
TYPE Original Research

PUBLISHED 11 April 2025

DOI 10.3389/frma.2025.1472282

OPEN ACCESS

EDITED BY

Lifeng Xu,

Zhejiang University of Technology, China

REVIEWED BY

Luiz Paulo Fávero,

University of São Paulo, Brazil

Amir Hajjarpoor,

Institute for Strategies and Technology

Assessment, Julius Kühn Institute, Germany

*CORRESPONDENCE

Tarekegn Argaw

tare.aragaw@gmail.com

RECEIVED 29 July 2024

ACCEPTED 17 March 2025

PUBLISHED 11 April 2025

CITATION

Argaw T, Fenta BA, Zegeye H, Azmach G and

Funga A (2025) Multi-environment trials data

analysis: linear mixed model-based

approaches using spatial and factor analytic

models. Front. Res. Metr. Anal. 10:1472282.

doi: 10.3389/frma.2025.1472282

COPYRIGHT

© 2025 Argaw, Fenta, Zegeye, Azmach and

Funga. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Multi-environment trials data
analysis: linear mixed
model-based approaches using
spatial and factor analytic models

Tarekegn Argaw1*, Berhanu Amsalu Fenta2,

Habtemariam Zegeye3, Girum Azmach4 and Assefa Funga5

1Climate and Computational Science Research Directorate, Ethiopian Institute of Agricultural Research

(EIAR), Addis Ababa, Ethiopia, 2College of Agriculture & Environmental Science-African Sustainable

Agriculture Research Institute (ASARI), University Mohammed VI Polytheistic (UM6P), Ben Guerir,

Morocco, 3Kulumsa Agricultural Research Center, EIAR, Assela, Ethiopia, 4Bako Agricultural Research

Center, EIAR, Bako, Ethiopia, 5Debre Zeit Agricultural Research Center, EIAR, Debre Zeit, Ethiopia

The analysis of multi-environment trials (MET) data in plant breeding and

agricultural research is inherently challenging, with conventional ANOVA-based

methods exhibiting limitations as the complexity of MET experiments grows.

This study presents linear mixed model-based approaches for MET data analysis.

Ten MET grain yield datasets from national variety trials in Ethiopia were

used. Randomized complete block (RCB) design analysis, spatial analysis, and

spatial+genotype-by-environment (G × E) analysis were compared under linear

mixed model framework. Spatial analysis detected significant local, global, and

extraneous spatial variations, with positive spatial correlations. For the spatial +

G × E analysis, increasing the order of the factor analytic (FA) models improved

the explanation of G × E variance, though the optimal FA model order was

dataset-dependent. Integrating spatial variability through the spatial + G × E

modeling approach substantially improved genetic parameter estimates and

minimized residual variability. This improvement was particularly notable in

larger datasets, where the number of trials and the size of each trial played a

crucial role for presence of spatial variability and strong GxE e�ects. Additionally,

the genetic correlation heat maps and dendrograms provided intuitive insights

into trial relationships, revealing patterns of strong positive, negative, and weak

correlations, as well as distinct trial clusters. The results clearly demonstrate that

linear mixed model-based approaches, especially the spatial + G × E analysis

excel in capturing complex spatial plot variation and G × E e�ects in MET data

by e�ectively integrating spatial and FA models. These insights have important

implications for improving the e�ciency and accuracy of MET data analysis,

which is crucial for improving genetic gain estimation in plant breeding and

agricultural research, ultimately accelerating the delivery of high-performing

crop varieties to farmers and consumers.
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1 Introduction

Crop variety development is a fundamental pillar of modern

agriculture, with advancements over the past century playing a

vital role in enhancing global food security, improving farmer

livelihoods, and promoting sustainable farming practices (Qaim,

2020; Begna and Begna, 2021). By creating high-performing,

adaptable cultivars that are resilient to biotic and abiotic stresses,

researchers have enabled stable and abundant crop yields,

bolstered food supplies, and supported the economic wellbeing of

farming communities, while also facilitating the adoption of other

sustainable agricultural innovations (Zsögön et al., 2022; Swarup

et al., 2021). Continued investment and innovation in this field

will be crucial as the world navigates the complex challenges of

ensuring long-term food security and environmental sustainability

(Blakeney, 2022).

Multi-environment trials (METs) are a crucial element of the

crop variety development pipeline. In this process, newly bred

crop genotypes are evaluated across a range of agro-ecological

environments (Smith et al., 2001b, 2021; Brown et al., 2020).

The primary purpose of METs is to capture the influence of

diverse environmental factors on the expression of genotypic

performance. This allows for the assessment of G × E effects-

a critical consideration in identifying high-performing and stable

crop varieties that can perform well under a range of conditions

(Verbyla, 2023; Lee et al., 2023; Lisle et al., 2021).

UnderstandingG× E is a fundamental aspect of plant breeding,

as it provides insights into how different genotypes respond

to diverse environmental conditions. This interaction is critical

because it directly affects important agronomic outcomes, such as

yield and the ability of plants to adapt to varying climates and

soil types (Van Eeuwijk et al., 2016; Malosetti et al., 2013, 2016;

Bustos-Korts et al., 2009). This is also demonstrated in studies by

Cooper et al. (2020); Mark et al. (2021) and Cooper et al. (2022) that

focus on implementing management strategies to maximize crop

productivity through combinations of Genotype–Management

(G–M) technologies.

By testing new genotypes across multiple environments,

breeders can gain valuable insights into how a variety’s

traits manifest and interact with the local environmental

context. This information is essential for selecting cultivars

that exhibit both high productivity and reliability, making

them suitable for deployment across a wide geographical area

(Smith et al., 2001b, 2019, 2021).

