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The multilayer semantic network
structure of community tensions

Casey Randazzo*, Sarah Shugars, Rachel M. Acosta and

Marya Doerfel

Department of Communication, School of Communication and Information, Rutgers University,

New Brunswick, NJ, United States

Introduction: Semantic network analysis is an important tool researchers can

use to untangle the knots of tension that arise as communities debate and

discuss complex issues. Yet words connect not only to each other in community

discourse but to larger themes or issues.

Methods: In this paper, we demonstrate the use of multilayer analysis for the

study of semantic networks, helping to unravel connections within and between

community tensions. In examining knotted tensions that arise in the wake of

disaster, this study also spotlights how climate disasters exacerbate issues like

housing equity, disproportionately a�ecting lower-income communities. We

examine discourse across eight months of online neighborhood threads about

community issues in the aftermath of Hurricane Ida. We identify core tensions

related to environmental sustainability, overdevelopment, neighborhood identity

preservation, and economic vitality. Our within-tension analysis reveals the

community’s struggle with such dilemmas, while our between-tension analysis

shows the interconnectedness of these issues. Our approach highlights which

stakeholders are best positioned to address specific community problems.

Results: The findings challenge the conventional top-down disaster response

narrative, proposing a theoretically informed method for employing semantic

network analysis to examine community crises. Through this work, we extend

organizational communication theories of knotted tensions, o�ering a nuanced

lens to community discourse in the face of wicked problems.

KEYWORDS

multilayer networks, semantic network analysis, bipartite networks, disaster

communication, paradoxical tensions, social media, text analysis and mining,

computational social science

1 Introduction

Network scholars often grapple with the challenge of information loss when

constructing bipartite projections of semantic data (Yang and González-Bailón, 2016).

Preventing data loss requires the careful handling of a bipartite network’s two distinct

entities (Everett and Borgatti, 2013; Opsahl, 2013), which in this study are themes and

their associated words. A one-mode projection of a bipartite network inherently masks

information that can reveal a network’s function and typology (Melamed, 2014; Vernet

et al., 2014). In socio-semantic networks, this loss can include nodal attributes of concepts

labeled as misinformation (Yang and González-Bailón, 2016). Everett and Borgatti

(2013) propose a dual-projection approach which involves concurrently examining both

one-mode projections of a bipartite network. However, this approach can neglect the

hierarchical and often nested structure of language (Collins and Quillian, 1972; Rice and

Danowski, 1993) which we argue is a significant limitation when applied to semantic

networks.We find that traditional bipartite networks obscure the distinctiveness of themes,

preventing scholars from examining discourse similarity using correlation coefficients.
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This limitation has the potential to lead to misinterpretations

in how semantic themes interact and influence each other. In

response, we advocate for a multilayer approach for the analysis of

bipartite semantic networks. In this paper, our network maintains

two distinct modes. The first mode represents a set of thematic

layers and the second mode reflects a set of words associated

with those layers. This approach enables us to observe how words

interact both within (intra-layer) and between (inter-layer) themes.

In doing so, we extend prior work on multilayer networks which is

often limited to studies using socio-semantic or social network data

(Kleinnijenhuis and De Nooy, 2013; Knoke et al., 2021). We argue

that a multilayer approach better reflects the structure of discourse

in which words serve to build and connect themes (Woelfel et al.,

1980).

To demonstrate the multilayer approach, we turn to the

concept of knotted tensions (Sheep et al., 2017) which can

be used to examine how contradictions interconnect in public

discourse (Fairhurst and Putnam, 2023). Particularly, we focus

on an online neighborhood Facebook Group following Hurricane

Ida. Disasters are complex and present a plethora of challenges

to individuals, communities, and organizations (Doerfel et al.,

2022; Kim et al., 2022; Spialek and Houston, 2018a,b). Community

reactions to disaster-related issues can be found on social

media platforms like Facebook or Nextdoor (Benedict, 2022;

Bird et al., 2012; Bortree and Seltzer, 2009; Chewning et al.,

2013; Liu et al., 2018; Stephens et al., 2020). This context

often makes the existence of tensions salient, emerging from

oppositional opinions or disagreements on potential courses of

action (Fairhurst and Putnam, 2023; Heath and Frey, 2004;

Koschmann and Isbell, 2009; Lange, 2003; Sundaramurthy and

Lewis, 2003; Zoller, 2000). Tensions are different from topics

or themes, which aggregate large bodies of text into broadly

summarized titles to succinctly reflect a complex set of text data.

Instead, tensions refer to the “push-pull dilemmas among choices”

(Fairhurst and Putnam, 2014, p. 279) that result from competing

available options. These tensions are often separated into two

poles and managed through individuals choosing or prioritizing

one pole over another as new situations arise (Smith and Lewis,

2011). However, this does not necessarily resolve tensions since

they exist in multiples, meaning they interconnect and persist

over time as new options emerge for individuals to choose

between (Fairhurst and Putnam, 2024). Using qualitative thematic

analysis, we identified five community tensions: (1) Grassroots

Organizing vs. Bureaucratic Expectations; (2) Tenant Rights

vs. Landlord Obligations; (3) Environmental Sustainability vs.

Overdevelopment; (4) Neighborhood Preservation vs. Economic

Progress; and (5) Progressive vs. Conservative Values. We use

these tensions to define our bipartite network with the first mode

representing the thematic layers and the second reflecting the

words associated with each layer.

We utilized both Python and R to construct the networks,

which include the multilayer network and the traditional

bipartite network for comparison. We then calculated centrality

metrics within thematic layers and interlayer correlations

across layers. Findings demonstrate how layers interconnect,

reflecting the semantic structure of knotted tensions (i.e., multiple

interconnected tensions; Fairhurst and Putnam, 2023; Raja et al.,

2022; Sheep et al., 2017). Between-layer analyses then illustrate

the interconnectedness of these tensions, demonstrating how

tensions knot within community dialogue. In the context of

disaster research, these findings flip the usual post-disaster script

where agencies bring top-down agendas to response and recovery.

More broadly, we argue that multilayer representations of semantic

networks are particularly well-suited for uncovering discursive

interconnections within public spheres.

