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Introduction: Fruit losses in the supply chain owing to improper handling and a lack

of proper control are common in the industry. As losses are caused by the ine�ciency

of the export method, selecting the appropriate export method is a possible solution.

Several organizations employ only a single strategy, which is mainly based on a first-

in-first-out approach. Such a policy is easy to manage but ine�cient. Given that the

batch of fruits may become overripe during transportation, frontline operators do not

have the authority or immediate support to change the fruit dispatching strategy. Thus,

this study aims to develop a dynamic strategy simulator to determine the sequence of

delivery based on forecasting information projected from probabilistic data to reduce

the amount of fruit loss.

Methods: The proposed method to accomplish asynchronous federated learning

(FL) is based on blockchain technology and a serially interacting smart contract. In

this method, each party in the chain updates its model parameters and uses a voting

system to reach a consensus. This study employs blockchain technology with smart

contracts to serially enable asynchronous FL, with each party in the chain updating its

parameter model. A smart contract combines a global model with a voting system to

reach a common consensus. Its artificial intelligence (AI) and Internet of Things engine

further strengthen the support for implementing the Long Short-TermMemory (LSTM)

forecasting model. Based on AI technology, a system was constructed using FL in a

decentralized governance AI policy on a blockchain network platform.

Results: With mangoes being selected as the category of fruit in the study, the

system improves the cost-e�ectiveness of the fruit (mango) supply chain. In the

proposed approach, the simulation outcomes show fewer mangoes lost (0.035%) and

operational costs reduced.

Discussion: The proposed method shows improved cost-e�ectiveness in the fruit

supply chain through the use of AI technology and blockchain. To evaluate the

e�ectiveness of the proposed method, an Indonesian mango supply chain business

case study has been selected. The results of the Indonesian mango supply chain case

study indicate the e�ectiveness of the proposed approach in reducing fruit loss and

operational costs.

KEYWORDS

blockchain, intelligent agent risk management, Internet of Things cost-e�ciency, immutable

federated learning forecasting norm, EVM compatible smart contract, fruit supply chain

simulation, machine learning
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1. Introduction

1.1. Background

1.1.1. Current fruit ripening problems
In the past 5 years, the majority of cargoes and shipments have

employed a first-in-first-out (FIFO) allocation strategy that does not

involve using sensor devices or shelf-life knowledge. Consequently,

the mango market experienced significant maturation losses. As a

member of the category of perishable fruits, mango has a special

organoleptic characteristic that is subject to continuous change

throughout supply chain activities. The problem of overripe fruit

spread from upstream to downstream. Mango losses and quality

problems are related to pre-harvest conditions and post-harvest

management of the supply chain structure and operations (Joas et al.,

2010). Such losses and quality problems have been traced back to

farm operations, such as picking, washing, and drying, and logistics

operations, such as packing, storing, and exporting. The majority

of losses occur at the distribution stage owing to frequent handling

complications, unexpected events, transportation conditions, and

operational practices. In particular, when mangoes are transported

over long distances and for lengthy transit periods along global

supply chains, the issues of fruit loss and quality become more severe

(Canali et al., 2017). Therefore, logistics and inventory management

are considered the primary causes of low acceptance rates and fresh

fruit losses during the retail and consumption stages (FAO., 2011).

For instance, Ridolfi et al. (2018) reported that mango losses amount

to 45.6% of the total production. Mango losses can be substantial,

ranging from 19 to 46% of the crop. The losses incurred because of

transport, storage, or over ripening in different countries are listed

as follows:

• Bangladesh: 8.2% out of 25.5% (Ali et al., 2019).

• Ghana: 29.6% out of 45.6% (Ridolfi et al., 2018).

• Philippines: 3.5–4.9% out of 19.0–33.9% (Galvan, 2020).

• India: 9.6% out of 34.5% (Sab et al., 2017).

• Ethiopia: 13.4–15.7% out of 40.7% (Yeshiwas and Tadele, 2021;

Tarekegn and Kelem, 2022).

Moreover, the Queensland Government (2017) found that the

sources of mango losses start at the farm level and progress to the

post-harvest level. Other sources of loss are in the wholesale and

retail stages, primarily attributable to inadequate storage facilities

and operations, low-tech packaging methods and materials used, a

lack of cold chain containers and trucking facilities, and inadequate

road maintenance and infrastructure networks (Albert and Barabási,

2002; Ruiz-Garcia and Lunadei, 2010). The shelf-life of mangoes

can be reliably extended when stored over the supply chain cycle

within the recommended temperature management ranges of the

cool chamber: 10 to 12◦C for storage, 12–16◦C for transport, and

18–22◦C for ripening (Queensland Government, 2017). However,

farmers, logistics providers, warehouses, wholesalers, and retailers do

not follow this practice.

1.1.2. Fruit logistics functionalities
The proposed methodology collects status information about

mangoes, such as export progress, maturity, temperature, and

humidity. These are used to construct a scenario that enables better

logistics management. The sensors detect the fruit maturity loss

(Baietto and Wilson, 2015) using the “Export Progress” information,

and the export progress loss is then estimated. Hence, the industry

should stimulate advanced management ideas on strategy simulation

and recoup a part of the sensor cost while increasing fruit

quality (Tort et al., 2022). Using the “maturity” information, a

mango ripeness data feed is essential to train a self-supervised

deep learning model to predict shelf-life (Nordey et al., 2019).

It provides deeper insight into autonomous fruit supply chain

management and decision-making. Using the “Temperature and

Humidity” information, the maturity datasets are categorized into

different relative humidity and temperature ranges (Dutta et al.,

2021). When real-time temperature and humidity are within the

range of the datasets, there is a strong correlation between actual and

predicted ripeness.

1.1.3. Logistics prediction through federated
learning

Developing a decisive model for destination selection requires

a large amount of training data to produce an effective model. If

all of the data are collected from a single source, the size of the

dataset will be insufficient for the training process. However, if data

are collected from different suppliers, there are security problems,

update difficulties, and the risk of node failure. Therefore, federated

learning (FL) was used in this study. FL aims to achieve the best

model without exchanging data with individuals (Kuo and Ohno-

Machado, 2018). To eliminate the problem of requiring a permission

server for FL (Mammen, 2021), a serverless approach was used in

the FL implementation. This machine-learning model derives from

decentralized governance. Many parties can then use this machine

learning model to develop scalable AI policy simulations.

1.1.3.1. Benefits of federated learning, decentralized

governance, and AI policy

In this study, federated learning and DGAP benefit the supply

chain in five ways:

• Ensuring the responsible and ethical use of AI: AI systems are

used in a fair, transparent, and respectful way. This can help

build public trust in AI and mitigate the potential negative

consequences of its use.

• Promoting economic growth and development: AI policy

supports fruit saving, in addition to the development and

deployment of AI technologies that drive economic growth and

create new opportunities for workers and businesses.

• Protecting privacy and security: federated learning can help

safeguard the privacy and security of individuals by establishing

standards for the protection of personal data.

• Facilitating innovation and research: supply chain policy

managers can encourage the development of innovative AI

technologies and support fruit waste research to help advance

the field.

Enhancing public awareness and understanding: the prediction

model informs the public about the capabilities and limitations of the

current supply chain system and its potential impacts on logistics. In

the simulation study, the market using the LSFO policy (14.79%) is

greater than the mango loss (6.91%), indicating a similarity of around
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92% between the on-site case study and the simulation. This scalable

simulation can help foster informed debate and decision-making

about the role of AI in the supply chain.

