
and effective way of profiling the research landscape in a certain
field (Callon et al., 1983). The co-occurrence of authorship
entities like authors, affiliations and countries reflects
established collaborations at the individual, institutional or
international levels. The co-occurrence of research content
information like keywords or scientific terms in the same
context indicates similar semantic meanings and their high
probability of constituting a research topic. Visualization of

1Detailed information on the PubMed database could be found on the website:
https://pubmed.ncbi.nlm.nih.gov/
2Input data and the results can be assessed through the link: https://github.com/
IntelligentBibliometrics/COVID-19-genetic-research. Readers can use VOSViewer
to reproduce these interactive maps and explore the detailed connections between a
given node and others. The same for Figure 4.
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such co-occurrence networks could straightforwardly highlight
the key players or research communities in the field and reveal
trending research topics in a specific field.

A co-occurrence network could be denoted as G � (V , E)
where V represents the set of entities (authorship entities,
terms, etc.) and E means the set of co-occurrences between
entities. The co-occurrence network could also be represented
as an adjacency matrix A with:

Ai,j(i≠j) � {CF(i, j) if entity i and j co − occur in at least one document
0 otherwise

where CF(i, j)means the frequency (i.e., number of publications)
that entity i and j co-occur.

In the co-authorship network, considering the scale variation of
different author entities, we will normalize Ai,j by calculating the
Jaccard Coefficient of i and j (Salton and McGill, 1986):

Ai,j(i≠j) �
⎧⎪⎪⎨⎪⎪⎩

CF(i, j)
F(i) + F(j) − CF(i, j) if entity i and j co − occur in at least one document

0 otherwise

where F(i) means the occurring frequency (i.e., number of
publications) of entity i.

VOSViewer (Van Eck and Waltman, 2010) is utilized to
visualize the co-occurrence networks of co-term and co-
authorship. Note that all the parameters in VOSViewer are
following its default settings (e.g., attraction and repulsion
for layout, resolution and minimum cluster size for clustering).
The local moving algorithm integrated in VOSViewer is
simultaneously applied to identify communities in a

network, which is reflected as the grouping and coloring
strategy for its involved nodes.

Scientific Evolutionary Pathways
Scientific Evolutionary Pathway (SEP), developed by Zhang
et al. (2017), is a method of tracking the change of research
topics retrieved from a collection of scholarly literature. The
design of SEP adopts the assumption that scientific innovation
results from the accumulative changes and recombination of
existing knowledge (Fleming, 2001; Fleming and Sorenson,
2004). Algorithmically, SEP deems a document a collection
of scientific terms and represents the document set as a
document-term matrix. By dividing the literature dataset into
sequential slices according to their publication gaps (year or
month), SEP simulates scientific documents as streaming
vectors of terms with a given vocabulary collected from the
dataset and 1) extracts research topics via a K-means clustering
algorithm, 2) captures semantic drifts of topics to identify topic
evolution, and 3) represents topic evolutionary patterns by
predecessor-descendant relationships between topics. The
stepwise algorithm is given as follows:

Concept definition: A topic is denoted as T and defined as a
collection of articles represented by term vectors. Every topic has
two attributes: 1) the centroid c, which is represented by the mean
vector of all the articles that belong to the topic; and 2) the radius
r, which is represented by the largest Euclidean distance of the
centroid to every article in T.

Step 1: Initialize the document-term matrix and divide the
documents into time slices according to their publishing dates.

FIGURE 1 | The research framework.
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Step 2: Group articles in the first time slice (Slice 0) to an initial
topic Ti and label it with the top-frequency term, then calculate its
radius r and centroid c.

Step 3: For every article a in the next time slice (Slice 1), calculate
the article’s Euclidean distance E(a, c) between a and the topic’s
centroid c. If (E(a, c) − r)/r > σ (σ is a given threshold which is set
as 0.1 by default), it will be recognized as a drifted article to Ti,
otherwise the article will be classified as belonging to Ti.

Step 4: Once all articles in Slice 0 have been processed, update
the centroid and radius of Ti with these newly added articles. For
the drifted articles, use a K-means clustering algorithm to form a
new topic set {Tn}. All topics in {Tn} will be deemed as the
descendent topics of Ti.

Step 5: For the forthcoming time slices, iterate Steps 3–4 until
the last slice of the entire dataset. However, starting from Slice 2,
we will measure an article’s similarity with not only Ti but all the
existing topics (e.g., {Tn}), and assign the article to the most
similar topic based on Salton’s cosine similarity.

