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Predicting implicit concept
embeddings for singular
relationship discovery replication
of closed literature-based
discovery

Clint Cu�y* and Bridget T. McInnes

Natural Language Processing Lab, Department of Computer Science, Virginia Commonwealth

University, Richmond, VA, United States

Objective: Literature-based Discovery (LBD) identifies new knowledge by

leveraging existing literature. It exploits interconnecting implicit relationships to

build bridges between isolated sets of non-interacting literatures. It has been

used to facilitate drug repurposing, new drug discovery, and study adverse

event reactions. Within the last decade, LBD systems have transitioned from

using statistical methods to exploring deep learning (DL) to analyze semantic

spaces between non-interacting literatures. Recent works explore knowledge

graphs (KG) to represent explicit relationships. These works envision LBD as

a knowledge graph completion (KGC) task and use DL to generate implicit

relationships. However, these systems require the researcher to have domain-

expert knowledge when submitting relevant queries for novel hypothesis

discovery.

Methods: Our method explores a novel approach to identify all implicit

hypotheses given the researcher’s search query and expedites the knowledge

discovery process. We revise the KGC task as the task of predicting

interconnecting vertex embeddings within the graph. We train our model

using a similarity learning objective and compare our model’s predictions

against all known vertices within the graph to determine the likelihood of an

implicit relationship (i.e., connecting edge). We also explore three approaches

to represent edge connections between vertices within the KG: average,

concatenation, and Hadamard. Lastly, we explore an approach to induce

inductive biases and expedite model convergence (i.e., input representation

scaling).

Results: We evaluate our method by replicating five known discoveries within

the Hallmark of Cancer (HOC) datasets and compare our method to two existing

works. Our results show no significant di�erence in reported ranks and model

convergence rate when comparing scaling our input representations and not

using this method. Comparing our method to previous works, we found our

method achieves optimal performance on two of five datasets and achieves

comparable performance on the remaining datasets. We further analyze our

results using statistical significance testing to demonstrate the e�cacy of our

method.
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Conclusion: We found our similarity-based learning objective predicts linking

vertex embeddings for single relationship closed discovery replication. Our

method also provides a ranked list of linking vertices between a set of inputs. This

approach reduces researcher burden and allows further exploration of generated

hypotheses.

KEYWORDS

natural language processing, semantic similarity and relatedness, distributional

similarity, literature-based discovery, neural networks, deep learning, knowledge

discovery

1 Introduction

As research is published in scientific repositories, the
subject content of these publications becomes increasingly
discretized with each passing year. This creates distant
collections of isolated literatures which conceals thought-
provoking details and hidden relationships between subjects of
interest. Literature-based Discovery (LBD) is the systematic
process of creating interconnecting paths between these
collections of literatures. It accomplishes this by identifying
hidden connections between definitive relationships to unveil
latent mechanistic connections within literature and discover
novel knowledge.

LBD was initially developed by Swanson (1986) when
identifying potential treatments for Raynaud’s Disease and later
formalized into a generalizable method for novel discovery
proposal (i.e., the A-B-C paradigm). Since then, researchers
have looked a means of automating the process (Luo et al.,
2018; Thilakaratne et al., 2018) and applied their methods
to various applications (e.g., knowledge discovery, replication,
and visualization) across many domains (e.g., general, IoT, and
biomedical publications). Existing works in these application
areas include applying LBD systems to study the long-term
effects of bullying (Hasan, 2019), discovering links between food
security and the IoT (Mejía and Kajikawa, 2021), studying climate
change (Aamot, 2014), expediting the development of efficient
water purification systems (Kostoff et al., 2008), and accelerating
development in developing countries (Gordon and Awad, 2008).
While LBD remains generalizable across any domain, it requires
considerable resources (time and financial) to curate data for novel
knowledge discovery and evaluate system performance. Due to
the prevalence of existing biomedical data sources, ontologies, and
databases such as UMLS (Bodenreider, 2004), PubMed (PubMed,
1996), and SemMedDB (Kilicoglu et al., 2012), our desire as
researchers to study the interactions between living organisms
and discover novel actionable insights to improve the quality
of life (i.e., disease treatment and improving patient healthcare
outcomes), the majority of studies apply LBD methods within
the biomedical domain. These studies include the following use
cases: development of new drugs (i.e., new drug discovery) (Zhao
et al., 2019; Rindflesch et al., 2018; Sang et al., 2018b; McCoy
et al., 2021), repurposing of existing drugs for symptom
management and disease treatment (e.g., drug repurposing or
repositioning) (Rastegar-Mojarad et al., 2015; Brown and Patel,