1.1.4. Blockchain-based federated learning with
voting through smart contracts
1.1.4.1. Benefits of blockchain in supply chain management

Blockchain technology has the potential to benefit supply chain

management in several ways, including:

• Improved traceability: the blockchain can track the movement

of goods through the supply chain, allowing companies to

easily trace the origin and history of a product. This can help

to reduce counterfeiting, ensure food safety, and improve the

overall quality of products.

• Increased transparency: with blockchain, all parties involved in

the AI training can access a shared and transparent record of

data transactions. This can help boost the acceptance rate.

• Enhanced security: the blockchain’s decentralized nature and

use of cryptography make it a secure platform for storing

a global AI model. This mitigates the risk of man-in-the-

middle attacks.

• Increased efficiency: smart contracts in the blockchain can

automate supply chain processes, such as the exchange of data,

which reduces the time and cost of manual processes.

• Greater AI collaboration: the blockchain facilitates collaboration

between different parties in a supply chain, allowing them to

establish a consensus more efficiently and effectively.

Overall, the use of blockchain in supply chain management

enhances the traceability, transparency, security, efficiency, and

collaboration of processes, leading to improved trust.

1.1.4.2. Blockchain technology selection

The blockchain-based federated learning aims to create an on-

chain global AI model. A public blockchain may be the most suitable

option because of the following reasons:

Decentralization: A public blockchain is inherently decentralized,

meaning that it is not controlled by a single entity. This can be

beneficial for the global AI model, as it ensures that the model is not

controlled by any one party and can be accessed by many users. In

contrast, a private or hybrid blockchain is generally better suited for

use cases that require a high level of control and privacy. This cannot

broadcast the global AI model.

Trust and transparency: The public blockchain is generally more

transparent and secure than private blockchain technology, as it is

open and accessible to all parties. This is important for the global AI

model, as it ensures that the model is transparent and trustworthy

and that all parties have equal access to it. However, the AI model

needs to be accessible only to a limited number of users and also

requires a high level of trust and accountability from private and

hybrid blockchains.

Scalability: The public blockchain is generally more scalable than

the private and hybrid blockchains, as it is designed to support a

large number of operators and transactions. This is important for the

global AI model because it ensures that the model can handle a large

amount of data and users.

This study proposes a scalable FL method with blockchain

using a common language/network and its data. Following the

training session, the blockchain’s ledger broadcasts its fragmented

parameters to the blockchain itself. It contributes to a global model

comprising a network and its parameters. An individual receiving the

broadcasted parameters continues to train with new data to refine

the global parameters. The results can subsequently be broadcast

on the blockchain. Upon receiving the broadcasting and voting

information from the blockchain, the algorithms decide whether the

new parameters will be accepted and added to the global model.

Voting is performed through a smart contract (Wang et al., 2018)

without involving a central mediator, and the global model update

is accepted or rejected according to the voting results. The global

model then continues to adjust the parameters as the individuals

asynchronously continue to learn from new data and broadcast the

refined parameters. Each participant can thereafter simulate a virtual

environment for the logistics flow scenario in the field. As Widi et al.

(2021) only mentioned the beginning and ending maturity statuses,

these data have been used in the reconstruction of the logistics flow.

They can thereafter be used to analyze the progressive maturation of

mango shelf-life in the experiment.

1.1.5. Aim of this paper
In traditional logistic management, fruit loss information is

collected at the beginning and end of the transportation route, and

information on fruit ripeness throughout the journey is unknown.

However, with a system simulating the mango allocation strategy,

decision-makers can obtain recommendations and receive guidance

generated with decentralized governance by artificial intelligence

(AI) policy (Chen et al., 2021). The simulation promotes an impact

that influences peers and forms a consensus when making policy

decisions. Without export simulation, it is difficult to determine

the amount of fruit wasted in the company. It is also difficult for

storeroom workers to execute a single strategy to address the supply

chain issue. The proposed system collects data, shares experiences,

learns from quick trials, transforms wisdom into a global AI model,

and broadcasts it to a permanent public network. This study aims

to (1) propose scene simulation, (2) launch a permanent intelligence

broadcaster, and (3) improve the cost-effectiveness of the fruit supply

chain, as presented in the analysis of Indonesia’s most important

fruit commodities (Mahendra et al., 2008). Because the agricultural

supply chain industry has to handle perishable production, planting,

growing, and harvesting processes that depend on climate and season,

and yields of varying shapes and sizes, such management is more

complex than that for non-agricultural supply chains.

1.1.6. Structure of this paper
This paper is organized as follows:

Section 2 presents a literature review of the Indonesian mango

industry to study the ripeness status of mangoes in greater depth.

Section 3 describes the three-process flow-integration design and

blockchain-based AI models.

Section 4 aims to fill the gap in the missing digital information

with the reproduction technologies for the individual scenes, such as

stochastic simulations of fruit loss.

Section 5 presents an evaluation of the simulation of the launch

policy trial of an AI agent.
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Section 6 discusses real-world industrial applications and

the known variables that could limit the interpretability of

simulation outcomes.

Section 7 summarizes our research findings.

1.2. Technologies checklist

The technologies used in this proposal are summarized below for

ease of reference only and will be explained in subsequent sections.

In data collection:

1. AntoWijaya Fruit: Widi studied this mango company (Widi et al.,

2021).

2. Digital twin: a real-time virtual representation of the physical

identity of a mango.

3. Double helix: this is a forecasting model’s data feed within Deep

Q-learning which simulates a management process.

4. Fractal theory: Fractals attempt to model complex processes by

searching for a simple and efficient management process. Most

fractals operate based on the principle of forecasting and selecting

a feedback loop.

5. Interpretive structural modeling (ISM): This method transfers a

flow chart design of the Anto Wijaya Fruit structure (Widi et al.,

2021) to our proposed system (state diagram).

6. Tridge.com: a website that contributes maximum export value

(EV) data1.

In AI:

1. Deep Q-learning model: a neural network maps input states to

(action and Q-value) pairs, and the learning process uses two

neural networks.

2. Long Short-Term Memory Model (LSTM): this network model

is ideal for forecasting based on time-series data, as there may

be lags of unknown duration between the ripeness events in the

time series.

3. OpenAI gym: this provides numerous environments so that

everyone has a common one to test the policy.

4. Model parameter: a configuration variable inside the model whose

value is derived from the data. Models require parameters when

making predictions. These values define the model’s skills.

5. Regression method: this method generates a function curve that

best represents all observations.

6. Scene construction fidelity: this is the threshold for strategy

dominance during scene construction.

7. Stochastic simulation: the simulation’s variables can change

stochastically with their respective probabilities.

In Blockchain:

1. Blockchain network: the technical infrastructure that provides

smart contract services for applications.

2. Ethereum virtual machine (EVM): a “virtual computer” that

developers use to create decentralized applications (DApps) and

execute and deploy smart contracts on the blockchain network.

3. EVM-compatible smart contract: a smart contract creates

an EVM-like code execution environment, enabling

1 Fresh mango Export Company and exporters in Indonesia. Tridge.com.

Available online at: https://www.tridge.com/intelligences/mango/ID/export

(accessed September 1, 2022).

Ethereum developers to easily migrate smart contracts to

EVM-compatible chains.

4. Hive mind: when an individual has a strong tendency to fall

into group decision-making via a smart contract by aggregating

AI features.

5. Layer 1: the main blockchain network responsible for on-chain

data transactions.