The conventional approach for analyzing MET data has

relied on ANOVA-based methods, such as AMMI (additive main

effects and multiplicative interaction) and GGE (genotype and

genotype-by-environment interaction) analysis (Beeck et al., 2010;

Zhang et al., 2020). These techniques have enabled researchers

to obtain ANOVA results and gain insights into interactions.

Additionally, they have facilitated data visualization through the

use of biplot techniques.

However, these methods exhibit several inherent limitations

that have become increasingly apparent as the complexity of

MET experiments has grown. One key issue is that ANOVA-

based methods may struggle to handle unbalanced and incomplete

data structures, where some observations are missing or not all

genotypes are present in each environment (Piepho, 1997; Smith

et al., 2001a; Kelly et al., 2007). This is a common challenge in MET

studies. Additionally, these methods may fail to adequately account

for non-genetic sources of variance associated withenvironmental

factors or experimental design effects, which can significantly

influence the observed phenotypic performance (Smith et al.,

2005). Furthermore, the ANOVA-based analysis commonly follows

a two-stage modeling approach. This involves first analyzing

the data within each environment, followed by a second stage

of combining the results across environments for the G × E

interaction analysis (Piepho et al., 2012; Smith et al., 2005). This

approach can lead to a loss of information and less effective

extraction of insights from the complex MET datasets.

Linear mixed model-based approaches have emerged as a more

efficient methodology for the analysis of MET data. Recently,

these mixed model approaches have become predominant, as they

provide a flexible framework that can easily handle incomplete data

and appropriately model the non-genetic variances between and

within environments. This includes accounting for spatial variation

within environments and error variance heterogeneity across

environments (Smith et al., 2001a). The error variation within

environments can be modeled using the approach of Gilmour et al.

(1997), which appropriately models the three patterns of spatial

trends associated with the field of trials: local, extraneous, and

global trends.

Smith et al. (2001a, 2005) extended the G × E analysis

by employing Factor Analytic Multiplicative Mixed (FAMM)

models. These models assume random genotype effects and fixed

environment effects, and use a one-stage analysis approach, where

the models for residual effects are estimated simultaneously with

the models for G × E effects. A key feature of the Factor

Analytic (FA) model for MET data is its importance for the

estimation of the associated variance structure for G × E effects.

The FA model provides a good and parsimonious approximation

to the unstructured form, and is generally more computationally

robust (Kelly et al., 2007). Additionally, the best linear unbiased

predictions (BLUPs) of the G × E effects and estimations of

loadings and scores can be obtained, enabling bi-plot analysis to

better understand the G× E interaction patterns.

The objective of this research is to explore the potential

of linear mixed model-based approaches, particularly FAMM

models, as a high-performing alternative to the traditional

randomized complete block (RCB) designs analysis for effectively

analyzing MET data and extracting meaningful insights from

the complex G × E interactions. By leveraging linear mixed

model-based methodology, this research aims to demonstrate

how the non-genetic variances within and between environments

can be appropriately modeled, including the use of the Gilmour

et al. (1997) approach for capturing spatial trends and error

variation. Furthermore, the application of FAMM models is

explored, as these approaches provide advantages in estimating

the variance structure of G × E effects and enabling more

informative visualizations. The ultimate goal is to provide

researchers and breeders with a robust and efficient analytical

tool for extracting meaningful insights from MET data, ultimately

supporting the development of high-performingand adaptable

crop varieties.
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TABLE 1 Summary of ten MET datasets.

S.N Programs Dataset Env Entry Entry.min List of trials’ dimension
(Column × Row)

1 Common bean LCB14-16 9 16 16 (4× 12)

2 Common bean ACB14-16 12 16 16 (4× 12)

3 Common bean SCB14-16 9 16 16 (4× 12)

4 Common bean LCB19-20 8 117 28 (15× 6), (15× 9), (15× 15), (15× 22)

5 Common bean SCB19-20 10 101 30 (15× 6), (15× 8), (18× 11), (15× 20)

6 Common bean BCB15-18 15 18 16 (4× 12), (6× 9)

7 Chickpea DCP14-16 16 27 12 (5× 15), (14× 4)

8 Chickpea DCP16-18 14 27 12 (14× 4), (15× 5)

9 Maize IHMZ20 8 32 26 (6× 16)

10 Wheat BWT19-20 9 50 50 (10× 16)

Env, total number of environments; Entry, total number of entries; Entry.min, minimun number of entries grown in all trials.

2 Data and methods

2.1 Motivating data

The study utilized 10 MET datasets from the national variety

trial (NVT) series conducted by the Ethiopian Institute of

Agricultural Research (EIAR). All trials were laid out in RCB

design with a rectangular array of plots, and were carried out

across various locations in Ethiopia between 2014 and 2020. The

trials were conducted by the research programs for common bean,

chickpea, wheat, and maize. Each trial had a minimum of two

replicates per entry. The terms “trial” and “environment” are used

interchangeably, referring to a unique year-location combination.

The trait analyzed in this study was harvested grain yield, measured

in tons per hectare. There was a high degree of concurrence, or

overlap, between entries both within and across years. The name of

each dataset was designated using the first letter of the trial series

name, two letters for the crop name, and the last two digits of

years for the duration of the trial series (Table 1). Both complete

datasets, where all entries were grown in all trials, and incomplete

datasets were considered in the analysis. The complete datasets

included LCB14-16, ACB14-16, SCB14-16, and BWT19-20. The

total number of environments (year-location combinations) ranged

from 8 to 16 across the different datasets.