2016; Yang et al., 2016; Daowd et al., 2022; Tropmann-Frick
and Schreier, 2022; Sang et al., 2018b; McCoy et al., 2021), and
studying adverse side-effects of existing drugs (e.g., adverse drug
reactions) (Shang et al., 2014; Hristovski et al., 2016; Rastegar-
Mojarad et al., 2016; Rindflesch et al., 2018). LBD methods have
been successfully applied to all aforementioned case studies while
alleviating the large associated resource requirements (i.e., time and
monetary expense).

At its inception, LBD was greatly influenced by statistical
modeling methods to identify new knowledge. However, within the
last decade, deep learning (DL) has facilitated the exploration of
alternative methods to perform LBD. Current trends include the
use of graph theory methods to identify fruitful connections for
knowledge discovery. In this setting, knowledge graphs (KG) are
constructed from explicit A-B-C relationships which are extracted
from queried documents. To stimulate novel relationships, models
are trained to predict links between graphed elements (i.e., link
prediction). These methods accept term (or concept) triplets and
predict a score indicating the likelihood of connecting edges
between the elements within the query. While this method has
been shown to produce plausible connections between vertices
within the graph, it requires researchers to obtain domain-specific
knowledge for crafting and submitting relevant queries to generate
or test hypotheses. This high barrier to entry also reduces the
researcher’s inclination to further explore proposed connections by
the system.

In this work, we present a novel approach for knowledge
graph completion tailored to closed literature-based discovery
(LBD). Our model leverages Unified Medical Language System
(UMLS) concepts to represent terms within a knowledge graph
(KG), focusing on node prediction rather than traditional
classification objectives. Specifically, we train our model to predict
the embedding of a concept A-B-C relationship, offering a
new perspective on embedding-based KGC. To enhance the
representation of relationships between concepts, we explore
three distinct approaches: 1) averaging, 2) concatenation, and 3)
computing the Hadamard product of concept embeddings. Our
method demonstrates that these approaches effectively capture
relationships within the Hallmarks of Cancer (HOC) dataset,
revealing hidden connections that traditional methods might
overlook. Significantly, our method alleviates the amount of
time necessary to generate novel discoveries by automating the
discovery of plausible (implicit) relationships between concepts.
By computing connecting edges to all unique concepts, we
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reduce the manual effort required to identify and validate
relationships, thus making the knowledge discovery process
more accessible and efficient to the casual researcher as well
as domain experts. First, we provide background information
and related works in Sections 2.1 (Background) and 2.2 (Related

work). Next, we discuss the data and our methodology in
Sections 3 (Data) and 4 (Materials and methods). Lastly, we show
our results, provide discussion, and address areas of future work
in Sections 6 (Results), 7.1 (Conclusion), and 7.2 (Limitations and

future work).

2 Background and related work

2.1 Background

LBD is a systematic process that seeks to identify implicit
relationships within existing literature. This process was derived

by Swanson (1986) when identifying the relationship between fish

oil and Raynaud’s disease (i.e., Fish oil
treats
−−−→ Raynaud′s Disease).