Theoretically, we extend organizational communication work

on knotted tensions (e.g., Fairhurst and Putnam, 2014; Sheep et al.,

2017) by providing a methodological framework to quantify these

interconnections. Our approach moves beyond mere identification

of tensions and instead offers a way to operationalize their

interconnectedness, enabling scholars to quantify how tensions

knot and coalesce across community discourse. Practically, this

method can help practitioners, such as emergency response teams,

policymakers, and community organizers, to recognize the layered

nature of tensions, as opposed to treating them as isolated issues.

This understanding can inform intervention strategies and help

agencies engage with communities more effectively during disaster

recovery. By identifying overlapping tensions, practitioners can

tackle multiple issues at once, streamlining recovery efforts and

minimizing the need for separate resource allocation.

2 Review of literature

2.1 Tensions in publics

Publics are communicative spaces where actors discuss and

debate matters of common concern (Habermas, 1989; Dewey, 1927;

Stoltenberg, 2024). Social media has provided particularly rich

access to publics, as such discourse increasingly plays out—and is

recorded—in online settings. Issues that garner attention in publics

are often surrounded by tension (Putnam et al., 2016), particularly

when they involve oppositional outcomes (Fairhurst and Putnam,

2023). Although publics often enable sensemaking (Habermas,

1996; Mansbridge, 1992; Mercier and Landemore, 2012), members

can still struggle to define tensions surrounding community issues

(Miller and Riechert, 2001). Actors, therefore, make decisions

by managing or responding to tension (Woo, 2019). However,

tensions are often left unresolved (Smith and Lewis, 2011) as they

are impervious to resolution (Schad et al., 2016). Individuals often

use different communicative strategies when navigating tensions

(Fairhurst and Putnam, 2024; Smith and Lewis, 2011). For example,

the “both-and” strategy is a dialectical approach where tensional

poles are seen as interdependent as opposed to mutually exclusive

(Berti and Simpson, 2021). In the context of organizing, such

strategies can help communities navigate stakeholder relationships

(Gordon and Lopez, 2019; Zoller, 2000) and address local needs

(Cooper, 2021; Koschmann and Isbell, 2009).

Tensions can persist through text (Putnam et al., 2016;

Smith and Lewis, 2011), making semantic network analysis an

ideal method for exploring tensions in social media discourse

(Eddington, 2020; Jarvis and Eddington, 2021). In their analysis

of discussions on the subreddit r/TheRedPill, Jarvis and Eddington

(2021) used semantic network analysis to identify tensions related
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to subordination and empowerment, revealing how they contribute

to anti-feminist ideologies.1 Such studies, however, have not fully

utilized semantic network analysis to uncover the interconnections

within tensional knots, defined as multiple interconnected tensions

(Fairhurst and Putnam, 2023; Raja et al., 2022). In organizing

contexts, tensions “develop in complexity” as contradictory

opposites evolve, persist, and interconnect (Fairhurst and Putnam,

2014, p. 279) forming a complex configuration that resembles a

knot (Sheep et al., 2017). Using prisms as a metaphor, Sheep et al.

(2017) illustrated how knotted tensions can have implications for

action. Similar to how a prism disperses and intensifies light, the

structure of tensional knots can scatter a community’s focus and

energy, making it difficult to find a clear path forward (Sheep

et al., 2017).2 Collectively, such work underscores the importance

of investigating the networked structure of community tensions.

2.2 Social media discourse

Social media conversations, which reflect written records of

community discussion (Shugars, 2019), are a ripe place for the

examination of tensional knots (Eddington, 2020; Jarvis and

Eddington, 2021). Language—whether in words, sentences, or

groups of utterances—constructs social contexts (Gallagher et al.,

2018; Howarth, 2000; Lawrence et al., 1999; Schiffrin, 2006) and can

act as a resource upon which one draws knowledge (Hardy et al.,

2005; Habermas, 1989). As prior work explains, one’s linguistic

choices can reflect deep-seated meanings (Jørgensen and Phillips,

2002; Potter and Wetherell, 1987), serving as windows into the

function of discourse (Doerfel and Barnett, 1999; Doerfel et al.,

2013; Eisenberg, 2007; Giddens, 1979, 1987). Individuals often use

language to explain their ideas and actions (Doolin, 2003; Shugars

and González-Bailón, 2023) in online spaces (Liu et al., 2018; Yuan

et al., 2013). Here, social media discourse functions as more than

a mechanism for information exchange or diffusion (Beauchamp,

2020; Matassi and Boczkowski, 2023) but as a discursive space for

community discussions and cross-cultural dialogue (Papacharissi,

2009; Randazzo and Ammari, 2023).

This study focuses on community discourse in online

neighborhood groups, which are digital interest or topic

communities tied to geographic regions (Hampton and Wellman,

2003; Wellman et al., 2001). Hosted on social media platforms

like Facebook or Nextdoor (Lambright, 2019; Lee and Ahn, 2023),

neighborhood groups often contain informal conversations about

public life (Benedict, 2022; Carpini et al., 2004; La Due Lake and

Huckfeldt, 1998; Kim et al., 1999; Kurwa, 2019; Weatherford,

1982). In the aftermath of a weather disaster, neighborhood groups

can act as hubs for preparation and management (Bird et al., 2012;

Bortree and Seltzer, 2009; Chewning et al., 2013; Stephens et al.,

2020). Disasters are traumatic, requiring the need for collective

sensemaking through public discourse (Alexander, 2004; Eyerman,

2004; Rimé, 2020). Such community discourse is often riddled

1 r/TheRedPill is a subreddit focused on men’s rights.

2 Reminiscent of Mintz and Wayne (2016) polythink decision-making

dynamic which occurs when there is a plurality of opinion (i.e., large number

of di�ering views).

with tensions as communities discuss paths toward recovery

(Dryzek, 2005; Mercier and Landemore, 2012). Discourse can

allow communities facing a disaster to identify and frame tensions

in a productive way to overcome obstacles (Driskill et al., 2012). By

examining online neighborhood discourse, we seek to shed light

on the dynamics of discursive organizing during times of crisis.

2.3 Semantic networks

Semantic network analysis has its roots in the assumption that

language is structured hierarchically (Collins and Quillian, 1972;

Osgood et al., 1978) where interconnected words contribute to

the meanings of phrases (McGee, 1980). By drawing connections

between related words or concepts, we come to understand the

social structure of language and meaning (Woelfel et al., 1980).