The outcome of SEP analysis is a set of topics with a time
stamp indicating when it was born and with directed links
representing their predecessor-descendent relationships.

Bio-Entity Network Analysis
Bio-entity network analysis is a method for literature-based
discovery proposed by Wu et al. (2021), which is used to
discover and infer genetic knowledge for a specific disease.
The method extracts bio-entity concepts from literature and
constructs a heterogeneous bio-entity co-occurrence network.
Further, it presents the extracted bio-entities comprehensively
based on their topological importance and specificities to the
target disease. In our case, we select disease, chemical, gene and
genetic variant as four representative bio-entities, and the co-
occurrence network is denoted as:

G � (Vd,c,g,v, Epairwise(d,c,g,v))
where d, c, g, v respectively represent the nodes of diseases,
chemicals, genes and genetic variants.

wViVj(i≠j) � {CF (Vi,Vj) if Vi and Vj co − occur in at least one document
0 otherwise

where wViVj(i≠ j) represent the weight of edge linking Vi and Vj.
Three node centralities are employed to measure the

importance of individual nodes in the whole network.
Referring to the discussion given by Zhang et al. (2021),
among the three centralities, degree centrality (DC) measures a
node’s ability to aggregate information, representing its local
influence within a network; closeness centrality (CC) measures
a node’s ability to disseminate information, as well as its global
influence on all other nodes within a network; betweenness
centrality (BC) represents a node’s ability to act as a bridge
between diverse information content, which calculates the
proportion of shortest paths going through the node. The
three centralities can be calculated as follows:

DC(Vi) �
∑k

k∈{d,c,g,v} ∑|Vk|
j�1 (1 if wViVk

j (i≠j) else 0)
|Vd,c,g,v| − 1

where Vi is the target node, Vk
j is the jth node in category

k ∈ {d, c, g, v}, ∣∣∣∣Vk
∣∣∣∣ is the number of nodes in the node set Vk,∣∣∣∣Vd,c,g,v

∣∣∣∣ is the number of nodes in the total node set.

CC(Vi) �
∣∣∣∣Vd,c,g,v

∣∣∣∣ − 1

∑k
k∈{d,c,g,v} ∑|Vk|

j�1 dViVk
j

where dViVk
j
denotes the shortest topological distance between Vi

and Vk
j .

BC(Vi) �
2∑x,y

x,y∈{d,c,g,v}∑|Vx |
a�1∑|Vy |

b�1
σ(Vx

aV
y
b)Vi

σ(Vx
aV

y
b)

(|Vd,c,g,v| − 1)(|Vd,c,g,v| − 2) (Vi ≠Vx
a ≠Vy

b )
where σ(Vx

aV
y
b ) denotes the number of shortest paths betweenVx

a
and Vy

b , σ(Vx
aV

y
b )Vi

is the number of shortest paths between Vx
a

and Vy
b that pass through Vi.

Apart from the centralities that reflect a node’s importance,
the method also utilizes another indicator named intersection
ratio to measure whether a gene is specific to the target disease.
The intersection ratio is calculated as follows:

IR(Vi) �
wViVt

d∑Vd

j�1wViVd
j

where Vt
d is the target disease, Vd is the set of disease nodes.

Three centralities together constitute the topological
importance of a node in a network. To comprehensively rank
this importance, we exploit an entropy-based algorithm (Grupp,
1990) to combine those centralities in a data-driven way. Briefly,
we initially normalize the values of each centrality using the min-
max normalization approach and then calculate the entropy of
each normalized centrality and get its weight, respectively. The
combined centrality of every individual node can eventually be
finalized with those data-driven weights. Using DC, the value set
of the degree centrality, as an example, we calculate the weight of
DC as follows:

Step 1: Normalize each centrality value set:

nDC(Vi) � DC(Vi) −min(DC)
max(DC) −min(DC)

where DC is the value set of the degree centrality, max(DC) and
min(DC) is respectively the maximum and minimum value in
this set.

Step 2: Calculate the entropy of each centrality:

HDC � − 1
ln|V| ∑|V|

i

nDC(Vi)ln(nDC(Vi))

where V is the collection of all nodes in the given network.