The method used to achieve this is the A-B-C paradigm. In this
paradigm, explicitA −→ B and B −→ C relationships are leveraged to

identify hidden mechanistic connections between terms (i.e., novel
A −→ C relationships). These identified relationships are used to

explain correlations between terms or identify new knowledge by

hypothesizing potential connections of interest (i.e., closed vs open

discovery).
Shown in Figure 1, Swanson (1986) developed two approaches

for amplifying implicit features within the knowledge discovery
process: closed and open discovery. Each approach utilizes the A-

B-C paradigm as a basis for identifying relationships. However,

there are distinct differences between each approach. In open
discovery, researchers are required to submit a starting (A) query
into the system. Next, the system identifies one or more linking (B)
terms that are associated with the A term. Finally, for each B

FIGURE 1

Closed vs. open discovery paradigms. To demonstrate the di�erences between each approach, we provide an example of an LBD system identifying

implicit relationships using both discovery paradigms. Closed discovery captures several linking terms to identify potential relationships between

the starting term (Raynaud’s Disease) and target term (Fish oil). Open discovery derives new knowledge by providing a starting term (Raynaud’s

Disease) to reveal the implicit relationship Raynaud’s disease-blood viscosity-fish oil through multiple linking and target terms. This approach is not

limited to identifying a single implicit relationship. We use darker levels of edge contrast between terms to signify stronger relationships between

vertices for replicating Swanson (1986)’s first literature-based discovery.
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term, the system identifies a set of potential target C terms
along with confidence (or likelihood) scores for each identified
relationship. Closed discovery requires the researcher to submit
two elements within their query: the starting (A) and target (C)
terms. Next, the system identifies all relevant novel connections
between the query terms as a set of linking (B) terms. For
either approach, the resulting set of identified terms are ranked
by their confidence (or likelihood) scores, and presented to
the user for further analysis. Between both approaches, open
discovery is often described as an approach used to generate
new hypotheses while closed discovery is used to test (or
explain) hypotheses.

2.2 Related work

Since its inception numerous methods to facilitate relationship
exploration among terms (or concepts), and discover new
knowledge have been developed. Early works combined term
co-occurrence, statistical (Swanson, 1988, 1986; Smalheiser
and Swanson, 1998; Smalheiser et al., 2009), and association
measures (Hristovski et al., 2005; Hu et al., 2010) to unearth
implicit relationships. Limitations of these methods include
addressing term lexical variations, grammatical inconsistencies,
and spurious terms. With the advent of DL, LBD works addressed
the limitations of previous methods by shifting toward leveraging
distributed semantics across documents to learn embedded
representations for terms, and exploit this semantic information
to unearth novel knowledge. Recent works include the use of
knowledge graphs to represent connections of interest as relational
data. In this setting, terms of interest are represented using
Unified Medical Language System (UMLS) (Bodenreider, 2004)
concept unique identifiers (CUIs) or Medical Subject Heading
(MeSH) (Lipscomb, 2000) terms. To represent relationships, two
common approaches are used: (1) co-occurrence relationships,
and (2) extracting relationships from relational databases. For
either approach, relationships are represented as vertex triplets
with connecting edges. Pyysalo et al. (2018), Crichton et al.
(2020), Ding and Jin (2021), and Škrlj et al. (2021) use co-
occurrence relationship triplets where terms (or concepts) are
vertices and the connecting edges between vertices represent
co-occurring vertices at the sentence or document-level (e.g.,
Fish oil <> Blood viscosity <> Raynaud′s Disease). In
contrast, Preiss and Stevenson (2018), Sang et al. (2018a,b),
Sang et al. (2019), Zhang et al. (2021), and Daowd et al. (2022)
use relational databases such as the Semantic Medline Database
(SemMedDB) (Kilicoglu et al., 2012) which describes relationships
as subject-predicate-object triples where the subject and object

elements are vertices (UMLS concepts) and the predicate are
terms which represents the edge bridging the two concepts
(e.g., Fish oil −→ TREATS −→ Raynaud′s Disease). Each
approach provides distinct advantages. However, careful
considerations must be made when selecting the appropriate
preprocessing approach. Co-occurrence-based approaches
generate undirected graphs where the relationship between
connected vertices is bidirectional. In comparison, relational
databases generate directed graphs where the relationships are
uni-directional.