6. Permanent AI model broadcaster: a smart contract broadcasts

model parameters permanently to allow grassroots voting to adopt

a mainstream AI version as global skill-oriented programming,

such as fruit shelf-life forecasting.

7. Smart contracts: programs stored on the blockchain run when

predetermined conditions are met.

8. Smart contract address: a collection of codes and data residing at a

specific address in the blockchain network.

9. Solidity programming language: object-oriented programming

used to build and design smart contracts on a blockchain platform.

2. Literature review

2.1. Shelf-life issues

We examined the Indonesian mango industry as a case study

to illustrate the current operational issues. Ali et al. designed a

mini-experiment to measure the amount of wasted fruit in 2019.

After an investigation of the mango industry, results revealed total

postharvest losses of mangoes at different stages between harvesting

and consumption (25.51%). Themajority loss dominance percentage,

L, was 6.91% (Ali et al., 2019) due to the lack of shelf-life information.

The exploration of the primary industry led to the finding of one

mango supplier (Anto Wijaya Fruit).

2.2. Cost issues

The purchase of Internet of Things (IoT) devices could not solely

rely on a single source of funds because locals usually paid with cash

after selling mangoes in the supply chain exchange (Widi et al., 2021).

Increasing the budget for purchasing sensing devices was critical for

transferring the sustainable balance generated by preservingmangoes

before they perished. We selected the TGS 2,600 and DHT11 sensors

because of their high reliability as IoT components (Song et al., 2020).

TGS 2,600 will reach the end of its service life after 10–13 years

(Eugster et al., 2020). Moreover, the DHT11 sensor provides precise

temperature and humidity readings and ensures high reliability and

long-term stability (Srivastava et al., 2018).

2.3. Sensor issues

Apart from the cost, another key issue was the lack of sensors

to detect the shelf-life of mangoes. Thus, the retailers had only

been using the FIFO strategy to reduce mango loss. However, the

degree of ripeness may not correlate with the arrival order. This

strategy, therefore, risked reducing the shelf-life of some fruits. Ali

investigated the market dominance of mango loss when using the

FIFO strategy (Ali et al., 2019). Mango failure datasets were collected

betweenMarch andApril 2017–2019 to examine the quality of mango

cultivation in five districts: Rajshahi, Chapainawabgonj, Cuadanga,
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Meherpur, and Satkhira. It was assumed that all postharvest mangoes

had approximately 4 weeks of shelf-life between collection and

consumption by collectors, merchants, wholesale agents, retailers,

and finally, end consumers. The retailer had to separate the fruits into

different sizes and sell them within 2 to 3 days.

The FIFO strategy (Srinivasan et al., 2004) works as follows: when

X is less than the quantity for the 1st week (Q1), the system displays

the total profit, which is the target amount multiplied by the profit

per unit for the 1st week (X∗L1). Otherwise, it moves on to the next

week when the overall goal is to subtract a smaller amount from the

1st week’s amount than the number in the 2nd week (X–Q1 < Q2)

(Mendes et al., 2020).

A recent survey reported mango losses in Indonesia. When 100%

of the mangoes were subjected to the FIFO strategy, total mango

loss due to grading and maturity issues was 6.91% (Ali et al., 2019),

as follows:

• Farm level: 1% (sorting and grading), 0.95% (overripening

or shriveling).

• Wholesale level: 1.2% (overripening or shriveling), 1%

(immature or unmarketable size).

• Retailer level: 1.5% (overripening or shriveling), 0.26%

(immature or unmarketable size).

• Storage level: 1% (overripening or shriveling).

Mango loss information was collected locally at the beginning

and end stages. The timeline from unripe to ripe or overripe

fruit during mango logistics is a missing piece of the puzzle, as

there is neither a sensor nor a prediction throughout the logistics

process (Widi et al., 2021).

It should be noted that even if the sensors are only deployed

to diagnose the present mango status (early ripe, ripe, or overripe),

scenario planning and high-dimensional simulation cannot be

conducted without a strategy-making agent, which is enabled by a

global forecasting model.

The upcoming session will use smart contracts to allow

distributed ledger systems to reach an agreement on a global

forecasting model for the AI agent. As a result, the system meets the

criteria for Supply Chain 4.0.

3. Methods

This section discusses the design of integrated process flows

in Section 3.1, with the AI and blockchain frameworks in Section

3.2. The overall system was designed to standardize the framework.

The distributed features are stored in a public ledger and processed

through a smart contract. The strategy-making agent can thereafter

determine the optimal policy in the simulation. By transferring fruit

features into an immutable code, this method is unique in promoting

an economical supply chain 4.0 structure from a centralized statistical

strategy into a decentralized probabilistic strategy.

3.1. Design of process flows integration

The proposed system contributes to a potential Supply Chain 4.0

for addressing the issues discussed in Section 2. The ISM (Pfohl et al.,

2011; Astuti et al., 2014) transforms the operation flow of the “Anto

Wijaya Fruit” company (Widi et al., 2021) into our design for process

flows covering product, finance, and risk, as outlined below.

• Process flow of mango production. Figure 1 illustrates the

double-helix architecture. When farmers pick mangoes, they

place them into a deployed IoT device box. The box contains

the mangoes harvested at the same time. Sensing devices can

thereafter collect data on temperature, humidity, and odor.

These discrete data are the training materials for a local

forecasting model, the LSTM. This AI model can then predict

mango maturity trends to update the mango information.

Its parameters can be called or uploaded through a public

smart contract, combined as a global model using decentralized

governance techniques, and produce probabilistic patterns.

While the governance is decentralized, mango information

is transferred to insight information in the AI policy. In

this regard, a discussion-making agent acts based on the

future relational pattern. The collector can allocate mangoes

to different retailers and dealers via AI agent discussion. The

choices of the policy function of least shelf-life, first out (LSFO),

or FIFO in a stochastic simulation are identified by the trained

evaluation net and the target net within the Deep Q-learning

model. The intelligent agent assists the dealer and retailer

in choosing which box to select and export to consumers.

This can help keep mangoes fresh and improve the source of

insightful information.

• Financial flow of sensing devices. This insight can potentially

increase cost efficiency, reduce mango waste, and generate

profit. Table 1 lists Indonesian mango EV sourced from

tridge.com. It should be considered that US $200 per device

includes all operating and maintenance costs for a sensor device

over 10 years. Equation (1) evaluates the net cost efficiency (Net

CE), which is the profit due to the reduction of mango loss, and

the risk of decision-making caused by the AI agent to determine

the yield and purchasing power of the IoT devices.

CE = L%−R% (1a)

Net CE = CE−
N ∗(200 USD+ x)

EV
(1b)

where Net CE denotes net cost-efficiency,

EV denotes the export value of the mango,

L denotes mango loss (%),

R denotes risk % as a result of the less-than-ideal decision to

reduce mango loss,

N denotes the number of sensing devices,

Cost of each sensing device= 200 USD,

x denotes the additional cost per sensing device.

In this case, x = sensor storage cost + implementation cost

+ installation cost + broadband transmission cost + visualization

equipment cost. The details are as follows:

1. Sensor storage costs: it is postulated that the storage size of the

device is only one percent of the storage size of the mango. The

logistics company may absorb the sensor storage cost as a 1%

increase in storage costs.

2. Implementation costs: the fruit supplier can pay a third-party

logistics provider to implement sensor logistics.
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FIGURE 1

(A) Double-helix architecture based on AWF structure. (B) Double-helix architecture based on AWF structure.

3. Installation costs: sensors are mounted on the surface of the fruit

box plate to minimize labor costs associated with inserting and

removing the sensors.