Step 3: Calculate the weight of each centrality according to the
entropy, when we get the entropy of all three centralities:

wDC � 1 − HDC

3 − (HDC + HBC +HCC) (0≤wDC ≤ 1)

Step 4: Finalize the centrality combination value for every
individual node:
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Centralities combination(Vi) � wDCnDC(Vi) + wCCnCC(Vi)
+ wBCnBC(Vi)

RESULTS

To conduct the analyses above in a systematic manner, we utilized a
one-stop platform that integrates multiple bibliometric methods
developed in our pilot studies (Zhang et al., 2020d; Wu et al.,
2020). This platform contains six modules, including PubMed/PMC
data import filter, bibliographic information statistics, co-occurrence
analysis, research collaboration prediction, semantic similarity-based

document search and SEP analysis. By feeding the raw data from
PubMed into our bibliometric platform, we could efficiently generate
results and then present these graphically with the aid of multiple
visualizing tools, such as Gephi and VOSViewer.

Key Players and Topics Identification
Apart from 623 publications that either miss publication month
information or published after February 2021, we presented the
monthly change of the numbers of publications in Figure 2. We
could see a clear overall blooming trend of publications since
January 2020. The downward trend starting in August 2020 may
indicate that the stage shifts of COVID pandemic status has an
influence on related academic research.

FIGURE 2 | Monthly trend of the number of publications.

TABLE 1 | Top 20 prolific countries, research institutions and journals in this emerging field.

Ranking Country Research Institution Journal

1 United States (1811) University of California (183)—United States Journal of Medical Virology (150)
2 China (1,030) University of Texas (104)—United States PLoS One (130)
3 United Kingdom (560) University of Hong Kong (93)—China Scientific Reports (100)
4 Italy (534) University of Oxford (92)—United Kingdom Nature (88)
5 Germany (359) Wuhan University (76)—China Viruses (82)
6 India (320) University of Washington (76)—United States Nature Communication (70)
7 France (299) University of Pennsylvania (71)—United States Frontiers in Immunology (70)
8 Canada (274) Stanford University (63)—United States International Journal of Infectious Diseases (68)
9 Spain (214) University College London (59)—United Kingdom Science (67)
10 Australia (196) University of Cambridge (58)—United Kingdom Emerging Microbes & Infections (64)
11 Brazil (173) Massachusetts General Hospital (58)—

United States
Journal of Clinical Virology (62)

12 Japan (150) University of Chinese Academy of Sciences
(55)—China

Medical Hypotheses (62)

13 Switzerland (141) Tongji Hospital (54)—China International Journal of Molecular Sciences (57)
14 Iran (140) Columbia University (52)—United States Cell (50)
15 South Korea (115) University of Toronto (52)—Canada Journal of Clinical Microbiology (46)
16 Belgium (105) University of Edinburgh (51)—United Kingdom Infection, Genetics and evolution (45)
17 Turkey (98) University of Milan (51)—Italy Signal Transduction and Targeted Therapy (44)
18 Sweden (88) Brigham and Women’s Hospital (51)—

United States
Proceedings of the National Academy of Sciences of the
United States of America (42)

19 Saudi Arabia (67) Peking Union Medical College (50)—China BMC Infectious Diseases (41)
20 Austria (67) Fudan University (48)—China Eurosurveillance (39)
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We implemented a set of pre-processing and disambiguation
approaches to clean affiliation names and terms retrieved from
combined titles and abstracts. Ranking by the total number of
publications, we present the top 20 countries, research
institutions and journal names in Table 1. At the country
level, the United States and China are still leading this
domain, followed by the United Kingdom, Italy, Germany, etc.
From the institutional perspective, the top 20 most prolific
institutions consist of eight institutions from the United States,
six from China, four from the United Kingdom, and one each
from Canada and Italy (the other major pandemic center in early
2020, besides China). Interestingly, compared to China’s
leadership in pioneering general COVID-19 research at the
early stage of the COVID-19 pandemic (Fry et al., 2020),
prestigious universities from the United States and
United Kingdom have become leaders in this domain,
particularly in COVID-19 genetic research. The journal
distribution of COVID-19 genetic research reflects that
virology journals published the largest number of papers, and
prestigious journals such as Nature, Science, Cell and PNAS also
show an inclined favor for such studies.

Then we conducted co-occurrence analysis to cleaned
affiliations and terms and generated a co-authorship network
and a co-term network. With the aid of VOSviewer, the
visualizations of the co-authorship network and word co-
occurrence network are shown in Figures 3, 4.