2.2.1 Knowledge graph completion
A recent trend in the LBD community includes the utilization

of knowledge graph completion (KGC) methods to perform LBD.
This includes developing systems to identify new (implicit) vertices
connecting to an edge (i.e., node prediction) or edges between
vertices (i.e., link prediction). Knowledge graphs constructed from
co-occurrence and relational databases use the standard definition
of a graph: G = (V ,E), where V represents vertices (or nodes)
and E represents edges (or links). For either KGC approach,
relationships are represented in the graph as G = (h, r, t) where
each variable differs depending on the preprocessing approach
chosen. Using concept co-occurrence, all variables are vertices
and represented as terms (or concepts) (e.g., Fish oil <>

Blood viscosity <> Raynaud′s Disease). (h, r, t) triplets are
co-occurring. Therefore, edges exist between them within the
graph. Relational databases represent these relationship variables
differently with h and t as concept vertices, and r as the edge
(predicate) which describes the relationship between them (e.g.,
Fish oil −→ TREATS −→ Raynaud′s Disease). Two common
approaches are used to perform link or node prediction: 1) we
submit (h, r, t) triplets and query the system to identify plausible
links between all triplet nodes (i.e., predictive likelihood between
[0, 1]), and 2) we submit subsets of the triplet [e.g., (h, r), (h, t), or
(r, t)] and query the system to identify a linking h, r, or t [i.e., t
given (h, r), r given (h, t), or h given (r, t)]. The first is a common
approach used to perform LBD using KGC. However, it requires
the user to derive all (h, r, t) queries to test hypotheses. The second
approach generates a list of all known h, r, or t concepts ranked
by their related confidence. This approach occurs at the expense of
less discriminative information provided as model input. However,
its advantages over the first solution include requiring less domain-
explicit knowledge from the researcher and fewer resources being
exhausted for generating system queries (hypotheses). Existing
works such as the CD-2method proposed by Crichton et al. (2020)
use the first approach while the MLP method proposed by Cuffy
and McInnes (2023) uses the second. Given both approaches for
creating the graph, undirected graphs are used for co-occurrence-
based systems, and directed or undirected are used for relational
database graphs. Works such as Pyysalo et al. (2018), Crichton
et al. (2020), Ding and Jin (2021), Škrlj et al. (2021), and Cuffy and
McInnes (2023) explore undirected graphs and Luo et al. (2018),
Preiss and Stevenson (2018), Sang et al. (2018a), Sang et al. (2018b),
Sang et al. (2019), Zhang et al. (2021), and Daowd et al. (2022)
explore directed graphs for LBD.

2.2.2 Embedding nodes in latent space
Incorporating graph theory techniques provides tools to

represent complex knowledge using simplistic structures and
intuitively visualize and analyze data (e.g., path, connectivity,
and centrality analysis). However, embedding the spatial
relationships within these graphs into continuous (dense)
low-dimensional representations for graph-based analytical tasks
remains challenging (e.g., node and link prediction). Unlike
Euclidean data (e.g., text and images), graphed data compose
structures in non-linear Euclidean space. Since dimensionality
reduction relies on preserving spatial properties between graphed
elements (nodes) such that connected nodes are near each other
in latent space, it makes preserving graph properties in this space
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difficult. Furthermore, graph constraints can impact the efficacy of
the encoding algorithm (i.e., data sparsity, directed vs. undirected
graphs, homogeneous vs. heterogeneous graphs, and weighted vs.
binary graphs).