Semantic network analysis involves applying “network analytic

techniques on paired associations” (Doerfel, 1998, p. 16) which

enable researchers to investigate and uncover shared meanings

from connected words or concepts (Shugars and González-Bailón,

2023). For example, Yuan et al. (2013) utilized semantic network

analysis to uncover how Chinese Internet users defined the

meaning of privacy.

Carley and Kaufer (1993) describe the links between concepts

as representative of varying levels of social (dis)agreements in

the form of “provocative text that contains debates, tensions,

contradictions, biases, explicit, or implicit agendas” (Segev, 2021, p.

16). Semantic network analysis serves as a tool for interrogating the

shared narratives, language, and codes of communities (Danowski,

1993; Doerfel, 1999; Shugars and González-Bailón, 2023).

Network scholars have increasingly recognized the potential

of semantic networks to uncover patterns in social media

discourse (Featherstone et al., 2020a). Danowski et al. (2024)

provide a significant contribution by employing a cascaded

semantic fractionation approach, which involves removing

high betweenness terms to identify more coherent subgroups

within semantic networks. Danowski et al.’s (2024) approach

helps untangle complex semantic structures while avoiding

information loss. Similarly, Featherstone et al. (2020b) have

explored public discourse around controversial topics such as

childhood vaccination, revealing how semantic networks can

provide insight into community opinion clusters.

By building on these foundations and applying a multilayer

framework, this paper contributes to the growing body of work

that uses computational methods to map and analyze discursive

structures within social media contexts (Hilbert et al., 2019).

Specifically, we use partitions, which in this study reflects high-level

themes, to infer meaning from clustered concepts (Arasaratnam

and Doerfel, 2005; Doerfel and Marsh, 2003; Yuan et al., 2013),

relative centrality to assess which concepts constitute community

tensions, and density (Doerfel and Fitzgerald, 2004) to indicate

how tensions are layered within the larger neighborhood network.

We argue that a multilayer approach brings richer insight into

the discursive dynamics captured by semantic networks. We

accomplish this by examining linguistic connections both within

and across themes (layers). That is, our approach allows for

analyzing both how words are used to articulate themes (within
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layer analysis) and how concepts interconnect with each other

(between layer analysis). In doing so, we respond to ongoing calls

to extend semantic network analysis beyond traditional one-mode

or bipartite structures and to better account for the complexity of

discourse in public spheres (Featherstone et al., 2020a; Hilbert et al.,

2019). Thus, we examine the following research questions:

RQ1: What are the community tensions present in multiple

layers of online neighborhood discourse?

RQ2: How do thematic layers of tensions interconnect across

online neighborhood discourse?

3 Materials and methods

This paper adopts a computational social science approach,

which is often described as an inductive process that complements

traditional, qualitative methods (Ylä-Anttila et al., 2022). Given

the implicit network structure of “tensional knots,” we focus

particularly on using semantic network analysis to understand and

unravel such complex, interconnected structures.

3.1 Data collection

Our dataset includes 1,489 posts made in a neighborhood

Facebook group from September 2021 to March 2022. This

community group serves a densely populated borough in the

greater New York Metropolitan Region that was devastated by

the Category 4 Hurricane Ida on August 26, 2021. Ida caused

an estimated 65 billion dollars in damages to this community,

displacing many long-term residents, both homeowners and

renters (McKinley et al., 2021; Wood, 2022). Data were collected

in 2022 through Meta’s Crowdtangle API (Meta, 2022) and

was approved by the Rutgers University Institutional Review

Board IRB. We anonymized the dataset by obscuring user, street,

building, and stakeholder names (e.g., mayor, developer, governor)

mentioned in posts. Names were replaced with informative

placeholders such as “developer1” or “organizer1” to allow context

to be reflected in our qualitative analysis while ensuring anonymity.

The specific tags used for each entity were informed by one author’s

deep knowledge of the community context as well as our qualitative

review of anonymized texts. For example, we ultimately gave the

most tagged username the identifier of “organizer1” to reflect their

efforts organizing donations and collective action.

3.2 Thematic analysis

To answer RQ1, we conducted thematic analysis of

conversation threads. Each thread represented an initial post

followed by replies. The conversation trees have a maximum depth

of 2, as replies can receive replies of their own, but Facebook

does not allow further nesting. We considered each thread to be

its own coherent conversation and conducted our analysis at the

thread level. This is because replies made to an initiating post, or

even further nested replies, typically engaged with each other and

reflected a coherent conversational experience. In total, our dataset

consists of 354 threads, with an average length of 24 comments.

We utilized Braun and Clarke’s (2006) guidelines on qualitative

coding to uncover thematic patterns and to surface the tensions

reflected in these threads. This involved us first immersing

ourselves in the data, reading and re-reading conversation threads

to become familiar with the depth and breadth of content. This

first phase helped to identify preliminary codes that could point to

underlying tensions. After immersing ourselves in the data, two of

the authors meticulously annotated the dataset to identify common

themes. We then iteratively refined and modified the identified

themes over multiple discussions to accurately capture the essence

of the dataset.

Inter-rater reliability was not needed for this study due to the

iterative nature of our analysis. We allowed the themes to emerge

organically, using a bottom-up approach (Braun and Clarke, 2006)

to identify the tensions present in the conversation threads. Our

goal was not to quantify agreement across coders, but to collectively

identify and refine the themes that best captured tensions. Once the

themes were established, we used prior work to help contextualize

the titles and ensure alignment with existing research without

altering the meaning of the themes.

This work resulted in five distinct tensions: Progressive vs.

Conservative Values, Neighborhood Preservation vs. Economic

Progress, Environmental Sustainability vs. Overdevelopment,

Tenant Rights vs. LandlordObligations, andGrassroots Organizing

vs. Bureaucratic Expectations. Each thread was then identified as

relating to one of these tensions. Additionally, while all data was

collected from a public group, we followed the recommendations

of Bruckman (2002) and described quotes to ensure that comments

were undiscoverable. The findings from the thematic analysis

laid the groundwork for generating network layers reflective of

each tension.