2.2 Statistical models

ANOVA-based models have long been used for the analysis of

MET data, providing a foundational approach to understanding

genotype performance across different environments. The general

statistical models for these techniques allow for the estimation

of mean effects, genotype interactions, and random error

components. Recently, linear mixed model-based approaches have

become increasingly useful for analyzing complex MET data

sets, as they can incorporate both fixed and random effects,

accommodating variability in the data. In this section, we first

present the general statistical model for ANOVA-based methods,

followed by the statistical models for linear mixed model-based

approaches, emphasizing their statistical applications in MET

data analysis.

2.2.1 ANOVA based models
The base-line statistical model for MET data analysis can be

written as

yikj = ηij + βkj + εikj

ηij = µ + αi + δj + γij
(1)

where yijk is yield of the i
th entry of replicate block k in environment

j (i=1, 2. . .m, j=1,2. . . t, k=1,2. . . r), ηij is the empirical/least-square

mean effect of entry i in environment j, µ is an overall mean effect,

αi is the main effect for genotype i, βkj is the block effect at trial j,

γij is the interaction effect for genotype i in trial j, εikj is the random

error effect for genotype i in replicate block k of trial j, assumed

to be N(0, σ 2). The analysis of this model follow the approaches

of two stage data analysis, in which the two-way table means ηij are

estimated first from the individual trial’s analysis, and then the G×E

analysis using GGE or AMMI model. The models for the second

stage analysis can be written as

γij = (ηij − (µ + αi + δj)) =

c
∑

i=1

λlτilθjl + ζij (2)

(αl + γij) = (ηij − (µ + δj)) =

c
∑

i=1

λlτilθjl + ζij (3)

where l= 1, 2, . . ., c, λl is the singular value of the l
th multiplicative

or principal component (PC), with c ≤ min(m−1, t), τil is the

eigenvector of genotype i for PC l, θjl is the eigenvector of

environment j for PC l, and ζij is the residual associated with

genotype i in environment j, assumed to be NID(0, σ2/r) where r

is the number of replications within an environment. The models

are subject to the constraints λ1 ≥ λ2, ..., λc ≥ 0 and orthogonally
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constraints on the τil scores, that is
c

∑

i=1
λlτilτi′l = 1 if i = i

′
and

c
∑

i=1
λlτilτi′l = 0 if i 6= i

′
with similar constraints on the θjl scores by

replacing symbols (i, m, τ ) with (j, s, θ). AMMI analysis may use

the model in Equation 2 whereas GGE analysis may use the model

in Equation 3.

2.2.2 Linear mixed models
A general form of linear mixed model for the n × 1 vector y of

individual plot yields combined across trials can be written as

y = Xτ + Zgug + Zouo + ε (4)

where τ is the a × 1 vector of fixed effects, ug is an mt × 1 vector

of random G × E effects with associated design matrix Zg, uo is

a b x 1 vector of (non-genetic) random effect with corresponding

design matrix Zo, ε is the n × 1 vector of residual error across

all trials. Some statistical assumptions are made about the random

terms of the general linear mixed models. Thus, we assume that ug ,

ue and ε are mutually independent and have a multivariate normal

distribution with zero means vectors and variance matrices var(ug)

= Gg, var(ue)= Go and var(ε)= R.

The random non-genetic effects uo can be considered as sub-

vectors uoj
(bj×1) for each trial, where bj is the number of random

terms for trial j. These random terms are based on the terms for

the blocking structure (e.g., replicate blocks or rows and columns

of the field). In the analysis of MET data, the sub-vectors of uo are

typically assumed to bemutually independent, with variancematrix

Gojfor trial j that has a block diagonal form. Thus, there is a variance

matrixGo = ⊕t
jGoj for the set of none-genetic effects at each trial j.

The variance matrix for resdual effects is assumed to be R =

⊗t
j=1Rj where Rj is the variance matrix for the jth trial. Individual

trial residual effects can be analyzed employing spatial methods of

analysis that account for local or plot-to-plot variation. Each Rjin

this case will have its own spatial covariance structure (Gilmour

et al., 1997). Varietal trials that have row by column arrangement

and ordered as rows within columns allow separable spatial models

of the form.

Rj = σ 2
j 6cj (ρcj )⊗ 6rj (ρrj ) (5)

where and 6rj represent spatial correlation structures with

parameters in ρcj and ρrj for the column and row directions,

respectively. In both the column and row directions, we typically

use an autoregressive spatial structure of order one, with ρcj and

ρrj each containing a single autocorrelation parameter. For spatial

auto-correlation in the row direction only, the model simplifies to

Rj = σ 2
j Incj ⊗ 6rj (ρrj ) where is the number of columns for trial

j. Similarly, Rj = σ 2
j 6cj (ρcj ) ⊗ Inrj would be the reduced form

for spatial auto-correlation in the column direction only where

nrj is the number of rows for trial j. We can have also no spatial

covariance in either direction. Thus, the model simplified to an IID

variance structure of the form.

Smith et al. (2001a, 2005) presented an alternative

parsimonious model for ugusing a factor analysis model to

provide a variance structure for the genetic variance matrix. This

model can adequately represent the nature of heterogeneous

variances and covariances found to occur in most MET data. Thus,

the ug can be modeled with multiplicative terms. That is

ug = (λ1 ⊗ Im)f1 + ...+ (λd ⊗ Im)fd + ξ

= (3 ⊗ Im)f + ξ
(6)

where λh is the t × 1 vector of loadings, fh is the m × 1 vector of

factor scores (h = 1...d), ξ is the mt × 1 vector of residuals, 3

is the t × d matrix of loadings {λ1 . . . λd} and f is the md × 1

vector of factor scores (f1
′f2

′...fd
′)′. The random effects f and ξ are

assumed to follow a normal distribution with zero mean vector and

variance-covariance matrix.