There are three primary methods to address these constraints:
(1) matrix factorization-based methods, (2) random walk-based
methods, and 3) neural network-based (encoder-based) methods.
Matrix-factorization methods such as Roweis and Saul (2000),
Nickel et al. (2011), and Cao et al. (2015) use one of many
matrices (i.e., weighted or binary adjacency, Laplacian, and
node transition probability matrix) along with a proximity
measure and dimensionality reduction technique to construct node
embeddings. However, these methods suffer in capturing higher-
order proximity-based relationships between nodes. Furthermore,
their computational complexity increases exponentially along with
the size of the factored graph. This makes their applicability
intractable for large-scale graphs. Random walk-based methods
such as DeepWalk (Perozzi et al., 2014) and Node2vec (Grover
and Leskovec, 2016) use a different approach to embed graphs
into low-dimensional representations. DeepWalk represents a
sequence of nodes (i.e., a random walk) where subsequent
sequence nodes are selected based on a probabilistic distribution
and encodes spatial relationships (structural characteristics) by
leveraging the transition probabilities of reaching a given node
within the random walk such that nodes co-occurring within
the sequence are near each other in latent space (Perozzi
et al., 2014). Node2vec (Grover and Leskovec, 2016) improves
DeepWalk’s unbiased random walk algorithm by introducing
parameters that perform biased walks through manipulating the
probability of returning to a previous node and performing
breath-first search (BFS) or depth-first search (DFS) walks. Both
approaches attempt to embed graph structure using sequences
of collocation features and later feed their generated sequences
into task-specific (downstream) neural networks to learn node
representations. Neural network-based methods such as Large-
scale Information Network Embedding (LINE) (Tang et al.,
2015) and Structural Deep Network Embedding (SDNE) (Wang
et al., 2016) use first and second-order proximity information
between nodes within a KG to preserve spatial relationships
(structural characteristics). LINE embeds first and second-order
graph structure information using similarities between directly
connected nodes. First-order proximity leverages semantics
between neighboring nodes, and second-order proximity preserves
similarity between neighborhoods within the graph to embed
the graph structure into low-dimensional representations. These
representations can be combined to improve representation
quality. We provide further details of the LINE algorithm in
Section 4.1 (LINE). In comparison, SDNE also leverages first and
second-order node proximities. However, this approach jointly
optimizes both proximities through a series of non-linear layers
within a semi-supervised DL model (i.e., an autoencoder) to
derive low-dimensional node representations. We use the LINE
embeddings in ourmethod in order to perform a direct comparison
against previous works.

2.2.3 Evaluating LBD
To evaluate the efficacy of LBD systems for discovering novel

knowledge, three common methods are used: (1) domain-expert

vetting, (2) discovery replication, and 3) time-slicing. The first
method requires domain experts to vet relationships identified
by the system. Experts with such skills may be difficult to
obtain, time management or project deadlines may present further
obstacles, and high resource requirements may negate this method.
In comparison, discovery replication includes replicating the
conditions to re-discover (or reproduce) one or many known
relationships. This is the most common and cost-effective method
to evaluate new LBD systems. In this method, we focus on
replicating a single relationship or a set of relationships. For either
task, we LINE embeds first and second-order graph structure
information using similarities between directly connected nodes.
First-order proximity leverages semantics between neighboring
nodes, and second-order proximity preserves similarity between
neighborhoods within the graph to embed the graph structure
into low-dimensional representations. These representations can
be combined to improve representation quality. time-slice our
data by selecting a cutoff year and split our graph data into two
sub-graphs: pre-cutoff (training set) and post-cutoff (evaluation
set). When replicating a single relationship, our cutoff year
represents the known year of discovery. We train our systems
using the pre-cutoff data and evaluate our system using the
post-cutoff data. For single relationship discovery replication
(SRDR), we query our system to identify the known relationship
as implicit with high predictive likelihood and rank the true
relationship among a set of relationships. When replicating a set
of relationships (e.g., multi-relationship discovery replication), we
evaluate the system’s ability to replicate all known relationships
and use one or more of the following metrics to determine
system performance: Precision, Recall, F1-Score, Precision@K,
Mean Average Precision@K, and Mean Reciprocal Rank (MRR).
Time-slicing follows a similar methodology, however we evaluate
the system’s ability to reproduce all known relationships within the
evaluation set. In this work, we evaluate the performance of our
method using SRDR and compare our work to existing methods
using mean rank.