3.3 Topic modeling

We further validated our qualitative analysis using topic

modeling, a computational approach, which surfaces the latent

dimensions reflected in a collection of texts. This approach allowed

us to both confirm that our five qualitatively identified themes

are linguistically distinct across our corpus and to identify specific

“topics” which comprise each of these themes. For this task,

we used Latent Dirichlet Allocation (LDA), a common topic

modeling technique that is scalable to large datasets (Blei, 2012;

Blei et al., 2003; Maier et al., 2018). As compared to newer methods

(e.g., BERTopic, Top2Vec), LDA has been found to produce less

interpretable or overly generalized topics (Egger and Yu, 2022).

These potential issues were less of a concern for this study as we

were not using LDA to discover insights but instead to confirm

findings from the qualitative analysis. We determined the ideal

number of topics based on coherence scores, which are a metric

for assessing topic models by calculating the semantic similarity of

high-probability words inside each topic. We generated the topic

models using Gensim’s LDA implementation in Python (Röder

et al., 2015). We then compared the coherence scores (Figure 1)

of 5 topics (∼0.31), 21 topics (∼0.38), and 25 topics (∼0.36).
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FIGURE 1

Coherence of Topic Models: This graph displays the variation in

coherence scores across di�erent topic models.

After reviewing the keywords for each, we chose 21 Topics as it

produced the most coherent outputs. However, two of the topics

(Topic 18 and Topic 19) were ultimately deemed uninterpretable

through qualitative assessment, and therefore, were excluded from

further analysis.

We generated an Intertopic Distance Map (Sievert and Shirley,

2014) that uses multidimensional scaling to show the relationships

between subjects in a two-dimensional environment. The size of

the circle denotes the relative frequency of each topic in the dataset,

and each circle represents a topic (Appendix). More popular

topics, such as Topic 1, are reflected as larger circles. The lengths

between the circles show how similar the topics are to one another;

distant topics use different language, while closer topics have more

overlapping words. The right panel in Appendix shows the Top-

30 Most Relevant Terms for Topic 1, accounting for 30.3% of the

tokens in the dataset. In the image, the blue bars represent the

overall term frequency in the entire corpus and the red bars show

the estimated frequency of each term within the selected topic. The

Intertopic Distance Map allows us to view which words are both

frequent in the dataset and highly relevant to Topic 1. However,

the keywords in Appendix are limited in contextualizing the topic.

Therefore, we sampled comments that were in the 98th percentile

of relevance to each topic. We then conducted qualitative coding

on the sampled comments, allowing us to generate meaningful

labels for each topic. These topics were then grouped under the five

overarching tension layers (Figure 2). By linking the results of topic

modeling to these tensions, we were able to systematically map the

discourse into distinct thematic layers that reflect the structural and

semantic patterns of the conversation threads.

3.4 Semantic network analysis

This paper uses semantic network analysis due to its usefulness

in uncovering the structure of online conversations (Paulus and

Wise, 2019; Shugars and González-Bailón, 2023). We constructed

seven networks in total: one multilayer network with within-

layer (word-to-word) and between-layer edges (tension-to-tension

via shared words), five semantic networks representing the layers

FIGURE 2

Thematic grouping of topics: We conducted qualitative coding on a

sample of comments that were in the 98th percentile of relevance

to each topic. These topics were then grouped under the five

overarching tensional layers.

of the multilayer network, and one bipartite network projection

(tension-to-tension via shared words) for comparison. We began

by preprocessing the text in each post, making all words lowercase,

as well as removing punctuation and stopwords. In addition to

tidytext’s stopword list in R, we added custom stopwords that were

particularly common in our data such as “comment” and “post.”

Our qualitative analysis revealed that these words often referred

to the medium of Facebook itself and did not provide meaningful

insight into the content of the conversation.

Using the clean text, we then constructed co-occurrence

networks for each tension. As Danowski (1993) explains, co-

occurrences enable researchers to investigatemeaning embedded in

text. Words were considered connected if they co-occurred within

the same thread. In other words, we took all threads identified

as related to a given tension and considered each word in those

threads as a node in that tension’s semantic network. We then

defined the weight of connection between two words as the number
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of times those words co-occurred within the same thread. For

example, if the words “tenant” and “heat” both appeared 5 times

within a single thread, those nodes would have an edge of weight

5 connecting them. These weights were additive across threads

related to the same tension, so if a second thread also had a co-

occurrence of the words “tenant” and “heat,” the edge weight in the

associated tension network would increase to 6.

We examined co-occurrence at the thread level rather than at

the comment level because we were interested in getting a broad

picture of what words and concepts were connected to each tension.

That is, rather than comparing comments made in back-and-forth

debate, our analysis better quantifies how each tension itself is

reflected in discourse. Previous work has found that aggregating

textual data to the thread-level allows researchers to respect the

integrity of such interactions in a way that is missed when

isolating sentences or comments (Herring, 2004), an approach that

overemphasizes incidental word pairings. Furthermore, analyzing

semantics on the thread-level acknowledges social media discourse

as a dynamic interplay of communicative actions which include

how users react, respond, and contribute to posts.

To answer RQ2, we constructed both a multilayer and a

bipartite network projection network to assess the interconnections

between tensions. In the traditional bipartite network, each word

that appears within a tension’s network is considered linked to that

tension. This approach reveals the word co-occurrence between,

rather than within tensions. For example, if the words “tenant”

and “heat” are connected to Tension 1 and the words “tenant” and

“developer” are connected to Tension 2, then the projection of the

bipartite network onto the tension nodes will show the high-level

linguistic interconnections between those tensions. These between-

tension connections are weighted by the number of unique words

shared by two tensions.

The multilayer network provides a detailed view of the

connections between and within tensions (Artime, 2022). As Knoke

et al. (2021) explain, multilayer networks “preserve all relational ties

rather than erasing some information through projections which

collapse data across modes” (p. 2). Multilayer networks can be used

to visualize multiple types of connections between the same nodes

(Barnett et al., 2013; De Domenico et al., 2015). The layers within

these networks can represent different time periods (e.g., disaster

phases) or interactions (e.g., email, meetings), which collectively

form a more complete picture of complex systems (Boccaletti et al.,

2014). In this study, each layer within the multilayer network

represents one of the five tensions uncovered through the thematic

analysis. Intra-layer edges (i.e., links between words within a single

layer; Kinsley et al., 2020) represent the co-occurrence of words,

illustrating how terms cluster around specific topics. Inter-layer

edges are connections between different layers. The same node that

appears in any two layers forms a coupling edge (Kivela et al., 2014),

bridging multiple themes.