[

Gf ⊗ Im 0

0 9 ⊗ Im

]

(7)

where 9 is a diagonal matrix of specific variances represents the

residual variance not explained by the factor model, that is 9 =

diag (91 . . . 9t). The factor scores are commonly assumed to be

independent and scaled to have unit variance, so that Gf = Id. The

genetic effects ug can be considered as a two dimensional (genotype

by environment) array of random effects, and can be assumed to

have a separable variance structure for the (mt × mt ) variance

matrix Gg which can be written as

Gg = Ge ⊗ Gg (8)

where Ge is the t × t genetic variance matrix representing the

variances at each trial and covariances between trials, and Gg is

them × m symmetric positive definite matrix represents variances

of environment effects at each genotype and the covariances of

environment effects between genotypes. It is typically assumed that

the varieties are independent and that Gg = Im. However, if the

pedigree information of the varieties is available, other forms of

Gg can be applicable (Smith et al., 2001a; Oakey et al., 2006, 2007).

Based on Equation 2 the variance of genetic effects would be

var(ug) = (33′ + 9)⊗ Im
= Ge ⊗ Im

(9)

Thus, the FA model approach results in the following form

for Ge.

Ge = 33′ + 9 (10)

In themodel, the variance parametric in these variancematrices

are directly estimated using REML estimation method.

2.2.3 Heritability formula
According to the methodology outlined by Cullis et al. (2006),

the heritability (H2
j ) value for the j

th trial can be calculated from a
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TABLE 2 Summary of spatial analysis for four trials: spatial variation, fitted model term, Wald and REML test statistic and P-value.

Dataset Trial Spatial variation Model terms Walda/REMLRb test statistics P-value

SCB19-20 AN19CBN2 Local ar1(Column):id(Row) 26.71 <0.001

Local ar1(Column):ar1(Row) 15.57 <0.001

DCP14-16 2015CNVT-D-CD global lrow 13.04 0.007

Global lcol 7.20 0.017

Local ar1(Column):id(Row) 5.25 0.022

IHMZ20 2020MZNVT- AS Global lcol 11.21 0.030

Extraneous Column 7.92 0.005

Extraneous Column+Row 5.14 0.023

BWT19-20 AA20BWNE Extraneous Row 13.98 <0.001

Extraneous id(Column):ar1(Row) 18.28 <0.001

ρcr = (0.28, 0.31); ρc = 0.56; ρr = 0.50

aTest for global trend after significant terms for extraneous variation and local trend are fitted.
bTest for extraneous variation and local trend after significant terms for global trend are fitted ρcr , ρc , and ρr are estimates for autoregressive order 1(AR1) spatial correlation parameters at

AN19CBN2 in the column and row direction, at 2015CNVT-D-CD in the column direction and at AA20BWNE in the row direction, respectively.

generalized formula that is employed within the context of linear

mixed model analysis. This formula is as follows:

H2
j = 1−

Aj

2σgj2
(11)

whereAj is the average pairwise prediction error variance of genetic

effects for the jth environment and σgj
2 is the genetic variance at

environment j.

2.3 Statistical inferences, analysis
procedures and software

Fitting a linear mixed model involves estimating the values

of the fixed effects (τ ), a random G × E effects (ug), the

random non-genetic effects (uo), as well as the variance-covariance

parameters in Gg, Go, and R. This estimation process comprises

two interconnected steps. First, the variance parameters of the

model are estimated using Residual Maximum Likelihood (REML),

an approach introduced by Patterson and Thompson (1971).

Second, the fixed and random effects are estimated using distinct

techniques—Best Linear Unbiased Estimation (BLUE) is employed

for the fixed effects, while Best Linear Unbiased Prediction (BLUP)

is used for the random effects.

To assess the statistical significance of the random effects in the

linear mixed model, the Residual Maximum Likelihood Ratio Test

(REMLRT) can be utilized. However, it is important to note that the

REMLRT is only applicable when comparing the fit of two nested

models that share the same fixed effects structure. On the other

hand, the significance of the fixed effects can be determined using

the Wald test. The classic Wald statistic follows an asymptotic chi-

squared distribution. Yet, this test has been found to be somewhat

anti-conservative in certain scenarios, as reported by Butler et al.

(2009). To address this issue, Kenward and Roger (1997) proposed

an adjusted Wald statistic and an approximation based on the

F-distribution, which have demonstrated improved performance

across various settings.

The data analysis process began with the fitting of a

randomized complete block (RCB) model. This initial model

included random effects for block/replication and variety, and the

residual correlation structure was specified as id(Column).id(Row),

where ’id’ refers to the identity matrix. The next step was to

conduct a spatial analysis. First, a spatial model was fitted to

the residuals from the RCB model. This spatial model used a

separable autoregressive process in the column and row dimensions

to account for local variation in the data.

After fitting the spatial model for local variation, a second

spatial model was then fitted to capture the extraneous variation

along the column and row dimensions. In this model, only the

significant terms for local variation were retained. To assess the

statistical significance of the fitted spatial models, both for the local

and extraneous variation, the Residual Maximum Likelihood Ratio

(REMLR) test was employed. Finally, spatial models were fitted to

account for the global variation in the data, and the significance of

these global spatial models was evaluated using the Wald test.