As shown in Figure 3, we can observe global collaborating
patterns on COVID-19 genetic research. When the size of each
node is measured by the sum of Jaccard Coefficients that the
represented institution has with all its collaborators, it then
reflects its representing institution’s collaborative strength in
this field. Located at the center of this network, United States
universities, such as the University of California systems and the
University of Washington, have established broad and close
international collaborations with worldwide institutions during
the crisis. Research institutions from Europe and the
United Kingdom share intensive partnerships with
United States institutions. Comparably, Chinese institutions
show strong domestic collaborations but have relatively sparse
links with their international counterparts. Political issues might
be a hidden reason behind this phenomenon, but the national
border restrictions may play a crucial role in limiting
collaborations within relatively small but well-established
groups (Fry et al., 2020; Cai et al., 2021).

In Figure 4, the co-term network is partitioned into four
communities with different colors: Virus infection mechanisms
(red), virus testing (yellow), gene expression related mainly to the
immune response to COVID-19 (blue) and COVID-19 clinical
manifestation (green).

The network shows the relatedness and relationships within
and between these four main areas of scientific efforts. The red
community mostly covers molecular concepts related to the

FIGURE 3 | The co-authorship network of research institutions (normalized by Jaccard Coefficient).2
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mechanism of virus infection, like the virus spike protein S1,
antigen, pathogen, host and vaccine. The yellow community
groups terms related to testing techniques such as RNA,
nucleic acid, RT-qPCR and chain reaction. The blue
community indicates gene expression, explicitly demonstrating
genes and proteins involved in this broad area of research,
including immune system cell types (macrophage; neutrophil),
cell components (cell surface), cell surface markers (CD8), and
immune response genes (IL6; interferon). Lastly, terms in the
green community mostly describe the clinical phenotypes and
manifestation of COVID-19 and epidemiological information,
including China, the United States and mortality.

Topic Evolution
The SEP approach was applied to the 5,166 publications before
April 2021. With the aid of Gephi (Bastian et al., 2009), we
visualized the SEP on COVID-19 genetic research between
January 2020 and April 2021 and present it in Figure 5. In
this figure, 85 nodes are generated and linked by directed edges,
representing their predecessor-descendant relationships,
i.e., evolutionary patterns. Every topic name is followed by a
bracketed time label, indicating when the topic was born. The
descriptive statistics of the SEP is given in Table 2. We further
applied an approach of community detection integrated in Gephi
to group these topics into communities (with colors).

As given in Figure 5, during the 15 months, topics on COVID-
19 genetic research have evolved into five communities, that is, #1
virus molecular structure, #2 virus testing, #3 human immune
response, #4 vaccine development, and #5 gene expression.

Tracing back to the early stage of COVID-19 genetic research,
most of the studies focus on the genetic similarity of COVID-19
with previous prevalent coronaviruses like severe acute
respiratory syndrome coronavirus (SARS-CoV) and Middle
East respiratory syndrome coronavirus (MERS-CoV). With this
as a starting point, community #1 (the green branch) maps
research on the molecular structure of viruses, including its
probable source of origin (bat), genome sequence, how the
virus invades the host cell and how the spike protein acts
during the infection process, etc. Community #2 (the purple
branch) details another research direction of COVID-19 testing
and screening and covers a wide variety of topics like clinical
manifestations (fever, cough, cell count), testing method (viral
RNA testing) and techniques (reverse transcription-polymerase
chain reaction test, which is regarded as the “gold standard” of
virus RNA testing), test sensitivity, etc. This community reflects
that genetic research on virus testing gathers substantial attention
in the mid-term research of COVID-19. Community #3 (the red
branch) on the right side concentrates on the body reaction of
humans to COVID-19 infection. This community consists of
concepts detailing the clinical manifestations and immune

FIGURE 4 | The co-occurrence network of scientific terms.
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reactions in human cells. For example, the cytokine storm, which
is postulated to be one of the major reasons for severe disease
progression, is the result of an overreaction of the human
immune system. Community #4 vaccine development is
derived from the branch of immunological research and
becomes a relatively outlying research focus. Along with this
timeline, the specific process within human cells is also frequently
studied as presented in community #5 gene expression, where
ACE2 and TMPRSS2, two of the key genes involved in the viral
infection process, are highlighted.

Bio-Entity Network Analysis
Entity Extraction and Pre-processing
We utilized Pubtator (Wei et al., 2019), a deep learning-based
entity extraction tool developed by the National Library of
Science (NLM), to extract biomedical concepts from titles and
abstracts of the collected research papers. The raw output from
Pubtator is lists of biomedical concepts with exclusive identifiers.

We then employed multiple biomedical dictionaries, including
Medical Subject Headings,3 NCBI gene dictionary of Homo
sapiens,4 as well as a single nucleotide polymorphism (SNP)
dictionary from the dbSNP database,5 to map those concepts
to unified bio-entities.