3.5 Network measures

3.5.1 Centrality measures
To analyze our semantic networks, we considered a range

of network statistics. Specifically, for our tension-level semantic

networks, we examined degree, betweenness, eigenvector, and

closeness centralities, along with clustering coefficients (Scott, 2017;

Wasserman and Faust, 1994). Degree centrality, which measures

the total number of times a word co-occurs with others, allows

us to identify concepts with a high number of connections within

the network (Segev, 2021). Betweenness centrality measures how

frequently a node falls between other nodes in the network

(Xu, 2020), filling structural holes (Burt, 1992). While closeness

centrality measures how closely, on average, a node is connected to

all other nodes. Eigenvector centrality identifies influential nodes

based on their connections to other important nodes within the

network, helping to uncover central themes or concepts (Bonacich,

1987). The clustering coefficient measures the extent to which

nodes tend to cluster together, which can signify a thematic cluster

or a closely knit group of concepts reminiscent of dense, small-

world networks (Watts and Strogatz, 1998).

3.5.2 Interlayer correlations
To examine connections between tensions, we calculated

interlayer correlations through the multilevel network (Dickison

et al., 2016).We operationalized interconnections between tensions

as Berlingerio et al.’s (2013) layer correlations which adapts the

Jaccard correlation coefficient for multilayer networks. Jaccard

correlation coefficients are traditionally used to measure the

similarity between two sets by dividing the size of the intersection

of the sets by the size of their union. In multilayer networks, layer

correlation represents the similarity in the presence of edges among

the same actors across different layers (Berlingerio et al., 2013).

To compute this metric, we calculated Jaccard Coefficients (size of

the intersection and union) between a set of unique edges for two

given tensions.

4 Results

4.1 Layers of community tensions

In the following section, we provide an in-depth analysis of the

tension layers (RQ1) within the multilayer network and the topics

within each layer. We then discuss the unique interconnections

that occur between layers of tensions (RQ2). Our findings revealed

five layers that reflect social media discourse following disaster: (1)

Grassroots Organizing vs. Bureaucratic Expectations, (2) Tenant

Rights vs. Landlord Obligations, (3) Environmental Sustainability

vs. Overdevelopment, (4) Neighborhood Preservation vs.

Economic Progress, and (5) Progressive vs. Conservative Values.

We found 19 topics within these tensions (Figure 2). Topics

under Layer 1, Organizing vs. Bureaucratic Expectations, included

donations and volunteer coordination (Topic 4), resident

communication and updates (Topic 5), evacuation and emergency

communication (Topic 14), and FEMA and local assistance (Topic

17). Topics under Layer 2, Tenant Rights vs. Landlord Obligations,

included affordable housing and rebuilding (Topic 0), heating and

utility issues (Topic 11), and landlord and tenant rights (Topic

15). Layer 3, Environmental Sustainability vs. Overdevelopment

included flood cleanup and public health concerns (Topic 1),

community meetings and flood rezoning (Topic 10), and flood and

power outages (Topic 12). Layer 4, Neighborhood Preservation

vs. Economic Progress, included development and infrastructure
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concerns (Topic 3), committee formation and zoning ordinance

(Topic 6), developer accountability (Topic 7), crime and car

break-ins (Topic 9), and overcrowding and housing concerns

(Topic 13). Layer 5, Progressive vs. Conservative Values included

voting issues and local politics (Topic 2), COVID-19 (Topic

8), political influence on disaster recovery (Topic 16), and the

economic impact of disasters (Topic 20). As mentioned in the

methods section, we omitted Topic 18 and Topic 19 from the

model as they were uninterpretable.

4.1.1 Layer 1: grassroots organizing vs.
bureaucratic expectations

Layer 1 reflected a tension between grassroots organizing to

address community needs and the expectations and responsibility

of local government officials. Residents expressed frustration with

the lack of preparedness by officials for Hurricane Ida (Topic 5) and

felt poor communication resulted in the destruction of emergency

vehicles needed for rescue efforts (Topic 14). Network metrics for

Layer 1 revealed high eigenvector and betweenness scores for both

“mayor” (eigenvector: ∼0.94; betweenness: 5,907) and “council”

(eigenvector: ∼0.97; betweenness: 626), reflecting the influence of

such leadership positions within the community. “Agree” held the

highest betweenness centrality (8,160) and eigenvector (1.0) scores,

which can be evidence of deliberative discussion as the term can

reflect points of contention or consensus within the discourse.

We observed significant centrality results for “flood”

(betweenness: 4,261; closeness: 0.000465) and “water”

(betweenness: 3,288; closeness: 0.000536) which suggests that

these words formed a sub-network of discussion around water

management issues and the town’s flood response. The words

“tenants,” “child,” and “care” share a strong connection to “house,”

which held the highest betweenness centrality (∼9,219). This

result echoed the decision-making processes around organizing

local assistance (Topic 17). Community members appeared to

prioritize donations and housing arrangements for displaced users

with children (Topic 4). The relatively lower clustering coefficient

(0.253) for “house” suggested that discussions about housing are

widespread, involving diverse parts of the network as opposed to

being confined to a tightly knit cluster of words.

4.1.2 Layer 2: tenant rights vs. landlord
obligations

Layer 2 revealed the power struggle between individuals

seeking improved living conditions vs. the obligations of their

landlords. Users personally experiencing these conditions described

the deterioration of their apartment buildings (Topic 11). Replies

included guidance on safely using space heaters, contacting media

outlets with complaints, beginning a letter writing campaign to

local municipality leaders, and hiring tenancy law attorneys (Topic

15). Community members encouraged others to attend council

meetings and help advocate for affordable housing (Topic 0).

This analysis demonstrated the duality of tensions as members

encouraged others to leverage their knowledge of tenant rights

and attend town hall meetings. Network metrics revealed “heat” to

be a significant concern for users. The high clustering coefficient

(∼0.602) and betweenness centrality (3,062) score for “heat”

reflected tightly knit discussions about heating issues and the term’s

role as a bridge to named stakeholders (“organizer1,” “council,”

“mayor,” “developer”). Of the named stakeholders, “organizer1”

had the highest betweenness centrality (7,392) and “mayor” among

the highest clustering coefficients (∼0.844). The connections

between “heat” and those named coupled with network metrics

reflected the power and responsibility of such positions relative

to unsafe housing practices. Such evidence aligned with social

network analysis results as “meeting” had one of the highest

clustering coefficients (0.454) for this network (Figure 3).