The other analysis procedure was a spatial + G × E analysis,

which was done by incorporating the spatial terms identified in

the spatial analysis and modeling the G × E effects using model

fitting procedures demonstrated by De Faveri (2013) and Smith

et al. (2015). In this analysis, a combined model was first fitted,

which is a combined form of individual trial models constructed

in the spatial analysis. This combined model forms the basis of a

sequence of models to be fitted for the G×E analysis, and it helps

to organize the trial-specific models in a combined form and to

confirm the presence of genetic variance in each trial. If any trial

is found to have no genetic variance, it would be excluded from the

multi-environment trial (MET) data analysis.

Factor Analytic (FA) models were then considered, while

maintaining the spatial models as specified in the combined model.

The adequacy of the FA models of several factors (h) was formally

tested, as they are fitted within a mixed model framework. A model

with h factors, denoted as FA-h, is nested within a model with
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TABLE 3 FA model comparisons through the total percentage of the G×E

variance (%var) explained by the FA components, residual log-likelihoods

(LR), and residual maximum likelihood ratio tests (REMLRT).

Dataset FAs
models

%var LR REMLRT Final
model

LCB14-16 FA-1 27.6 253.1 - FA-3

FA-2 49.3 263.8 <0.001

FA-3 80.0 267.8 0.091

ACB14-16 FA-1 18.9 293.3 - FA-5

FA-2 33.0 299.2 0.026

FA-3 52.3 304.3 0.082

FA-4 59.9 308.7 0.058

FA-5 65.1 312.3 0.035

FA-6 88.9 315.5 0.342

SCB14-16 FA-1 98.3 266.4 - FA-2

FA-2 100 271.2 <0.001

LCB19-20 FA-1 57.6 −16.2 - FA-3

FA-2 61.1 −5.4 <0.001

FA-3 80.8 0.78 <0.001

FA-4 94.5 1.74 0.281

SCB19-20 FA-1 66.8 28.6 - FA-3

FA-2 73.4 37.8 <0.001

FA-3 78.6 47.0 <0.001

FA-4 84.0 49.4 0.199

BCB15-18 FA-1 17.7 552.8 - FA-6

FA-2 28.6 563.9 <0.001

FA-3 62.2 576.7 <0.001

FA-4 68.5 588.9 0.004

FA-5 82.2 597.1 0.009

FA-6 93.4 601.6 0.037

FA-7 93.4 602.8 0.757

DCP14-16 FA-1 54.7 178.8 - FA-3

FA-2 73.6 195.2 <0.001

FA-3 87.6 206.1 0.001

FA-4 91.3 211.7 0.072

DCP16-18 FA-1 65.5. 208.9 - FA-4

FA-2 80.6 220.2 0.001

FA-3 84.3 226.3 0.023

FA-4 92.2 232 0.040

FA-5 98.2 234.2 0.450

IHMZ20 FA-1 56.9 −606.1 - FA-3

FA-2 72.2 −599.9 0.014

FA-3 88.2 −594.7 0.008

FA-4 93.6 −593.6 0.454

(Continued)

TABLE 3 (Continued)

Dataset FAs
models

%var LR REMLRT Final
model

BWT19-20 FA-1 48.2 −206.4 - FA-4

FA-2 62.0 −186.2 <0.001

FA-3 64.9 −178.7 0.007

FA-4 69.1 −174.9 0.046

FA-5 81.3 −174.1 0.531

h+ 1 factors. The models were compared, such as FA-1 vs. FA-2,

FA-2 vs. FA-3, and so on. Both the Residual Maximum Likelihood

Ratio Test (REMLRT) and total percentage of the G × E variance

(%var) explained by factor components were used to identify the

final plausible FA models.

The licensed version of the ASReml-R statistical software

package was used to fit all models analyzed in this study (Butler

et al., 2009). ASReml-R is a specialized software application

designed for fitting linear mixed models, which was well-suited for

the data and research questions addressed here.

3 Results

3.1 Spatial analysis

Table 2 presents the results of the Wald test, which was used

to assess global spatial variation, as well as the REMLR test, which

was employed to detect local and extraneous spatial variation. The

analysis revealed several instances of significant spatial variations

across the trials. For the trial AN19CBN2, there was notable

local spatial variation detected along both the row and column

dimensions (p < 0.001). Local spatial variation was also present for

the trial 2015CNVT-D-CD, which exhibited significant variation

along the column dimension (p = 0.022), as well as for the trial

AA20BWNE, which showed local spatial variation along the row

dimension (p= 0.001).

In terms of global linear spatial trends, these were found to

be significant along both the row and column dimensions for the

trial 2015CNVT-D-CD (p= 0.007 and p= 0.017, respectively) and

along solely the row dimension for the environment 2020MZNVT-

AS (p = 0.030). Extraneous spatial variation, which cannot be

accounted for by linear trends, was detected for the environment

2020MZNVT-AS along both dimensions (p = 0.023) and for the

trial AA20BWNE along the row dimension. The estimated AR1

correlations for the significant local spatial terms were all positive

(ρcr = (0.28, 0.31); ρc = 0.56; ρr = 0.50).

The heat map visualization of the residual variation for the trial

2020MZNVT-AS, before and after the spatial analysis, is presented

in Figure 1. This plot clearly reveals the presence of observable

systematic spatial trends within the trial (Figure 1A). The observed

spatial trends suggest the presence of extraneous variation that is

not adequately accounted for in the initial model. Such systematic

spatial patterns are indicative of the need to incorporate random
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FIGURE 1

Residual variation heat map before (A) and after (B) spatial analysis for trial 2020MZNVT-AS.

row and column effects, as well as fixed linear global trends, into

the linear mixed models (Figure 1B).