3 Data

We train and evaluate our method using the Hallmarks of
Cancer (HOC) datasets (Pyysalo et al., 2018). These datasets
focus on five recent discoveries involving the molecular biology
of cancer and support both closed and open LBD. We refer
to these datasets as HOC1, HOC2, HOC3, HOC4, and HOC5.
Table 1 shows statistics for each dataset. All five datasets have
been extracted from PubMed (1996) articles between the years of
2006 and 2016 using PubTator (Wei et al., 2013). They contain
explicitA-B-C relationships expressed as grounded concept triplets.
These concepts are extracted from a variety of sources such as
diseases and chemicals from the Chemical Entities of Biological
Interest (ChEBI) (Degtyarenko et al., 2007) and Medical Subject
Heading (MeSH) (Lipscomb, 2000) databases, genes and proteins
from the NCBI Gene database (Maglott et al., 2005), and names
of species from the NCBI Taxonomy (Federhen, 2012). Shown
in Table 2, all datasets focus on identifying a known relationship
(i.e., discovery replication), and are time-sliced into training and
evaluation sets using the known year of discovery. Each concept
triplet is ranked using the Jaccard similarity coefficient. This
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TABLE 1 Dataset statistics.

Name HOC1 HOC2 HOC3 HOC4 HOC5

Training statistics

Number of positive samples 100,000 100,000 100,000 100,000 100,000

Number of negative samples 100,000 100,000 100,000 100,000 100,000

Total number of samples 200,000 200,000 200,000 200,000 200,000

Number of unique A concepts 114,189 114,323 111,389 100,490 116,887

Number of unique B concepts 90,700 90,483 88,753 81,165 92,412

Number of unique C concepts 94,517 94,440 92,640 84,998 96,427

Number of unique concepts 151,257 151,093 145,098 123,002 157,239

Number of unique A-B relations 194,655 194,726 194,477 193,410 194,846

Number of unique B-C relations 199,931 199,924 199,935 199,946 199,925

Number of multi-B concept links 409 352 378 476 371

Max multi-B concept link size 3 3 2 3 3

Evaluation statistics

Number of Samples 2,294 654 425 444 1,049

Number of unique A concepts 1 1 1 1 1

Number of unique B concepts 2,294 654 425 444 1,049

Number of unique C concepts 1 1 1 1 1

Number of unique A-B relations 2,294 654 425 444 1,049

Number of unique B-C relations 2,294 654 425 444 1,049

Number of Positive Samples: Describes the number of samples which have the Jaccard similarity coefficient greater than 0. Number of Negative Samples: Describes the number of samples which

have the Jaccard similarity coefficient of 0. Number of Multi-B Concept Links: Describes the number of A-to-C links which are associated with more than one B concept. Max Multi-B Concept

Link Size: Describes the maximum number of linking B concepts associated with a given A-B-C link in the dataset.

TABLE 2 True A-B-C closed discovery reduplication links by dataset.

Name A Concept B Concept C Concept

HOC1a NF-κB (PR:000001754) Bcl-2 (PR:000002307) Adenoma (MESH:D000236)

HOC2b NOTCH1 (PR:000011331) senescence (HOC:42) C/EBPβ (PR:000005308)

HOC3c IL-17 (PR:000001138) p38α (PR:000003107) MKP-1 (PR:000006736)

HOC4d Nrf2 (PR:000011170) ROS (CHEBI:26523) pancreatic cancer (MESH:D010190)