4.1.3 Layer 3: environmental sustainability vs.
overdevelopment

Layer 3 focused on the environmental consequences of

overdevelopment. In this layer, community members discussed

the consequences of rezoning proposals that would allow for

the construction of “green housing” in flood zones (Topic 10).

Members also suggested redesigning uninhabitable apartment

complexes with parking garages on the first floor as a flood

mitigation strategy (Topic 12). Semantic network analysis revealed

the prominence of terms that highlight the consequences of

disasters. For instance, “water” (eigenvector: ∼0.996; betweenness:

3,100), “building” (eigenvector: 1.0; betweenness: 2,736), and

“flood” (eigenvector: ∼0.997; betweenness: 2,791) shared high

centrality scores. These results reflect conversations about water

damage and power outages caused by Hurricane Ida (Topic

1). Findings demonstrated the community’s concerns about the

consequences of overdevelopment in flood zones and frustration

over the lack of qualified professionals on the zoning board

committee (Topic 10). Terms like “mayor” (∼4,045) and “council”

(∼1,769) also held high betweenness centrality, speaking to the

community’s recognition of local governance being a pathway to

address local issues. These findings suggested that governance and

decision-making processes are significant points of discussion and

potentially lead to new avenues for collective action.

4.1.4 Layer 4: neighborhood preservation vs.
economic progress

Layer 4 reflected community members’ discussions about

preserving neighborhood identity vs. experiencing economic

growth. Semantic analysis results for Layer 4 revealed “building”

as a focal node with high degree centrality (915) and eigenvector

centrality (1.0). Hurricane Ida caused infrastructure damage,

providing the opportunity to either restore or replace uninhabitable

low-income apartment buildings with luxury living facilities

(Topic 6). Community members rallied others to attend town

hall meetings and encouraged the mayor to hold the developer

accountable and address gentrification (Topic 7). “Housing”

(degree: 887; eigenvector: ∼0.998) and “community” (degree: 870;

eigenvector: ∼0.997) also showed high degree and eigenvector

centrality scores. These measures pointed to housing issues such

as overcrowding and the broader socio-economic fabric of the

neighborhood being a pressing concern for community members

(Topic 13). Despite playing important roles, “housing” and

“community” occupied different positions in the network.
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FIGURE 3

Tension Networks: This visual reflects the 20 most frequent words within each tension network. Node size is equivalent to frequency of term.

“Community” had a higher betweenness centrality (∼1,102)

as compared to “housing” (∼278), indicating that “community”

functioned as more of a connector between different parts

of community discourse. Users also blamed local government

for the change in neighborhood identity, which aligned with

semantic network results. The high clustering coefficient (1.0) and

low betweenness centrality (0.0) for “mayor” implied that such

conversations were highly focused on critiques and endorsements

of the mayor’s actions (or inactions) toward neighborhood

preservation. Others connected neighborhood preservation to

“child” which held a high degree centrality (870) and eigenvector

centrality scores (0.997). For example, individuals pointed to a lack

of activities for children as evidence of the town prioritizing the

construction of luxury apartments (Topic 3) over amenities for

families. The betweenness centrality of “child” (237), while not

as high as other terms, still suggested relation to other observed

concerns like the overcrowding of public schools and the increased

cost of living.

4.1.5 Layer 5: progressive vs. conservative values
Layer 5 involved politically charged conversations (Topic 2),

which was also evidenced by the centrality scores of terms like

“politics” (eigenvector:∼0.677) and “question,” holding the highest

betweenness centrality score (∼4,570). The presence and frequency

of terms like “money” and “job” underscored financial pressures,

potentially resulting from economic ramifications from COVID-

19 (Topic 8) and/or Hurricane Ida (Topic 20). “Money” had

a high betweenness centrality (∼2,424), indicating its role as a

bridge between different topics like those about government relief

measures. The clustering coefficient for “money” (∼0.771) showed

potential economic fallouts being a common concern among
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community members. “Job” had a high clustering coefficient (1.0)

and relatively high closeness centrality (∼0.0035), suggesting that

discussions about job security and employment were highly focused

within the network.

Users expressed a desire for non-partisan approaches to

community issues, which is aligned with semantic network

results. The relatively high eigenvector centralities for “care” and

“community” (both ∼0.655) and clustering coefficients (both 1.0).

Such scores indicated how highly clustered and their connection

to other well-connected nodes. Still, the terms “community” and

“care” were among the lowest in terms of betweenness centrality

scores (both 0.0), indicating such terms do not lie on the shortest

path between other nodes outside their immediate clusters. That is,

“community” and “care” did not bridge other parts of the network.

This can be due to some members pushing for the separation

between local and national political values when it comes to disaster

recovery (Topic 16).

4.2 Unraveling the interconnections of
knotted tensions (RQ2)

With this deep understanding of the tensions in this

community, we next examined interconnections between tensions

(RQ2). Figure 4 reflects these interconnections through both

a multilayer visualization (panel A) and bipartite projection

(panel B). The five layers in panel A reflect tensions raised

across threads. Nodes represented words that were knotted

within and across layers. These words formed intralayer edges,

operationalized as the co-occurrence of words within conversation

threads. Coupling edges reflected interconnections across layers

of tensions. Threads extended vertically across layers and

were connected by knots of identical words between different

tensions. Figure 4 illustrates the interwoven nature of community

discourse as certain words were more relevant than others,

threading through multiple layers. The multilayer network offered

a detailed, three-dimensional representation of the interplay

between different community tensions and their commonalities

in the aftermath of disaster. The right side of Figure 4 collapses

the threads between layers into a bipartite projection. This

projection allowed us to assess the overall discourse dynamics

by viewing relationships between tension pairs from a bird’s-

eye view. Thicker lines reflected stronger connections (greater

number of shared words) whereas thinner lines represented fewer

connections. We included these different network visualizations

to consider both the micro- and macro-level relationships within

community discourse.