The extraction process resulted in 48,201 raw biomedical
concepts, including diseases, chemicals, genes and genetic
variants. We then mapped every concept to its related
dictionary and applied two cleaning steps to remove noise
(Step 1) and consolidate synonyms (Step 2). 2,573 unique bio-
entities were retrieved after the cleaning steps, with the stepwise
results presented in Table 3. The 2,573 bio-entities were then
used to construct a heterogeneous co-occurrence network.

FIGURE 5 | The SEP on COVID-19 genetic research between January 2020 and April 2021.

TABLE 2 | The basic statistics of 85 topics.

Node number Maximum publication numbera Minimum publication numbera Standard deviation

85 321 3 84.374
MERS-CoV [2020 January]—321 Etiological agent [2021 January]—3
SARS-CoV [2020 January]—320 Human lung [2021 January]—3
Transcription [2020 May]—309 Cell count [2021 February]—3
Pneumonia [2020 June]—208 Healthcare worker [2021 February]—3

aWe list the top four topics that contain the largest/smallest numbers of publications in the table.

3https://www.ncbi.nlm.nih.gov/mesh/
4https://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.
gene_info.gz
5https://www.ncbi.nlm.nih.gov/snp/
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The co-occurrence network of the 2,573 entities contains
31,848 edges. The counts of different types of edges are given
in Table 4.

Profiling Bio-Entities
Based on the frequencies of those identified bio-entities, we list
the top 10 highly frequent bio-entities in Table 5. The monthly
changes of those entities regarding their frequency are provided
in Figure 6. Genetic variation is not given due to the relatively
small amount of data in this category. We only traced the data to
January 2021 since the latter collection is incomplete due to the
publishing lags.

In general, the frequencies of the top 10 entities in each
category keep increasing during the pandemic. Predictably,
ACE2 is the top mentioned gene with a noticeable frequency
gap with the following genes in Figure 6A. This is mainly because
ACE2 is the primary functional receptor for the SARS-CoV-2
virus in human cells (Zheng Y.-Y. et al., 2020). Next, Figure 6B
profiles co-morbidities discussed in COVID-19 genetic studies,
besides those symptoms and COVID-19 manifestations, such as

cough, respiratory distress syndrome and inflammation, key co-
morbidities in COVID-19 genetic studies include neoplasms,
diabetes and hypertension. Noteworthy, Figure 6C presents
multiple prevalent drug treatments that were utilized and
trialed for COVID-19, including hydroxychloroquine,
azithromycin, remdesivir and the lopinavir-ritonavir drug
combination, indicating that the pharmacogenomics of those
drugs is also a major interest of this domain.

Emerging Gene Discovery
We applied the approach of bio-entity network analytics and
attributed each node of genes with two indicators: centrality
combination and intersection ratio. We then normalized the
two indicators as X-axis Intersection Ratio and Y-axis
Centrality Combination and located all genes in a coordinate
system in Figure 7. According to our design, a high value of
centrality combination may indicate the importance/impact of a
given gene to relatively broad domains of the target disease, while
a high value of intersection ratio may represent the specialty of a
given gene to the target disease.

When COVID-19 is the target disease of our study, the
centrality combination indicates the strength of a gene’s
contribution to broad COVID-19 related concepts, while the
intersection ratio reveals the strength of a gene’s specific
relationship to COVID-19. From the perspective of centrality
combination, we could identifyACE2, IL6, TMPRSS2, and TNF as
the set of frequently highlighted genes. ACE2 is the major
functional receptor for the SARS-CoV-2 virus (Zheng Y.-Y.
et al., 2020). TMPRSS2 is an enzyme that primes the spike S

TABLE 3 | Stepwise results of the pre-processing procedure.

Raw Step 1 Cleaned Step 2 Nodes

Disease 31,974 Removed noisy concepts like “cardioembolic”, “JAGS”, “nonvitamin”, etc. that could not be mapped to
MeSH

31,963 MeSH 801
Chemical 4,494 3,724 678
Gene 11,211 Excluded genes that do not belong to Homo-sapiens 8,781 NCBI

Gene
968

Gene variant
DNA mutation 69 Removed variants with unclear loci (i.e., could not be mapped to an SNP ID) 17 dbSNP 126
Protein
mutation

349 91

SNP 104 — 104
Total 48,201 — 44,680 — 2,573

TABLE 4 | Counts of the different types of edges.