4. Broadband transmission costs: as less detailed, data-intensive

flows are required to be transmitted over the IoT network in

the ocean, data transmission can use the original ship channel,

and the satellite communication fee can be minimized. On land,

the inventory’s data transmission method could use LoRaWAN

and 5G on a decentralized wireless IoT network, the Helium

blockchain network. Regular broadband transmission expenses

are relatively cheap, costing US $0.00001 per every 24 bytes sent

in a packet2. Each device transmits the signal every minute, and

their cost is approximately US $ 5, that is, six times ∗ 24 h ∗ 365

days ∗ US $0.00001 per transmission= US $0.5256 per year.

2 Helium roaming services. Helium.com. Available online at: https://docs.

helium.com/use-the-network/roaming (accessed November 28, 2022).

5. Visualization equipment costs: sensor readings can be visualized

using a web-based dashboard. They can also be accessed on a

personal smartphone instead of using a dedicated display device.

Assuming a total additional cost per sensing device (x) is US

$20 for the sensor’s life span (10 years), the total upfront cost of

purchasing and operating each sensor is US $200 + US $20 = US $

220. The profit recovered by this AI system is EV∗(L%–R%), where L

= 6.91% and R= 0.035%. This could be used as the budget for paying

the initial sensor cost. Themaximum number of sensors that could be

purchased using this profit is listed in Table 1.

3.1.1. Risk flow associated with the use of AI agents
The risk flow in Figure 1 represents the effectiveness of launching

AI to select policies in an environment. Using an OpenAI-gym

library, the system simulates mango allocation during the export

period in a customized risk field. This library is a toolkit for

Frontiers in ResearchMetrics andAnalytics 06 frontiersin.org

https://doi.org/10.3389/frma.2023.1035123
https://www.helium.com/
https://docs.helium.com/use-the-network/roaming
https://docs.helium.com/use-the-network/roaming
https://www.frontiersin.org/journals/research-metrics-and-analytics
https://www.frontiersin.org


Lee et al. 10.3389/frma.2023.1035123

TABLE 1 Indonesian mango EV sourced at tridge.com and maximum

number of sensing devices (2013–2020).

Year EV USD EV∗(L–
R%)

Budget for sensing
devices (N sets)

2013 7,330,000 503,937.5 2,290

2014 8,530,000 586,437.5 2,665

2015 19,260,000 1,324,125 6,018

2016 21,150,000 1,454,063 6,609

2017 5,310,000 365,062.5 1,659

2018 34,700,000 2,385,625 10,843

2019 44,530,000 3,061,438 13,915

2020 82,490,000 5,671,188 25,777

reinforcement learning. It includes several benchmark problems

that expose standard interfaces and compare algorithm performance

(Brockman et al., 2016). The simulation system with this library can

construct a scene of fruit logistics, such as the fruit loss process (loss

at the farm level, loss due to transportation, loss at the wholesale level,

loss during storage, loss at the retail level, loss at the consumer level,

and loss during processing). In the simulation, the intelligent agent

drives the reaction process. Only a small probability of mango loss

may occur using the FIFO and LSFO policies, as shown in Joas et al.

(2010).

3.2. Blockchain-based AI models

The product flow in Section 3.1 employs blockchain-based AI

models. The blockchain frameworks and associated AI models are

detailed below.

3.2.1. LSTM AI forecasting model
The LSTMmodel is an artificial recurrent neural network capable

of learning long-term order dependencies in data (Hochreiter and

Schmidhuber, 1997). This LSTM model undergoes four main stages,

in this order: preprocessing, training, testing, and evaluation. The

following paragraphs explain these stages in detail: the LSTM unit

comprises a cell, an input gate, an output gate, and a forget gate (Yu

et al., 2019). The cell stores values over arbitrary time intervals, while

the three gates regulate the flow of information into and out of the

cell. The process moves from the forget gate to the input gate and

then to the output gate.

The forget gate uses the previously mentioned hidden state

and the latest input data to determine the essential information.

The previous hidden state and the latest input data are fed into a

neural network that uses sigmoid activation to generate a vector in

which each element is between 0 and 1. The network is trained to

consider irrelevant information as 0, whereas relevant information is

1. Subsequently, the values are multiplied by the previous cell state.

This process ensures that irrelevant information is multiplied by 0

and has less influence later.

Next, the input gate determines the unique information that is

implemented in the cell state after taking into account the previous

hidden state and the latest input data. The tanh-activated memory

neural network generates the latest vector within a range of −1 to

1 because the neural network has already learned to combine the

previous hidden state and the latest input data. After incorporating

the most recent data, the generated vector indicates the extent to

which each component of the cell state of the network should be

updated. However, because the tanh-activated neural network does

not check if it is recalling recent data, the input gate, a sigmoid-

activated network with an output vector ranging from 0 to 1, is used

as a filter to identify the components of the vector. Then, the output of

the tanh-activatedmemory neural network is obtained by performing

a point-wise multiplication with the input gate, and this vector is

added to the cell state.

Finally, the output gate establishes the latest hidden state based

on the newly updated cell state, the previous hidden state, and the

most recent input data. The output gate uses a sigmoid-activated

neural network, the previous hidden state, and the latest data to

output a value from 0 to 1. This procedure ensures that only essential

details are stored in the latest hidden state. However, before this

process, the cell state is passed through a tanh function to output a

value between−1 and 1. The tanh function output is then multiplied

by the output gate to receive the current hidden state.

3.2.2. Immutable broadcasting blockchain
framework

The proposed smart contract broadcasts LSTM AI model

parameters. Discrete mango data owners can upload local model

parameters globally, while other people can read them. To design

an intelligent technology policy, the developer needs scale-free

reinforcement learning to compute the execution timing, whether

launching a FIFO or LSFO method when processing a mango export

strategy (Kaelbling et al., 1996). In addition, the forecasting model

and the LSTM model, which predicts the mango maturity trend

(Bruckner et al., 2013), supports AI decision-making by sharing its

features on the blockchain.

The value of a blockchain lies in its ability to store intelligence.

The smart contract aggregation feature allows for sharing AI models

without needing middlemen. Spreading machine knowledge through

the hive mind platform is likely to solve one of the enormous supply

chain normalization and fruit maturity consensus problems. Just as

the internet allows websites to spread information, smart contracts

allow the broadcasting of model parameters. After data collection

by sensors, the AI model has been trained using these datasets.

Subsequently, the model predicts the ripeness of the 20% trend in

future projections. The prediction uses the trained intelligence to

generate a meaningful equation-free model (Kevrekidis and Samaey,

2010) to measure the relative ripeness momentum. These processes

allow authorized users to vote on forecasting model proposals on the

blockchain, choosing whether to merge the old and new forecasting

models. However, it should be noted that there is a fee for running a

smart contract. Every time a smart contract is executed, a fee must be

paid to the EVM for execution. This fee is paid to the nodes that help

store, compute, execute, and validate smart contracts. EVM is known

as the core of Ethereum, demonstrating its importance to the Fantom

network (Choi et al., 2018; Kaur and Gandhi, 2020) (layer 1).