In comparing the two network models, the bipartite

projection flattens the multidimensional nature of semantic

relationships into a compressed, two-dimensional visual. In

contrast, the multilayer model provides a richer representation

of semantic connections by allowing words to nest within layers

of discourse. Additionally, the multilayer model allows us to

calculate interlayer correlations which quantifies the similarity

between layers based on the presence of shared words. In the

below section, we provide an in-depth look at the similarity

between two layers which is not possible with the bipartite

projection. The interlayer correlations from the multilayer model,

however, helps to maintain the integrity and distinctiveness

of discourse themes while simultaneously measuring their

word-level similarities.

4.2.1 Layer 1 and layer 5: the political
undercurrents of crisis response

Tension 5 (progressive vs. conservative values) was the

least correlated across all tensions (Figure 5), sharing strongest

similarity with Tension 1 (grassroots organizing vs. bureaucratic

expectations). While not the highest interlayer correlation

score (J ∼0.26), the similarity between both tensions suggested

meaningful overlap in discourse. The unique words that formed

coupling edges between Tensions 5 and 1 included terms

like “administration,” “COVID-19,” “municipal,” “national,”

“policy,” “president,” and “trump.” These words threaded

the community’s local discourse (lowercase) to broader

Discourse (capitalized). Mentioning “trump” and “president”

within the context of the 2020 presidential election suggested

that discussions in Tension 5 resonated with the theme of

bureaucratic expectations, particularly concerning frustrations

over disaster response and preparedness in Tension 1. The

presence of “COVID-19” pointed to the pandemic serving as

a backdrop to these discussions, which involved debates over

masks, transitioning to online instruction, and the COVID-19

testing shortage.

4.2.2 Layer 1 and layer 2: community resilience in
the face of adversity

Tension 1 (Grassroots Organizing vs. Bureaucratic

Expectations) and Tension 2 (Tenant Rights vs. Landlord

Obligations) shared the highest interlayer correlation (J ∼0.56).

The interconnection between these two tensions pointed to the

entanglement of discourses in the aftermath of a crisis. These

tensions share unique interlayer edges that include terms like

“organize,” “utilities,” and “vulnerable.” These words acted as

knots between these layers and spoke to the active engagement of

members that organized to help their borough’s most vulnerable

residents. Shared interlayer edges of terms like “insurance,”

“FEMA,” “rental,” “hotel,” “damage,” “rebuild,” and “health”

highlighted the challenge of addressing disasters while also

confronting systemic issues through advocacy, evidenced by “fight”

and “protest.” These tensions also share interlayer edges between

words that reflect local leaders like “mayor” and “council.” In

Tension 1, community members called for the mayor and council

to take responsibility for the lack of preparation and subsequent

disaster response. Whereas, in Tension 2, users called for officials

to support displaced community members who were being treated

unfairly by a powerful landlord. When taken together, such words

reflect the interconnections that represent the need for local

leadership in community organizing efforts. This necessity for

official support highlights the structural power dynamics that

residents can face when confronting unfair housing practices.

Still, the need to organize because leaders are not fulfilling

expectations emphasizes the potential for public officials to also

hinder community efforts.
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FIGURE 4

Multilayer Network and Bipartite Projection: A multilayer network showing connections between tensions (A) and a bipartite projection of the

word-tension network (B).

FIGURE 5

Interlayer Correlations: This heatmap represents the interlayer correlations of the coupling edges across layers in the multilayer network. Each square

contains the correlation coe�cient between two di�erent tensions. Coe�cients range from 0 (no correlation) to 1 (perfect correlation).

4.2.3 Layer 2 and layer 4: housing inequities and
overdevelopment

Tension 2 (tenant rights vs. landlord obligations) and Tension

4 (neighborhood preservation vs. overdevelopment) had a lower

layer correlation score (J∼ 0.27). Still, their unique interlayer edges

offered a glimpse into the intersection between environmental

concerns and existing housing issues. Shared knots like “broke,”

“complaint,” “heat,” and “repair,” suggested issues with the

maintenance whereas words like “mold” and “wet” pointed to

environmental sustainability issues like water damage due to
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worsening flood zoning. The words “slumlord,” “lawyer,” and

“legal” are unique to these tensions, which pointed to the need

for legal recourse in both tension layers. Tensions 2 and 4 also

shared the term “traumatic,” which suggested the emotional and

psychological impact of these disasters on communities.

4.2.4 Layer 1 and layer 4: grassroots organizing
against environmental challenges

The knots between Tension 1 (grassroots organizing vs.

bureaucratic expectations) and Tension 4 (environmental

sustainability vs. overdevelopment) reflected the interconnection

between community organizing around environmental issues,

coupled with concerns about government action/inaction. These

tensions had a relatively strong layer correlation (J ∼0.39),

indicating significant overlap in discourse. These tensions shared

the unique word of “Sandy,” in reference to Superstorm Sandy,

an extreme storm that caused catastrophic damage to the area in

2012. These tensions also shared words like “angry,” “lying,” “poor,”

and “worry,” which pointed to similar expressions of emotion

or sentiment in both these tensions. Terms such as “anger” and

“worry,” along with “elected,” “failed,” and “respect” were in

reference to government officials and their effectiveness. The word

“failed” implied group members’ dissatisfaction with the town

council’s response to environmental challenges. The term “respect”

suggested an appeal for authorities to heed the voices and needs of

the community.

5 Discussion

5.1 Overcoming information loss in
bipartite networks

The goal of this work was to alleviate the information

loss that comes with using typical bipartite projections (Opsahl,

2013; Everett and Borgatti, 2013; Yang and González-Bailón,

2016) and to quantify tensional knots (e.g., Sheep et al., 2017).

The bipartite projection in this study offered a high-level view

of the tension-to-tension connections between words that are

uniquely shared. Although useful, this projection is unable to

fully convey the multilayer network’s depiction of the intricacy

and hierarchical structure of language (Collins and Quillian,

1972; Rice and Danowski, 1993). This study illustrates the word

structure buried in discourse topics through the use of a multilayer

technique (Woelfel et al., 1980). Our findings illuminate the

interconnections within and between community tensions that

traditional bipartite networks cannot fully capture. For example,

Layer 1 (Grassroots Organizing vs. Bureaucratic Expectations)

showed overlap with Layer 5 (Progressive vs. Conservative

Values). Their overlap provides evidence for the strength of a

multilayer approach in revealing how discourse reflecting local

issues can resonate with and can be shaped by larger socio-political

conversations. Moreover, the thematic tensions between Layer 2

(Tenant Rights vs. Landlord Obligations) and Layer 1 (Grassroots

Organizing vs. Bureaucratic Expectations) exhibit the highest

interlayer correlation which, when depicted through the multilayer

network structure, demonstrates the interconnection between

local leadership and organizing efforts in the face of disaster.