HOC5e CXCL12 (PR:000006066) senescence (HOC:42) thyroid cancer (MESH:D013964)

aBcl-2 is a critical mediator of intestinal transformation (Van Der Heijden et al., 2016).
bNotch1 mediates a switch between two distinct secretomes during senescence (Hoare et al., 2016).
cIntegrating p38αmapk immune signals in nonimmune cells (Gaffen and McGeachy, 2015).
dOncogene-induced nrf2 transcription promotes ros detoxification and etumorigenesis (DeNicola et al., 2011).
eSenescent tumor cells lead the collective invasion in thyroid cancer (Kim et al., 2017).

score expresses the degree of similarity between the A −→ B

and B −→ C paths within the complete A −→ B −→ C

relationship. They are used to indicate positive and negative
samples within each dataset. A −→ B −→ C relations with a
Jaccard similarity coefficient of zero signify negative samples while
scores greater than zero indicate positive samples. All training
sets within each dataset maintain a 50%-50% distribution of
positive-to-negative samples while the evaluation set contains only
positive samples.

4 Materials and methods

In this section, we describe our method. First, we present
our DL model and discuss its architecture. Second, we discuss
how we represent terms as concepts and concepts as embedded
representations fed into our model. Third, we discuss how we
represent our model’s output as concept embeddings to replicate
five known HOC discoveries. Finally, we discuss how we use
discovery replication to evaluate the efficacy of our method.
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4.1 LINE

Large-scale Information Network Embedding (LINE) (Tang
et al., 2015) is a neural network-based embedding method
that learns to embed graph vertices into low-dimensional
representations. While previous graph embedding works rely
on the traditional implementation of stochastic gradient descent
(SGD) as the model’s optimization objective, LINE uses an edge-
sampling optimization approach to improve the model’s learning
objective, inference effectiveness, model efficiency, and learn vertex
embeddings within undirected, directed, and weighted graphs.
Given an arbitrary graph defined as G = (V ,E) where V is the
set of vertices and E is the set of edges between vertices, edges
e ∈ E form ordered weighted pairs that indicate the strength
of the connection (i.e., a binary or any non-negative value). For
each vi ∈ V , LINE learns to encode local pairwise proximities
between vi and its immediate neighboring vertices vj (connected
by an edge) in low-dimensional space (i.e., first-order proximity).
It accomplishes this using a conditional joint probability and an
empirical probability between vi and all vj neighbors, and KL
Divergence to minimize the pairwise distance between the two
distributions such that pairwise similarities are greater between
neighboring vertices vi and vj. However, this method only supports
undirected graphs and cannot preserve complex graph structures.
To address this limitation, LINE also explores second-order
proximities for all v ∈ V to induce the embedding of the graph
structure in its representations. This approach preserves similarities
between vertices up to two hops away (i.e., preserves neighborhood
information between vertices using a friends-of-friends network).
LINE is scalable to graphs containing millions of nodes, and
successfully learns to embed first and second-order proximity
information (graphs structure) within its vertex embeddings. Tang
et al. (2015) found the most effective approach for generating
vertex embeddings entails generating both sets of embeddings (first
and second-order), concatenating them into a longer set of low-
dimensional embeddings, and balancing them by re-weighting.
We utilize this approach with the LINE algorithm as a basis for
our work.

4.2 Base model

Figure 2 shows our four-layer multi-layer perceptron
(MLP) base model architecture. Our model’s input layer
accepts embeddings to represent A and C concepts and
transforms inputs using our desired scaling factor with
four approaches to represent edges between inputs (i.e.,
averaging, Hadamard, or concatenation). Our output layer
produces embedded representations for our B concepts that
matches the embedding dimensions of our input concepts. We
provide further details of our model architecture in Section 5
(Experimental Details).