Layer 1 is a blockchain architectural term that refers to a

network that provides infrastructure or consensus on projects,

such as an event-based coffee supply chain (Bager et al., 2022). A

virtual machine (VM) is a computer system with complete hardware
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functions simulated by software and running in a completely isolated

environment. By generating a new virtual image of the existing

operating system, the VM performs the same functions as the

Windows system; however, it runs independently from a Windows

system. As the name suggests, the EVM is Ethereum’s VM. Notably,

there are no VMs in the Bitcoin blockchain (Nakamoto, 2008). The

primary function of Bitcoin is to store data in a distributed manner,

and we can record, verify, store, and replicate transaction data in

this network. Ethereum is a “decentralized real-world computer,”

and developers can also build DApps on it, implying that Ethereum

not only needs to be able to distribute data storage but also needs

to run code and conduct consensus communication (Tikhomirov,

2017; Hildenbrandt et al., 2018). If an account wants to execute a

smart contract, the transfer will be completed according to the smart

contract, and the relevant execution rules will be recorded in the

data to guide the contract’s operation. The network nodes execute

the smart contract code every time the described transaction occurs

through the EVM.

3.2.3. Deep Q-learning AI decision model
An AI agent selects the best action for the batches of mangoes

based on the estimated shelf-life or the first import’s mango. The

program starts by defining the parameters of Deep Q-learning, and

thereafter defines three classes and a function. These three classes

define the environment, neural network, and Deep Q-learning,

respectively, while a function runs on the main program. The

parameters for Deep Q-learning are as follows: 0.9 for Epsilon, 0.9

for Gamma, 0.01 is the learning rate in an Adam optimizer, memory

capacity is 3,000, Q-Network iterations are 100, batch size is 32, and

episodes are 1,000. The environment class selects a random integer

between 0 and 1,200 for the shelf-life state, 480 array shapes for the

shelf-life future projection and creates a store state from 1 to 480 to

determine the reward. After 480 steps, the environment is reset to

its original parameters and returns an array from the shelf-life state,

future projection, and storage state.

4. Simulation process

This section explains how to operate simulated frameworks to

predict and make decisions based on complete process flows.

4.1. “Mango digital twin” data collection and
preprocessing configuration

The state of physical entities on an information platform relies

on digital twin technology. Figure 2 shows two underripe mangoes

inside an A4 paper box equipped with TGS 2,600 and DHT11

sensors. A Raspberry Pi collects data from these two sensors. The

box remained closed for 6 days until the odor reading rose from 3

(underripe) to 7.5 (overripe).

The collected data are discrete and extensive. The machine first

uses the iloc function to rescale the original dataset into 2,400

sampling points and process a regression method. The shelf-life of

mangoes (from underripe to overripe) is irreversible. Because the

reading includes the fluctuation property, it leads to an irregular

shifting up and down in the shelf-life level. Therefore, a maximum

function is added to address this issue by comparing the back-and-

forth difference between the two frames each time.

In the regression stage, a data frame is created for odor data. It is

defined using a Gaussian process model (Kocijan et al., 2004; Azman

and Kocijan, 2006). The likelihood and model are initialized, and the

optimal model hyperparameter is determined. The Adam optimizer

uses the gaussian likelihood parameters (Rafi et al., 2016) and runs

40 training iterations. Following that, the model and likelihood are

evaluated. The predictions can then be made by feeding the model

through likelihood. For instance, a data frame and graph are created

using data after regression. In the feature selection stage, 2,400 sample

points are taken from the data frame and converted into a new one.

4.2. Forecasting process

The proposed LSTM neural network has a feature size of one

hidden unit, one output, and one layer of LSTM to stack. A small

odor value is made into a graph that represents the early ripeness of

the fruit. The odor dataset is resized to 2,400 frames. This dataset is

used to produce another graph that plots a portion of the original

dataset. Subsequently, 80% of the data from the dataset is used for

training, whereas 20% is used for testing. The training data are

divided into five batches. The dataset is used in the LSTM model,

which has one feature size, 16 hidden units, and a maximum epoch of

10,000. After the training stage, the testing stage begins by switching

the LSTM model to the testing model. The prediction on the test

dataset is made by setting the batch and feature sizes to 1. When

the testing section is finished, it is plotted on a graph, and a root-

mean-square deviation (RSME) is provided. Finally, the local LSTM

model parameters broadcast their application to a public network in

four steps:

1. Upload to an EVM-compatible smart contract on the

Fantom network.

2. Interact with a global model.

3. Group into a global model.

4. Generate a shelf-life future projection for deep Q-Learning.

4.3. Immutable AI model broadcasting
process

Several local models can be grouped into global ones through

voting. In terms of the feature aggregator (FL), the voting system

presents an EVM-compatible smart contract program for FL. Voting

is a program that runs on the blockchain. This allows authorized

voters to vote for proposals when they fulfill the program conditions.

A solidity voting contract has two structures: a constructor and

six functions. It also includes some lines of code that store

the chairperson’s address, the voter’s address, and proposals. The

following paragraphs explain voting contracts in detail.

The proposed smart contract, named “model parameter,” is a

collection of functions and LSTM model information (its state).

A deployed contract resides at a specific address on the Fantom

network, which is an EVM-compatible blockchain. This smart

contract is divided into two parts: the constructor and the function.

Similar to several class-based object-oriented languages, a constructor

is a special function that is executed only when a contract is created
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FIGURE 2

Underripe mangoes (left), and overripe mangoes (right).

and is used to initialize the contract’s data. A public function accepts

a string argument and updates the “parameters” storage variable.

State variables, or “parameters,” are variables whose values are stored

permanently in the contract storage. The keyword “public” makes

the variable available outside of the contract and creates a function

that other contracts or clients can use to access the LSTM model

parameters for simulation initiation.

The contract has two structures: “voter” and “proposal.” In the

“voter” structure, the voter can change their choice. To ballot the

proposal, each voter has votes attributed to their unique address.

The “proposal” structure stores the name of the proposal and

the number of accumulated votes. These structures help store

vital information about voters and proposals. The program has a

constructor that runs once a ballot is launched. The constructor

assigns voting rights to the chairperson. Following that, it takes the

address name of a proposal in bytes-32 form and initializes the

proposals with zero votes. Then, it can add proposals to an array

in a voting contract. Such a smart contract contains six functions,

namely “giveRightToVote,” “delegate,” “vote,” “winningProposal,”

“getAllProposals,” and “winnerName.” These functions are developed

as follows:

1. The “giveRightToVote” function authorizes the voters the right

to vote for proposals in the contract. Adding the voter’s address

only provides them with the right to vote once. This function

can only run if the chairperson is allowed to deliver the right

to vote.

2. The “delegate” function allows voters to appoint their votes to

other voters by taking in the delegates’ address and authorizing

them to vote. This function starts by assigning the original voter’s

address as a reference. The function can then check two cases: (1)

whether the original voter has already voted, and (2) whether the

voter is self-delegating their vote. If either of these conditions is

met, this function will not be executed. On the other hand, the

function executes a while loop to obtain its address and to check

whether the original delegate has entrusted their vote to someone

else. If the original delegate’s address passes the trial, it is adopted.

Next, the loop function checks whether the intended delegate has

assigned their vote to the delegator. If true, the function will not

run to prevent an infinite loop from forming. Once the reading

scan is completed, the function requests that the ledger provide its

address. After receiving the delegate’s address, the function sets the

delegator’s voting status as “voted” and stores the delegate’s address

in the delegator’s “voter” structure. The function then checks if the

delegate has already voted. If this is the case, the function would

increase the proposal’s vote count by one. If not, the function adds

one to the number of votes to allow the delegate to vote.

3. The “vote” function lets a voter vote for a proposal by taking in the

proposal’s index number from the proposal array and then adding

a vote to the proposal. It begins by assigning the voter’s address as

a reference. Then, it checks whether users have the right to vote

and whether they have already voted. If either of these is true, then

the function returns. Only if they pass through this check can the

function store their voting status as true and write the index of the

proposal into the voter’s “voter” structure. It then adds a vote to

the voter’s total by increasing the count by one.