3.2 Spatial + G × E analysis

The results of the factor analytic (FA) model comparisons

from the Spatial + G × E analysis for each dataset are

presented in Table 3. This includes the residual log-likelihoods

(LR), residual maximum likelihood ratio tests (REMLRT), and

the total percentage of the G × E variance explained by the FA

model (%var).

The analysis revealed that increasing the order of the FA model

consistently improved the total percentage of G × E variance

explained across all datasets. As the order of the FA model

was increased, the significance level of the REMLRT generally

decreased across most datasets. However, this pattern did not

hold true for the ACB14-16 dataset, where the lower-order FA-

2 and higher-order FA-5 models were found to be statistically

significant, while the intermediate FA-3 and FA-4 models did not

reach significance levels.

Notably, the total percentage of G × E variance explained by

the last significant order of the FA model was generally >65%

for each dataset, with the exception of LCB14-16. For the LCB14-

16 data set, the second-order FA-2 model accounted for 49.3%

of the G × E variance, which was still statistically significant.

In contrast, the higher-order FA-3 model showed a substantial

improvement, explaining 80.0% of the G× E variance, but this was

not statistically significant.

In the case of the SCB14-16 data set, the analysis determined

that the FA-2 model accounted for a remarkable 100% of the G× E

variance, with a highly significant p < 0.001. The third-order FA-3

model was also found to be a plausible model for the G×E analysis

in the datasets LCB19-20, SCB19-20, DCP14-16, and IHMZ20, as it

explained at least 65% of the G×E variance with p ≤ 0.081. For the

DCP16-18 and BWT19-20 data sets, the fourth-order FA-4 model

was selected as the final model, accounting for 92.2 and 69.1% of the

G × E variance, respectively, with statistically significant p-values.

In the case of the ACB14-16 data set, the FA-5 model was chosen as

the final model, explaining 65.1% of the G × E variance with a p-

value of 0.035. Finally, for the BCB15-18 data set, the higher-order

FA-6 model was determined to be the most appropriate, accounting

for 93.4% of the G×E variance with a p-value of 0.037.

The average genetic and error variance estimates for each

dataset, derived from the RCB, spatial, and spatial+G× E analysis,

are presented in Table 4. In the RCB analysis, the average genetic

variance estimates ranged from 0.050 to 0.984, and the average error

variance estimates ranged from 0.072 to 1.746. The spatial analysis

produced average genetic variance estimates ranging from 0.049

to 1.009, and average error variance estimates with a minimum of

0.065 and a maximum of 1.571. From the spatial+ G× E analysis,

the average genetic variance estimates had a minimum of 0.052 and

a maximum of 1.057, while the error variance estimates fell within

the range of 0.061 to 1.568. Across all three methods of analysis,

the 9IHMZ20 data set exhibited the highest average genetic and

error variance, while the 6BCB15-18 data set had the lowest average

genetic and error variance.

The estimates of genetic variance were observed to improve

with the application of spatial analysis, as compared to RCB

analysis. More importantly, the spatial + G × E analysis led

to substantial improvements in the genetic variance estimates

for most of the datasets examined. The spatial analysis provided

notably smaller estimates of the error variance compared to the

RCB analysis. Interestingly, the spatial + G × E analysis was able
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TABLE 4 A summaries of results from the RCB, Spatial, Spatial + G × E analysis for each MET dataset.

Genetic variance Error variance

Dataset RCB Spatial Spatial + G × E RCB Spatial Spatial + G × E

1LCB14-16 0.067 0.071 0.075 0.106 0.087 0.087

2ACB14-16 0.120 0.120 0.125 0.144 0.140 0.134

3SCB14-16 0.167 0.159 0.168 0.134 0.135 0.126

4LCB19-20 0.211 0.261 0.256 0.718 0.474 0.468

5SCB19-20 0.177 0.188 0.237 0.320 0.310 0.310

6BCB15-18 0.050 0.049 0.052 0.072 0.065 0.061

7DCP14-16 0.089 0.107 0.122 0.277 0.204 0.194

8DCP16-18 0.087 0.116 0.126 0.273 0.238 0.230

9IHMZ20 0.984 1.009 1.057 1.746 1.571 1.568

10BWT19-20 0.705 0.762 0.763 0.385 0.317 0.317

to significantly reduce the residual variability, outperforming both

the RCB and the spatial methods analysis.

Figure 2 presents the average heritability estimates of yield

for each dataset, derived from RCB, Spatial, and Spatial + G

× E analysis. The Spatial analysis consistently provided higher

heritability estimates compared to the RCB analysis across all

the datasets. Furthermore, the spatial + G × E analysis further

highly improves the heritability estimates compared to the RCB and

Spatial analysis across all the datasets. The extent of improvement

from the spatial and spatial + G × E analysis varied among

the datasets. Larger improvements were observed for datasets

with relatively higher data volumes, such as DCP14-16 (16 trials,

27 entries) and LCB19-20 (8 trials, 117 entries), compared to

datasets with lower data volumes, such as LCB14-16 (8 trials,

16 entries) and IHMZ20 (8 trials, 32 entries). While increasing

the volume of data generally improves the reliability of statistical

estimates and minimizes the risk of misleading conclusions from

small sample sizes, it is important to recognize that more data

does not inherently ensure that advanced data analysis methods

will outperform conventional approaches. The effectiveness of

advanced techniques, such as Spatial + G × E analysis, largely

depends on the presence of significant factors or sources of

variability that need modeling, such as spatial variability or strong

G× E interactions.