Collectively, this paper advocates for a multilayer approach that

better models the semantic structure of interconnected tensions

within public discourse.

5.2 A multilayer approach to modeling
semantic networks

This study utilizes multilayer network methods to investigate

semantic connections within and between layers of community

discourse. We argue that more traditional bipartite approaches

overlook how tensions are knotted (interconnected) within

discourse, potentially oversimplifying interpretation. We

find that shared terms across layers of discourse function as

discursive resources (i.e., tools for dialogue and understanding;

Hardy et al., 2005). This study argues that identifying

discursive resources through multilayer network analysis

has the potential to help practitioners navigate community

tensions more effectively. Recall in the findings how the term

“traumatic” appeared in discussions about poor housing

conditions (Tension 2) and threats to neighborhood identity

(Tension 4). Understanding how “traumatic” interconnects

tension layers can help practitioners design messaging that

addresses both housing and community preservation. For

instance, “traumatic” in Tension 2 (Tenant Rights vs. Landlord

Obligations) and Tension 4 (Neighborhood Preservation vs.

Overdevelopment) suggests that inequitable access to safe housing

can have implications for not only individual wellbeing but also

community stability.

In this research, we demonstrate how interlayer correlations in

multilayer semantic networks might offer a richer understanding

of the interactions between various themes. Researchers can gain

a deeper grasp of social media conversation in neighborhood

situations by building a semantic network comprising several

discourse layers and identifying the ways in which particular words

or concepts serve as links between different topic layers.

This approach could also be used directly by community

leaders or elected officials–allowing them to examine the themes

and tensions that arise in public discourse across a range

of settings. In the context of disaster response, this could

help local governments, non-governmental organizations (NGOs),

and community leaders more quickly identify and respond to

community needs. Using a multilayer analysis can also enable

leaders to develop intervention strategies that tackle the complexity

of issues rather than approaching problems in isolation. This

approach can help officials design multifaceted strategies that target

the root of knotted tensions, saving them time and resources by

minimizing redundant efforts.

Observing single semantic networks might oversimplify how

discussion topics interact or evolve over time. We recommend

that future work investigates how multilayer networks help yield

a more accurate interpretation of semantic data when compared

to single layer networks. Previous research also acknowledges how

organizational initiatives for community improvement are often

misaligned with what community members perceive as important

issues (Zoller, 2000). Examining the interconnections in social

media discourse is one way to address this alignment by providing

a deeper understanding of community challenges.
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5.3 Online community organizing

This study sheds light upon organizing practices and the role of

community leaders in navigating local tensions. Our findings reveal

that local leaders (e.g., mayor, town council) serve as both catalysts

and barriers to managing local issues. This can be due to a lack of

mutual understanding of issues, which can have implications for

the success of community initiatives (Koschmann and Laster, 2011;

Zoller, 2000). Also, disparities in power and knowledge between

community leaders and organizational officials (Cooper, 2021) can

make collaborations between communities and organizations more

challenging (Gordon and Lopez, 2019). As previously discussed,

community members demanded the mayor and town council put

an end to illegal housing practices while simultaneously organizing

themselves to participate in collective action. This finding illustrates

a “both-and” strategy (Fairhurst and Putnam, 2024; Smith and

Lewis, 2011) which has been found to help individuals navigate

tensions (Berti and Simpson, 2021). Our data provides additional

evidence for the “both-and” strategy as users expressed how to enact

change (e.g., take legal action, attend town hall meetings) while still

acknowledging power differentials and thus the need for elected

officials. Future research should investigate strategies to enhance

the efficacy of community organizing under varying bureaucratic

conditions and also measure their impact on policy changes.

This study builds upon prior work by demonstrating the need

for a coordinated approach that considers the interconnected

nature of community issues. Community members’ organizing

activities included advocating for displaced low-income residents

with a plea to the mayor and town council to address the

town’s housing issues. Theoretically, we recommend that future

work investigates the efficacy of different strategies (e.g., the

both-and strategy; Fairhurst and Putnam, 2023; Smith and

Lewis, 2011) in community organizing contexts under different

bureaucratic conditions. Practically, we encourage policymakers

and organizational leaders to recognize the importance of

engaging with and empowering community voices, when designing

interventions to strengthen disaster resilience.

6 Limitations and conclusion

Like any research, the decisions made to formulate this

research generate their own cost-benefit tensions. The decision

to treat the data as cross-sectional over months of discussions

did not capture the nature of conversations- that they unfold

over time- or of post-disaster response and recovery, which

are dynamic, compressing and expanding time for the victims

and institutions involved. Future research should consider a

longitudinal analysis to fully understand how these tensions evolve

over time (Chewning et al., 2024). Tracking the discussions across

multiple phases of disaster recovery could enable researchers to

observe how the prominence and nature of tensions shift in

response to changing community needs. By analyzing the data

cross-sectionally, however, this paper accomplished an extension

of paradoxical tensions theory in terms of how tensions are

connected by common language. This study also illustrated the use

of multilayer semantic networks as an additional method to help

reveal the structures that generate meaning. Additionally, while we

believe our multilayer semantic network approach allows for more

nuanced understanding of community discourse, there may be

settings in which this approach is not applicable. Our study focused

on a single neighborhood forum–thus the ties between tensions

meaningfully reflect connections, or lack thereof, in this set of

public discourse. In settings where data reflects discussion among

disparate publics, these across-layer connections may become less

meaningful as different publics may be grappling with different

layers of tension.
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Appendix

FIGURE A1

(Intertopic Distance Map): The Intertopic Distance Map shows the relationships between topics in a two-dimensional space using multidimensional

scaling. Each circle represents a topic, and the size of the circle indicates the relative frequency of that topic in the dataset. The distances between

circles indicate the similarity of topics; closer topics have more overlapping terms, while distant topics are more distinct in their word usage. The

right panel shows the Top-30 Most Relevant Terms for Topic 1, accounting for 30.3% of the tokens in the dataset.
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