4. The “winningProposal” function works by finding the

proposal with the highest vote count. It starts by setting the

winningVoteCount variable to zero. The function can then pass

the array of proposals using a for-loop. This function continues

until the proposal with the highest vote count is obtained. Each

loop checks whether the vote count of the proposal is larger than

the variable “winningVoteCount.” If it is true, then the function

sets the proposal as the winning proposal. Once the winning

proposal is found, its index is returned.

5. The “getAllProposals” function passes the array of proposals and

returns them all.

6. The “winnerName” function returns the winning proposal’s name

in bytes-32 form by calling the relevant function.

4.4. Simulation process

Here, forecasting and broadcasting processes facilitate the

development of a general simulation structure. OpenAI-gym is a

simulation structure package that includes three simulation initiation

functions: (1) definition, (2) step, and (3) reset. The program begins

by defining the parameters of a Deep Q-learning model before

launching three classes and a function. The first step of the main

program defined three classes (environment, neural network, and

Deep Q-learning). The following paragraphs explain the program in

detail, as shown in Figures 3–5. In the internal state st , the shelf-life is

determined by the odor of the fruits, which reflects the ripeness of the
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FIGURE 3

Deep Q-learning model.

FIGURE 4

(A) Simulation flow in episode 1, step 1. (B) Simulation flow in episode 1, steps 2–479. (C) Simulation flow in episode 1, step 480. (D) Simulation flow in

episode 2, step 1.

batch of samples. The Q-values from Q-Networks can then be used

to select an action to execute and observe the outcome.

Because the study collected 8 years of EV data, the machine

used those and calculated the total steps for each episode, that is, (4

harvesting times + 1 delivery) × 12 months × 8 years = 480 steps.

The deep Q-learning class starts by defining a “memory counter” as

zero and a “learn counter” as zero. The deep Q-learning class has a

function known as “store trans,” which counts and stores a state st , an

action at , a reward rt , and a next state st+1 in memory D. It also has

a function known as “choose action,” which determines whether to

pick the new or old model. Another function in the class is the “plot”

function, which charts a graph of total reward against episode.

In addition to the memory counter and the choosing action,

this class has another function known as “learn.” This function is

called 1000 times before updating the target network. After 100

episodes, the memory can then provide an experience to help select

an action in the remaining 900 episodes of the simulation. Memory

has four sections: state, action, reward, and next state. Within the

memory capacity, the memory counter follows a step counter to

select an action based on finding the largest action value in the

observation space (shelf-life future projection and storage state).

When the agent selects the action value in the shelf-life future

projection, it chooses to execute the LSFO policy. Alternatively, there

is an option that uses the FIFO strategy after receiving an action
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FIGURE 5

Deep Q-learning with simulated forecast scenarios.

index. The AI agent experiences each learning process to determine

an optimal strategy.

In every learning cycle, the learn counter follows the step counter

to obtain batch memory. In each episode, a new data frame is created

by passing the odor data frame through the reset function of Deep

Q-learning. When the step counter is zero, the “main” function also

creates memory slots to concatenate the data from the array created

by the Deep Q-learning class. The memory slot is then passed to the

“choose action” function for digit-field construction.

The digit-field constructionmethod is dependent on the prepared

model parameters and logic. Figure 4 illustrates the AI agent being

trained inside the digit field after having processed 1,000 episodes. In

the first episode and first step, there are six segments in the simulation

flow: initiation, reset, select action, step, store transactions, and learn.

In the simulation environment, the initiation program sets up the

maximum number of sensors, the seasonality month, the export year,

the boxes’ ID state, and the mango shelf-life for mango information.

The evaluation net, target net, memory, memory counter, learn

counter, Adam optimizer, mean-square error loss, and output figures

are all machine learning settings that are part of the AI initiation

program. In the simulation environment, the reset program resets

the box ID state, fruit shelf-life, and number of sensors. The AI

agent can then obtain the information necessary to select an action

(FIFO or LSFO) and execute it in the simulation step program. The

export-harvest ratio per month was assumed to be 1:4 for mango box

allocation in the warehouse. Before making a decision, the ripeness

sampling position of the received boxes was increased by 200 steps to

simulate the ripeness speed while maintaining the testing sampling

position for the forecasting model to predict mango shelf-life. The

program eliminates the box ID to simulate export scenarios. The AI

agent can then memorize rewards based on the mango shelf-life of

exported boxes and store transactions in its memory to learn from

the experience gained in this step.

The AI agent only processes two segments between two and 479

steps in the first episode: (1) select an action to respond to the step

function, and (2) store transactions from the step function. At the

first episode and 480th step, the simulation process is the same as it

was at the first episode and first step, and the average reward, risk, and

reward are plotted. In the second episode and first step, the simulation

environment needs to be reset before the AI agent’s learning process

can continue.

Figure 3 describes the Deep Q model, which integrates deep

learning and Q-learning (Fan et al., 2020), and selects a mini-

batch uniformly at random to update the Q-network parameter θ.

The model can thereafter operate two neural networks to map the

input state to action and Q-value pairs, using the same architecture

but different weights. The two networks are the Q and the target

networks. The target network is identical to the Q network, whereas

the Q network is trained to produce the optimal state-action value.

In an arbitrary number of steps, the network function replicates the

weights from the Q-network to the target network. In addition to the

two neural networks, it also has a component known as “Experience

Replay.”

Experience Replay interacts with the environment, which gathers

a training sample saved as training data. The function is performed

by selecting an ε-greedy action from the current state and executing

it in the environment that receives a reward and the next state. It can

store the observations as a sample of the training data.

In the following step, the Q and target networks are used to

predict a projected Q value and a target Q value, respectively. The

function is executed by taking a random group of samples from the

training set and inputting them into the target and Q networks. The

Q network predicts the Q value for the action by combining the

current state and action of each data sample to obtain the predicted

Q value, whereas the target network predicts the target Q value by

taking the next state from each data sample to compute the best Q

value of all possible actions that could have been taken from the

state. The target Q value then becomes the target network output plus

the reward.

After defining the predicted Q value and the target Q value, the

difference between the two is used to determine the mean squared

error loss. In the loss function, gradient descent can then be used

to back-propagate the loss and update the parameter θ of the Q

network. The gradient descent concludes the processing for time step

t. However, no loss or back-propagation is computed for the target

network because it is not trained. In the next time step, t + 1, the

processing is repeated, which allows the Q network to learn to predict

more accurate Q values, while the target Q values are temporarily
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TABLE 2 Mango shelf-life in an export cycle.

Token ID 1st harvest 2nd harvest 3rd harvest 4th harvest Export 1

Step 1 Step 2 Step 3 Step 4 Step 5

1 +0.5 day +1 day +1.5 days +2 days Reset

2 +0.5 day +1 day +1.5 days Reset

3 +0.5 day +1 day Reset

4 +0.5 day Reset

maintained. After an arbitrary number of steps, the weights of the Q

network are copied to the target network, assisting the target network

in receiving the improved weights to predict more accurate Q values.

The processing can then resume as before.

4.5. Bottlenecks

This section explains the bottlenecks of the simulation and Deep

Q-learning/deep policy learning program. In designing the recurrent

run simulation decision, the study encountered two bottlenecks.