In our study, we observed that the spatial + G × E

method significantly enhanced the analysis, with improvements

particularly evident in larger datasets. This finding aligns with the

understanding that spatial variability and strong G× E interactions

are often more pronounced in larger datasets, a trend frequently

observed in Ethiopia’s crop MET data, where notable G × E

interactions and plot variability are common, as highlighted by

Woldemeskel and Fenta (2022) and Taye (2005). Thus, while

accumulating more data is beneficial, the true advantage lies in the

capacity of advancedmethods to capture andmodel specific sources

of variation, especially in larger datasets where these factors become

more prominent.

The visualization techniques from the spatial + G × E analysis

are presented in Figures 3, 4. Figure 3 displays the heat map

representation of the genetic correlation matrix for the dataset

SCB19-20 (A), for dataset DCP14-16 (B), for the dataset IHMZ20

(C), and for the dataset BWT19-20 (D). Figure 4 presents the

dendrogram representation of the dissimilarity matrix for those

same datasets.

The genetic correlation heat map (Figure 3) shows strong

positive correlations among some trials within each dataset,

denoted by the deep red coloration. Conversely, weak positive

and negative correlations are observed for other trial pairings, as

indicated by the yellow hues. Additionally, the heat map reveals

strong negative correlations between certain trials, represented by

the deep blue shading. This is particularly evident in the DCP14-

16 dataset (Figure 4B). Turning to the dendrogram visualization

(Figure 4), the dissimilarity cut-off at 0.5 delineates three distinct

trial clusters within the SCB19-20 dataset (Figure 4A) and BWT19-

20 datasets (Figure 4D), four clusters in IHMZ20 (Figure 4C), and

five clusters in DCP14-16 (Figure 4B).

4 Discussion

The spatial analysis the individual trial data revealed several

key insights. The presence of significant local, extraneous and

global spatial variation, as detected by the Wald and REMLR

tests, highlights the critical importance of accounting for these

spatial effects when analyzing data from multi-environment trials.

The positive estimated AR1 correlations, indicating that nearby

plots tend to be more similar than those located further apart,

underscores the need to incorporate appropriate spatial covariance

structures in the linear mixedmodels used for these analyses (Cullis

et al., 1998; Stefanova et al., 2009).

The systematic spatial trends observed in the residual plots

(Figure 1A) for the 2020MZNVT-AS trial clearly demonstrate the

value of including random row and column effects, as well as fixed

linear global trends, in the modeling approach. This aligns with

the recommendations from previous studies on the analysis of

multi-environment trials, which have emphasized the importance

of capturing both local and global spatial patterns to improve the

accuracy and reliability of genotypic evaluations (Möhring and

Piepho, 2009; Piepho et al., 2012; Smith et al., 2005).
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FIGURE 2

Average heritability of yield for each dataset using the mixed model analysis: RCB, spatial, and Spatial+G×E analysis.

The findings from the current study are consistent with the

work of Qiao et al. (2000), who highlighted the importance of

evaluating experimental designs and spatial analyses in wheat

breeding trials. Similarly, the application of enhanced statistical

models for the analysis of multi-environment trials in finger millet

(Tesfaye et al., 2023) and common bean (Argaw et al., 2024)

underscores the broader relevance and applicability of the spatial

modeling approaches employed in this study across various crop

varietal evaluation trials.

Furthermore, the use of spatial mixed models for varietal

selection field trials, as discussed by Woldemeskel and Fenta

(2022), reinforces the practical utility of the methods demonstrated

here. The insights gained from the spatial analysis, such as the

identification of significant local and global spatial variation, can

directly inform the selection of high-performing genotypes and

the optimization of experimental designs in future trials. This

can lead to more accurate assessments of genotypic performance

and ultimately contribute to the development of improved crop

varieties (Kelly et al., 2007).

The results of the spatial + G × E analysis across the multiple

datasets provide valuable insights into the underlying patterns

of the G × E effects. One of the key findings is the consistent

superiority of the factor analytic (FA) modeling approach over the

conventional RCB analysis in capturing the G × E variance. As

the order of the FA models increased, meaning more factors were

incorporated, the total percentage of G × E variance explained

also increased (Table 3). This observation aligns with the theoretical

foundations and empirical evidence presented in previous studies

(Smith et al., 2001a, 2005; Burgueño et al., 2008; Meyer, 2009). This

supports the notion that higher-order FA models are better able to

effectively represent the complex and multidimensional nature of

G× E effects.

However, the optimal FA model order was found to be

dataset-dependent, as demonstrated by the ACB14-16 dataset,

where the intermediate FA-3 and FA-4 models did not reach

statistical significance, while the lower-order FA-2 and higher-order

FA-5 models were significant (Table 1). This observation suggests

that the appropriate model complexity may vary based on the

specific characteristics of the data, such as the magnitude and

structure of the G × E effects. This scenario could be associated

with the implications of trial locations. Even with the best analytical

methods, poorly distributed trials can complicated the MET data

analysis. This leads us to the concept of the target population of

environments (TPE). The TPE framework emphasizes the need for

trials to be representative of the environments where the genotypes

will be deployed. Misalignment between trial locations and the

intended target environments can result in inaccurate assessments

of genotypic performance (Cooper et al., 2020, 2021; Hajjarpoor

et al., 2022). However, the identification of the optimal FA model

order is a crucial step, as emphasized byDe Resende and Thompson

(2004) and Smith et al. (2015) as it ensures the most parsimonious

yet informative representation of the G× E structure.