Disease Chemical Gene Genetic variant

Disease 8,231 4,872 6,966 499
Chemical 4,872 2,121 2,268 37
Gene 6,966 2,268 5,692 385
Genetic Variant 499 37 385 777

TABLE 5 | The top 10 entities ranked by the raw frequency.

Ranking Disease Chemical Gene Genetic variant

1 Death Oxygen ACE2 rs2285666
2 Pneumonia Hydroxychloroquine TMPRSS2 rs12329760
3 Inflammation Remdesivir IL6 rs4646116
4 Fever Serine CRP rs11385942
5 Neoplasms Chloroquine TNF rs12252
6 Respiratory distress syndrome, adult Lipids CD4 rs1244687367
7 Cough Azithromycin ACE rs143936283
8 Diabetes mellitus Lopinavir-ritonavir drug combination CD8A rs73635825
9 Hypertension Nitrogen IFNG rs8176746
10 Zoonoses Aldosterone FURIN rs8176719
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protein of the SARS-CoV-2 virus to promote virus entry
(Hoffmann et al., 2020b), IL6 and TNF are pro-inflammatory
cytokines that are found generally elevated in severe COVID-19
patients (Cao, 2020). From the perspective of intersection ratio,
we present Figure 8 to zoom into those emerging genes.

Figure 8 zooms in to some recently mentioned genes in the
literature, which own both high intersection ratio and centrality
combination in the first quadrant of Figure 7. The potential role
of these “emerging” genes and their products in COVID-19 is
discussed below:

FURIN: FURIN is an essential cleavage enzyme for the spike
protein of SARS-CoV-2 in the virus infection process. From the
biochemical perspective, Klimstra et al. (2020) identified the

association between a putative furin cleavage signal generated
by a novel insertion of the SARS-CoV-2 spike S glycoprotein and
the expanded host range. Wrobel et al. (2020) discovered that the
cleavage at the furin-cleavage site decreases the overall stability of
SARS-CoV-2 S and facilitates the adoption of the open
conformation required for the viral S (spike) protein to bind
to the ACE2 receptor. From the treatment perspective, Hoffmann
et al. (2020a) highlighted that obtaining a S1/S2 multibasic
cleavage site was essential for COVID-19 infection and
indicated furin as a potential target for therapeutic
intervention. A similar finding was also presented by Sallenave
and Guillot (2020), whose study identified a furin-like cleavage
site in SARS-CoV-2 to facilitate the S protein priming, they also

FIGURE 6 | Top 10 genes (A), co-morbidities (B) and chemicals (C) in COVID-19 genetic research between December 2019 and January 2021.
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claimed that furin inhibitors can be targeted as potential drug
therapies for SARS-CoV-2.

CXCL10: CXCL10 is a frequently studied gene in multiple
COVID-19 genetic studies (Bermejo-Martin et al., 2020; Chua
et al., 2020; Hou et al., 2020; Parkinson et al., 2020; Xiong et al.,
2020; Han et al., 2021; Tan et al., 2021). Among those studies, a paper
published on Nature Biotechnology identified that critical COVID-19
cases had shown stronger interactions between epithelial and immune
cells which includes inflammatory macrophages expressing CXCL10
(Chua et al., 2020). Bermejo-Martin et al. (2020) reported that viral
RNA load in plasma correlates with higher chemokines levels,
including CXCL10 and CCL2. Xiong et al. (2020) also indicated
the association between COVID-19 pathogenesis and excessive
cytokine release, including CXCL10/IP-10.

OAS1, OAS2, OAS3, IFIT1, IFIT3, IFI44, IFI44L and IFITM1:
Current COVID-19 genetic studies incline to analyze those genes
together. In a paper published in Nature, Pairo-Castineira et al.
(2021) identified a significant genetic variant rs10735079 associated
with critical illness of COVID-19 in the gene cluster encodesOAS1,
OAS2, and OAS3. Interestingly, recent work on archaic human
(Neandertal) DNA has identified an additional haplotype in the
region of Chromosome 12 containing OAS1,OAS2, andOAS3 that
protects against severe COVID-19 (Zeberg and Paabo, 2020).
Klaassen et al. (2020) identified six genetic variants in innate
immunity-related genes, including OAS1 (p.Arg130His), which
might have predictive value for COVID-19 infection. Besides,
IRF9, IFIT1, IFITM1, MX1, OAS2, OAS3, IFI44 and IFI44L
were found to be upregulated in the COVID-19 infected normal

human bronchial epithelial cells (Vishnubalaji et al., 2020).
Similarly, Prasad et al. (2020) also found that some interferon-
stimulated genes can be considered as potential candidates for drug
targets in COVID-19 treatment. Those genes include IFIT1,
IFITM1, IRF7, ISG, MX1, and OAS2. Shi et al. (2021) showed
that COVID-19 infections are generally restricted by IFITM1,
IFITM2 and IFITM3 using gain- and loss-of-function approaches.