First, the number of exports is limited to 30 permonth. If 1
30 of the

goods are shipped every day, 30 decisions must be made per month,

and the upper limit of the number of decisions is equal to the required

number of sensor devices. Furthermore, if there is only one harvested

mango box per shipment, the decision between FIFO or LSFO must

default to FIFO due to the absence of multiple harvestedmango boxes

in the shipment. The shipment system has no alternative option to

choose the export sequence based on shelf-life in this scenario.

Second, the mango shelf-life record is 6 days, which is equal to

the initial value; thus, the first 3 days would be the random range

for initializing the value and the next 3 days would be the buffer for

waiting for export activity.

In the simulation, the initialization function is set as four times

per month for harvesting and then shipping once a month, with an

interval of 0.5 days for each harvest, as listed in Table 2.

Based on fractal theory (Higuchi, 1988), the morphology of

mango ripening distribution is self-similar in every export cycle. The

local shape is similar to the overall state of a fractal supply chain

(Nishiguchi and Beaudet, 2000). Because the overall signal shape and

the two subdivided signal shapes are self-similar in appearance, using

one sensing device to collect the maturity of the harvest is equivalent

to using two sensing devices or more at each harvest, because the

collected mangoes are 100% shipped. As a result, the minimum

number of sensing devices required per month is equal to the number

of harvests per month. The AI supports distribution management

by taking strategic actions to ship fresh fruit batches to destinations

at different distances to minimize overall loss. In this system, the

forecasting model and reinforcement mechanism are used to derive

optimal strategies for allocating batches of fresh fruits to export

destinations, such that minimum spoilage and higher efficiency can

be achieved. Based on the current agent brain ram information (shelf-

life position, shelf-life future projection, store state, action, reward,

next shelf-life position, next shelf-life future projection, and next

store state), the agent determines the best destinations to ship the

batches of fruits, as expressed in Algorithm 1.

Initialize replay memory D to capacity N

Initialize the action-value function Q with random

weights θ

Initialize target the action-value function

Q̂ with weights θ− = θ

for episode = 1, M do

Initialize the shelf-life state s1 = {x1} as an

odor-level sequence ∅1 = ∅(s1)

for t = 1, T do

With probability ε select a random action at

otherwise select at = argmaxa Q(∅( s1), a;θ)

Execute action at (0. FIFO or 1. LSFO) in the

simulator and observe the reward rt and the

action distribution

0. FIFO:

Pick a maximum harvested ID in four

harvested IDs

1. LSFO:

If the machine collects four harvested IDs:

Search shelf-life related for harvested IDs in

shelf-life state st

Predict 20% future ripeness

Sort four future ripeness

Pick a maximum shelf-life in four

harvested IDs

If shelf-life is smaller than threshold ripeness

level 6.5:

reward rt is equal to picked maximum shelf-life

Else:

reward rt is equal to 0

Observe the reward rt and shelf-life state xt+ 1

Set st+1 = st , at , xt+1 and preprocess ∅t+1 = ∅(st+1)

Store transition (∅t , at , rt , ∅t+1) in D

Sample random minibatch of transitions

(∅t , at , rt , ∅t+1) from D

Set yj =







rj if episode terminates at step j+ 1

rj + γ maxa′ Q̂
(

∅j+1, a
′
; θ−

)

otherwise

Perform a gradient descent step on [yj-Q(∅j,aj;θ)]2

with respect to the network parameters θ

Every C steps reset Q̂ = Q

end for

end for

(∅t , at , rt , ∅t+1) means (state, action, reward,

next state).

Algorithm 1. Deep learning pseudocode.
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FIGURE 6

Temperature (left) and humidity (right) boundaries for the forecasting model.

5. Simulation results

The fundamental idea behind the fruit supply chain simulation

is to estimate the fidelity of mango maturity loss. Because of the

environmental constraints listed in Section 6, such as temperature

and humidity, the outcome of the data-driven experiment can be

limited. The odor pattern is valid only when the temperature and

humidity are within the recorded data boundary. Temperature data

were subjected to 40 iterations. Throughout these, the temperature

data experienced a decrease in loss from 2.484 to 1.721, an increase

in the length scale from 0.693 to 1.384, and an increase in noise

from 0.693 to 1.541, as shown in Figure 6. Temperature data also

showed maximum and minimum values of 30.1385◦ and 23.2405◦,

respectively. The humidity data were also iterated 40 times while

experiencing a decrease in loss from 11.106 to 2.766, a decrease

in length scale from 0.693 to 0.152, and an increase in noise from

0.693 to 1.939, with maximum and minimum values of 84.6541 and

54.6122%, respectively, as shown in Figure 6.

In Figure 7, the shelf-life future projection uses 12 different

sample dataset sizes ranging from 200 to 2,400 frames, with an

increase of 200 frames each time. The shelf-life future projection

maintained a loss of 1e-5. All projections contained 80% of the data

for training and 20% for testing. In Table 3, the readings for the

epoch have maximum, minimum, and average values of 7,698, 3,528,

and 5,284.667, respectively. The test scores of the root mean square

equation (RMSE) have maximum, minimum, and average values of

0.35, 0.15, and 0.2367, respectively. In the 200, 400, and 800 datasets,

the graph reached a plateau at approximately four readings. In the

1,000 datasets, the graph reached a plateau at approximately 4.3

readings. The graph reaches a plateau at approximately five readings

for the 1,200, 1,400, and 1,600 datasets. In the 1,800, 2,000, and 2,200

datasets, the graph reached a plateau at approximately six readings.

In the 2,400 datasets, the graph reached a plateau at approximately

seven readings.

The cost-efficiency of purchasing IoT devices is based on data

from the past 8 years (2013–2020). Risk data were collected after

processing 1,000 episodes. When the forecasted odor was greater

than 6.5, implying that the mango inside the box was overripe, the

reward was counted as 0. The ultimate reinforcement model reward

was then generated.

The Deep Q-learning model program aims to output the

distribution of selecting FIFO and LSFO policies, such that mango

ripeness can maintain freshness starting from seven episodes.

Figure 8 shows the average rewards for readings ranging from 3 to 6.5.

This method can ideally reduce the loss from 6.91 to 0%. The reward,

on the other hand, is sampled in the last step of each episode, resulting

in five overripe signals within a 1,000-time window. The simulated

output concluded that the simulated loss improvement was adjusted

from 6.91% (loss percentage, L%) to 0.035% (risk percentage, R%),

as expressed in equation 2:6.91% × 5/1000 = 0.035% (Canali et al.,

2017).

The reference-based mango market has 93.09% market

dominance, 100% FIFO strategy, and 6.91% of mangoes lost owing

to an unknown shelf-life. However, a simulated policy coverage is

proposed in which 85.21% of the market uses the FIFO strategy while

14.79% uses the LSFO strategy.

These strategies had a tolerance of approximately 8% in terms

of scene construction fidelity. This LSFO policy would also require

100% of the sensors to be used for the LSFO strategy, whereas no

sensors would be required for the FIFO strategy. A total of 100% of

the sensors indicate the proper number of sensors, which is equal to

the number of harvesting times according to fractal theory.