Compared to the standard RCB analysis, the spatial analysis

improved estimates of genetic variance, while the spatial + G ×

E analysis led to even greater improvements in genetic variance

estimates for most datasets. This potential can be attributed to the

spatial + G × E analysis’s ability to extract the genetic effect that is

confounding with the residual effect and the effects stored in the G

× E interactions. Notably, the spatial analysis reduced estimates of

error variance, and the spatial + G × E analysis (Table 4) was able

to substantially minimize residual variability, outperforming both

the RCB and spatial-only methods.

The integration of spatial variability into the G × E analysis

through the spatial + G × Emodeling approach has led to

substantial improvements in heritability estimates across all

datasets compared to the RCB and spatial analyses (Figure 2). This

supports the findings of Smith et al. (2015), who demonstrated the

ability of factor analytic mixed models to enhance the estimation
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FIGURE 3

Heat map representation of the genetic correlation matrix from spatial+G×E analysis for the datasets SCB19-20 (A), DCP14-16 (B), IHMZ20 (C), and

BWT19-20 (D).

of genotypic effects and heritability. Interestingly, the extent of

improvement was more pronounced in datasets with relatively

larger data volumes, such as DCP14-16 and LCB19-20, compared

to smaller datasets like LCB14-16 and IHMZ20. This observation

highlights the importance of data quality and quantity in effectively

capturing the underlying patterns of G × E interactions and larger

datasets provide more information about the complex G × E

structure, allowing the factor analytic models to better estimate

the genotypic effects and associated heritability. The advancement

lies in demonstrating the superiority of the factor analytic model

across different sizes of MET datasets, particularly in its ability to

effectively investigate G × E interactions. This approach allows

for a comprehensive understanding of how varying dataset sizes

influence the model’s performance to uncover underlying patterns

in G× E relationships.

The visual representations, including the genetic correlation

heat map and dendrogram, offer intuitive and informative insights

into the trial relationships within each dataset. The observed

patterns of strong positive, negative, and weak correlations in the

heat maps (Figure 3), as well as the distinct trial clusters identified

in the dendrograms (Figure 4), reflect the complex structure of

the G × E interactions, as discussed in previous studies (Cullis

et al., 2010; Argaw et al., 2024). These visual aids can assist

breeders and researchers in better understanding the spatial and

genotypic patterns, which can inform decision-making processes

related to cultivar selection, target environment identification, and

trial design optimization.

5 Conclusion

Our research constitute a noteworthy contribution to the

field by demonstrating the effectiveness of mixed model-based

approaches, particularly spatial + G × E analysis, in enhancing

MET analysis. Unlike previous studies, we provide comparative

insights across various MET datasets, revealing that the optimal

order of the FA model for G × E effects varies depending on the

specific dataset. Furthermore, our application of advanced linear

mixed model methods to Ethiopia’s crop MET data—characterized

by notable G × E interactions and plot variability—offers critical

insights that are highly relevant to crop breeding programs in

the region.
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FIGURE 4

Dendrogram representation of the dissimilarity matrix from spatial+G×E analysis for the datasets SCB19-20 (A), DCP14-16 (B), IHMZ20 (C), and

BWT19-20 (D).

The spatial analysis of the individual trial data revealed

significant local, extraneous, and global spatial variation,

underscoring the need to use mixed model spatial analysis for

multi-environment trial data analyses. The positive estimated AR1

correlations indicate that nearby plots tend to be more similar,

further emphasizing the importance of capturing local spatial

patterns to improve the accuracy and reliability of genotypic

evaluations. Employing these spatial modeling techniques in

future trials is recommended to account for the inherent spatial

variability, which can enhance the genetic gain achieved through

variety selection.

The results of the spatial + G × E analysis showcased the

value of factor analytic (FA) modeling in effectively representing

the complex and multidimensional nature of G × E effects. The

consistent superiority of the FA approach over the traditional

RCB analysis supports the use of FA models, though the optimal

model order may vary across datasets. The approach is significant

because it applies the FA model to MET datasets of varying

sizes, offering insights into GxE effects, and improves our

understanding of how dataset size impacts model performance,

enabling more accurate identification of underlying patterns in

G× E relationships.

Researchers are encouraged to explore the application of these

spatial + G × E modeling techniques across a broader range of

crop breeding evaluation programs to further validate their benefits

in increasing the efficiency of variety selection and improving

genetic gain.

The integration of spatial variability into the G × E analysis

led to substantial improvements in heritability estimates across all

datasets. This highlights the ability of factor analytic mixed models

to enhance the estimation of G × E effects and heritability, with

more pronounced improvements observed in larger datasets. By

accurately partitioning the sources of variation, these advanced

statistical models can lead to more reliable predictions of genotypic

performance, ultimately contributing to greater genetic gain in crop

improvement programs.

The insights gained from this study can contribute to

the development of improved crop varieties and enhanced

experimental designs in terms of establishing good trailing system

that optimize statistical precision associated with the size future

trials. Continued research and adoption of advanced spatial and

G × E modeling techniques in crop breeding and evaluation

programs will be crucial for driving progress in the creation of high-

performing agricultural cultivars. By accounting for the complex
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spatial and G × E structures inherent in multi-environment trials,

researchers and breeders can improve the estimation of genetic

gain andmakemore informed decisions to deliver high-performing

crop varieties to farmers and consumers.
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