ISG15: The findings of ISG15 are mostly related to the papain-
like proteases (PLpro) encoded by the SARS-CoV-2 coronavirus.
A paper published in Nature revealed a unique preference of
SARS-CoV-2 coronavirus of cleaving ubiquitin-like interferon-
stimulated gene 15 protein (ISG15), which is different from
SARS-CoV (Shin et al., 2020). This study also indicated that
SARS-CoV-2 papain-like protease contributes to the cleavage of
ISG15 from interferon responsive factor 3 (IRF3) and attenuates
type I interferon responses. Klemm et al. (2020) specified that the
structure of the SARS-CoV-2 PLpro reveals that S1 ubiquitin-
binding site is responsible for high ISG15 activity, while the S2
binding site provides Lys48 chain specificity and cleavage
efficiency. Freitas et al. (2020) evaluated the biochemical
activity of SARS-CoV-2 PLpro and ISG15 with its
counterparts in MERS-CoV and SARS-CoV. They indicated
that naphthalene based PLpro inhibitors are shown to be
effective at halting SARS-CoV-2 PLpro activity as well as
SARS-CoV-2 replication.

IRF3: Zheng et al. (2020b) found that the interaction of COVID-
19M-protein with RIG-1, MAVS, and TBK1 inhibits the
formation of multiprotein complexes of those proteins encoded

FIGURE 7 | Emerging gene discovery for COVID-19 genetic research.
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by these genes and subsequently prevents the activation of IRF3.
Moustaqil et al. (2020) Identified COVID-19 NSP3 and NSP5
protease’s new functions of specifically and selectively cleaving
IRF-3, NLRP12 and TAB1. Lévy et al. (2021) reported a case of
IFN-α2a therapy in two patients with inborn errors of TLR3 and
IRF3 infected with COVID-19. Yin et al. (2020) found that IRF3,
IRF5 and NF-κB/p65 are the key transcription factors regulating
the IFN response during SARS-CoV-2 infection.

TNFAIP3: Protein and protein interaction analysis from Islam
et al. (2020) indicated that TNFAIP3 is one of the kye hub genes
that have good binding affinities with repurposed COVID-19
drug candidates which includes dabrafenib, radicicol and AT-
7519. Li et al. (2021) observed the bimodal gene expression of
TNFAIP3 in various immune cells from severely infected
COVID-19 patients.

The overlapping genes in Group 1 are investigated in a single
paper (Shaath et al., 2020). They identified neutrophils (IFITM2,
IFITM1, H3-H3B, SAT1 and S100A8) and macrophage cluster-1
(CCL8, CCL3, CCL2, KLF6 and SPP1) as the main immune cell
subsets associated with severe COVID-19 cases. They also found
that some upstream regulators (IFNG, PRL, TLR7, PRL, TGM2,
TLR9, IL1B, TNF, NFKB, IL1A, STAT3, CCL5) were enriched in
bronchoalveolar lavage cells in severe COVID-19 cases compared
to the mild cases. Besides, a number of genes found in both mild
and severe COVID-19 cases (IFI27, IFITM3, IFI6, IFIT3, MX1,

IFIT1, OASL, IFI30, OAS1) and genes only in severe cases
(S100A8, IFI44, IFI44L, CXCL8, CCR1, PLSCR1, EPSTI1,
FPR1, OAS2, OAS3, IL1RN, TYMP, BCL2A1) are reported as well.

MIR361: miRNAs are important regulators of viral
pathogenesis, particularly among RNA viruses. Pierce et al.
(2020) verified the biological plausibility of the predicted
miRNA-target RNA interactions, in which miRNA361 binds
to the SARS-CoV-2 IFN-α 3′-UTR. Li et al. (2020) showed
that hsa-miR-361-3P is one of the top upregulated or
downregulated genes in COVID-19 patients compared to the
healthy controls.