6. Discussion

6.1. Discussion of results

The proposed method can contribute to the fruit industry

through more accurate estimation of shelf-life and better

recommendations on the delivery sequence of product batches

to their destinations. Mangoes exported from Australia go through a

long journey before arriving at destinations in Southeast Asia, such as

Indonesia, Singapore, and Hong Kong. Mangoes are highly sensitive

to various environmental conditions. For instance, maintaining the
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FIGURE 7

(Continued)
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FIGURE 7

(Continued)
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FIGURE 7 (Continued)

(A) Total of 200 odor-sampling points in the forecasting model. (B) Total of 400 odor-sampling points in the forecasting model. (C) Total of 600

odor-sampling points in the forecasting model. (D) Total of 800 odor-sampling points in the forecasting model. (E) Total of 1,000 odor-sampling points in

the forecasting model. (F) Total of 1,200 odor-sampling points in the forecasting model. (G) Total of 1,400 odor-sampling points in the forecasting model.

(H) Total of 1,600 odor-sampling points in the forecasting model. (I) Total of 1,800 odor-sampling points in the forecasting model. (J) Total of 2,000 odor

sampling points in the forecasting model. (K) Total of 2,200 odor sampling points in the forecasting model. (L) Total of 2,400 odor-sampling points in the

forecasting model.
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TABLE 3 Test score RMSE and epoch for forecasting.

Dataset[:N] maintains loss at 1e-5

N Epoch Test RMSE scores

200 4,153 0.25

400 6,368 0.2

600 6,863 0.22

800 6,155 0.17

1,000 4,885 0.15

1,200 4,250 0.23

1,400 7,698 0.21

1,600 5,619 0.21

1,800 3,775 0.21

2,000 5,310 0.3

2,200 4,812 0.35

2,400 3,528 0.34

mango fruit at 12◦C through the supply chain may help achieve a

longer shelf-life, whereas increasing the average holding temperature

to more than 20◦C may shorten the shelf life. If the mangoes

are delivered to the retailers within the right period of time, it

helps increase the sales of the retailer and, thus, the returns of the

growers. Because different batches of mangoes may exhibit different

physical environments after harvesting, the deployment of sensor

devices to track their ripeness provides invaluable information for

decision-making in the logistics management process. Obtaining

fruit ripeness information may help to make better logistics decisions

so that a maximum number of fruits are delivered to the destinations

within their expected shelf-life.

The proposed system affects post-harvesting management and

logistics management. First, the ripeness data for each batch

of mangoes are collected using sensors after harvesting. Based

on the ripeness information and algorithm of the AI engine,

recommendations based on the forecasting model are made for

shipping to the best locations among the orders. Throughout

the transportation journey, more data on mango batches are

collected through the internet. At the destination, the resulting

shelf-life information is used as input for the reinforcement to

enhance the system’s performance. From a financial perspective, the

initial investment in the system mainly falls on the purchase of

sensors. These sensors can be reused, with an estimated lifetime of

approximately 10 years. These sensor modules are designed such that

they can be plugged into delivery crates or boxes, and the installation

and maintenance costs are negligible compared to the value of the

batch of mangoes. It is estimated that the cost should break even after

shipping a large volume of mangoes.

Because local AI models are uploaded to the blockchain, the

system algorithm can be further enhanced with data from individual

growers being used in FL. With the employment of the proposed

system, it is expected that mango loss can be reduced to less than 10%.

However, the performance of the system can be further enhanced as

the number of growers increases and, thus, the size of the training

dataset also increases.

6.2. Applications for real-world industries

Supply chain 4.0 has been one of the most relevant research topics

recently studied by the academic community in the field of operations

management (Frederico, 2021). Decisions made throughout the

supply chain may be driven by actors in the supply chain itself

or by policy interventions to attract strategic production (Barbieri

et al., 2020). Digitization facilitates new design changes, efficient

production scheduling, smart manufacturing, and the unlimited,

on-time delivery of quality products (Kumar et al., 2022). When

a global forecasting model is launched, it can significantly impact

the fruit storage simulation system, which is employed to establish

a controllable fruit allocation method for supply chain intelligence.

For instance, real-world content applications would require the user

to initialize export frequency and fruit ripeness tipping points. The

system contributes to the management of visualizing the current

process and modifying it before taking real action, which could save

enormous costs and time for the trials. Subsequently, organizations

can put their plans into action, and the AI agent can provide a suitable

option (an “action value”) from their action space to guide the users

in distinguishing the number of mango boxes in the storage room

that should be exported first.

6.3. Study limitations

6.3.1. Methods
Successful storage of mangoes for 2–3 weeks at 12–13◦C can be

achieved through refrigeration (Singh and Zaharah, 2015); however,

the lack of shelf-life categorization in the training model results in a

shorter storage duration. The simultaneous ripening of different fruit

boxes during storage hinders the frequency of fruit exports.

6.3.2. Data collection
The fewer the datasets, the lower the interpretability of the real

scenes. AI decision-making in the fruit supply chain is based on shelf-

life. Our trained AI model feature is only available to forecast mango

shelf-life from 23.240 to 30.1385◦C.

6.3.3. Data type
The research only has a single environmental range for mango

odor data collection, which would be beneficial if more scenarios

could be considered. Therefore, the actual processes involved in

managing a supply chain may require more than one theoretical

approach. The study could be improved by increasing the sample

size at different temperatures and humidity levels so that the outcome

could provide a more balanced view of the mango export process.

6.3.4. Results
Environmental factors are the primary limitation of generalizing

these results. The known and theoretical confounds may have

been caused by the insufficient precision of the timeframe in

the simulation. The probabilistic algorithm leads to tolerance

in the simulation. This risk minimizes the efficiency of the

method. The experiment was conducted using qualitative

data. If more industry-level quantitative tools were made
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FIGURE 8

Agent’s average reward at 30 (left) and 1,000 episodes (right).

available, the program could enhance the generalizability of

the results.

7. Conclusions

An innovative feature of the proposed FL method is that it allows

scene communication and generates standards. The predictive model

with an FL network adds weight to public ledgers, which have more

frequently voted for updates to the mathematical model. These highly

connected ledgers, which belong to the data contributors, provide a

solid consensus on the ability to predict fruit lifespan trends. This

method assigns an internal reinforcement learning model to each

ledger, and the percentage of adopted strategies can cover the existing

market share of the problem to reflect the positive correlation of

jointly simulating the decision-making environment under the same

cornerstone. This interaction generates a highly influential model

using blockchain technology.

The proposed prototype is based on blockchain technology

to accommodate the features of decentralized governance and

immutability and to align with the general trend of supply chain

management in driving toward deploying distributed databases.

The advantage of such an event-driven system architecture is that

it involves more stakeholders at different stages of the process.

With such decentralized governance, there is no unified authority

in the system. Individual players cannot dominate or manipulate

operations. In addition, scene applications provide a more flexible

and scalable method for users to establish forecasting norms without

middlemen. Using blockchain technology, critical parameters are

stored in a public ledger. As the updated parameters are timestamped,

they cannot be tempered by hackers. This implies that every user

can read the data but cannot alter or reverse it. These records are

permanently stored on the computers of the individual nodes. One

critical feature in the development of AI policy is that the scene

feature library is closely related to the scene consensus applied to the

backbone technology of the double helix system. Finally, it produces

scenarios that facilitate risk minimization and cost reduction of IoT

devices used in the supply chain to derive a global optimal policy with

the support of AI insight.

There are several potential directions for future development in

blockchain-based federated learning. Some possible areas of focus

include the following:

• Improving the efficiency and scalability of federated learning

systems so that the systems can handle larger and more

complex datasets.

• Investigating blockchain technology to enable new forms

of decentralized AI model sharing and collaboration, such

as creating “AI model marketplaces” where organizations

can buy and sell access to anonymize the AI model via

smart contracts.

• Researching ways to incentivize participation in federated

learning systems, such as using digital currency-based rewards

or other financial incentives.
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