IFNL3: Stevenson et al. (2021) claimed IFNL3 as one of the
predictive markers for severe symptoms of COVID-19 based on
analysis of serum chemokines and cytokines from COVID-19
patents, while another pharmacogenomic study did not find the
potential of IFNL3 in modifying treatments (Sugiyama et al.,
2020). Instead, it identifies CYP2D6 and CYP2C19 as the two
likely best targets for treatment modification, especially by
ondansetron, oxycodone, and clopidogrel.

DISCUSSION AND CONCLUSION

The COVID-19 pandemic remains a worldwide threat to human
health, the global economy and the political landscape.

FIGURE 8 | Emerging gene discovery for COVID-19 genetic research–detailed partial view. Note: This figure is a zoom-in map for the red broken-line box in
Figure 7.

Frontiers in Research Metrics and Analytics | www.frontiersin.org May 2021 | Volume 6 | Article 68321212

Wu et al. Profiling COVID-19 Genetic Research

https://www.frontiersin.org/journals/research-metrics-and-analytics
www.frontiersin.org
https://www.frontiersin.org/journals/research-metrics-and-analytics#articles


Controlling the pandemic and strengthening disease prevention
and treatment could be the top priority of the entire globe.
Despite hopes from vaccine rollouts, there is still substantial
knowledge about this virus waiting for discovery and
understandings. Whereas a large number of studies on
COVID-19 genetic research has been done since the beginning
of the COVID-19 pandemic, keeping up with this rapid change is
challenging scientific researchers and policymakers. This paper
comprehensively analyzed research papers on COVID-19 genetic
research published during this pandemic period. We
incorporated co-occurrence analysis, scientific evolutionary
pathways, and bio-entity network analytics to conduct multi-
dimensional tasks of knowledge discovery, particularly with the
following four research questions:

Q1: Who are the key players in COVID-19 genetic research?
Universities from the United States are leading this domain,

and research institutions from China, the United Kingdom, and
Canada closely follow. Investigations on their collaboration
patterns reveal among those leading countries, China tends to
have strong domestic collaborations while other countries incline
to establish international collaborations with each other.

Q2: What are the key research topics prevalently addressed in
COVID-19 genetic research?

Figure 4 reveals four major research topics in this field, that is,
virus infection mechanisms, virus testing, gene expression related
to the immune response to COVID-19 and COVID-19 clinical
manifestation.

Q3: How do the foci of genetic studies change during the
COVID-19 crisis?

As indicated in Figure 5, the initial focus of COVID-19 genetic
research is comparative studies between this novel coronavirus
and previously discovered coronaviruses, including SARS-CoV
and MERS-CoV. Starting from the mid-term of the COVID-19
crisis, this research focus diverges into the analysis of virus
molecular structure and the human immune response.
Further, derived from the direction of human immune
response, vaccine development and gene expression related
immunology become two emerging directions in this field.

Q4:Which specific genes are frequently highlighted and which
ones are potentially emerging to COVID-19 genetic research?

In Figures 7, 8, we identified genes ACE2, IL6, TMPRSS2, and
TNF as frequently highlighted ones in COVID-19 genetic
research, and also identified genes, such as FURIN, CXCL10,
OAS1, OAS2, OAS3, ISG15, etc., as emerging genes that may
require further attention from the research community.

In terms of technical implications, our study provides a suite of
intelligent bibliometric tools for biomedical researchers to
conduct medical knowledge discovery. For example, it could
profile the research landscape of a given medical case, with
identified key players, research topics and highlighted
associations between genes and diseases. Compared with other
bibliometrics conducted on COVID-19, this work provides a
systematic and adaptable research framework to profile the
research landscape and exploit disease genetics-relate
knowledge from literature. Additionally, this study specifically
focused on COVID-19 genetic research and targeted a set of
frequently highlighted genes and emerging genes on COVID-19,

which could then turn to be the clue for COVID-19 prevention
and treatment. The results of this study could benefit 1) clinical
researchers with longitudinal analyses on COVID-19 genetic
research, and 2) policymakers with insights in recognizing
potential threats from the COVID-19 and providing pre-
emptive actions on national strategies, science policy, and
public health and administration for gene-level prevention and
treatments.

There are also some limitations for future studies. From the
methodological perspective, we designed a data-driven
method to identify primary genes and emerging genes from
the literature. However, integrating multiple data sources, such
as clinical trials and curated medical knowledge databases,
may gain value-added benefits. From the perspective of
validation measurements, we employed evidence from the
literature to interpret and support our findings with
assistance from our medical experts. Nonetheless, the
qualitative validation may be integrated with multiple
quantitative measures, e.g., historical data-based validation,
and expert knowledge-based scoring.
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