The HOC datasets contain co-occurring gene, disease, protein,
and chemical terms extracted from PubTator (Wei et al., 2013)
into time-sliced knowledge sub-graphs. We represent terms using
grounded concepts as vertices and use co-occurrence between
concepts as the edges. To train our model, we represent

graph co-occurrence information as A-B-C relations. We embed
semantics between immediate and neighboring concepts in
the knowledge graphs constructed from each dataset using
the Large-scale Information Network Embedding (LINE) (Tang
et al., 2015) algorithm. Our model receives A and C concept
representations as input and produces a single B concept
embedding representation as output. Given our model input,
we train our model to complete the closed discovery path by
predicting an embedding that links the two input concepts. To
achieve this, our model exploits relatedness between embeddings
to extract relevant and discriminative features used to identify
explicit (and implicit) relations between the input (A& C) concepts
and our desired linking (B) concept. We train our model to
generalize this embedded semantic information between our input
and output concepts using cosine similarity loss vs. traditional
crossentropy loss. Thus, our model learns to use similarity
between concepts to yield related linking B concepts for implicit
relation discovery.

4.3 Input representation

We represent A and C concepts as static embeddings generated
from the LINE (Tang et al., 2015) algorithm as input into ourmodel.
To represent co-occurring links between concepts in the graph, we
use three common approaches: (1) computing the average among
embeddings, (2) concatenating both embeddings, and computing
the Hadamard product among embeddings. Averaging computes
the mean embedding among all inputs, concatenation combines all
input representations into a larger representation, and Hadamard

computes the element-wise multiplication among all dimensions
between inputs. Each approach results in a single representation
that is fed into our model. Previous work has shown multiplying
the input features by a factor of 10 induces inductive biases
during model training to improve generalization (Crichton et al.,
2020). Therefore, we also explore multiplying our input embedding
representations by a factor of 10.

4.4 Output representation

Standard DL objectives include training models to classify
input(s) into discrete classification labels (e.g., binary and multi-
class classification). However, our training objective differs from
this approach. We use a similarity-based objective function to train
our model to predict an embedding given a set of inputs. For a
given A and C input representation, our model predicts a B concept
embedding that links the input concepts for testing hypotheses. To
achieve this, we use the hyperbolic tangent activation function to
bound the range of our model’s output logits between [−1, 1].

4.5 Evaluation

We show our evaluation methodology in Figure 2. All HOC
datasets have been time-sliced for the task of discovery replication.
We evaluate our method by simulating the conditions necessary
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FIGURE 2

Overall model. We provide A and C concept embedding representations as input into our model. The model outputs a related linking B concept

embedding representation. We compare this predicted concept representation to all known B concepts using cosine similarity, and perform closed

discovery concept ranking using these cosine values. Our model figure demonstrates concatenated input representations. However, we explore

three types of input representations. Our figure shows a model trained on the HOC1 dataset, both input concepts, the predicted linking concept

representation, and all computed concept similarity scores used to replicate the HOC1 relationship. Full acyclical connections between subsequent

layers are not shown for ease of visualization.

to re-discover each known (explicit) A-B-C relationship implicitly.
First, we train our model over a given HOC training dataset
to predict each B concept (vertex) embedding that links a set
of inputs (A & C). Given our model’s learning objective, we
then evaluate its performance using a ranking approach. In this
approach, we provide the A and C from the true relationship as
input into our model. Next, we use cosine similarity to compare the
model’s predicted (B) concept embedding against the embedding
representations for all known (unique) B concepts within the
evaluation set. We rank these computed cosine similarity values
for each concept in descending order such that the most similar
(or related) concept occurs first within the list of sorted elements
(i.e., list of B concepts). This implies that the most similar B

concept embeddings to the model’s predicted output will be
ranked numerically lower when compared to their cosine similarity
values (i.e., an inverse relationship). To determine evaluation
performance, we report the rank (index) of the gold B concept
within the sorted list.We consider the SRDR task as successful if the
gold B concept is ranked numerically lower among all remaining
concepts (i.e., ideally an index value near 1 for SRDR). However,
the system may identify other implicit but relevant relationships in
addition to our desired gold B. We show an example of this ranking
approach on the right-side of Figure 2. We repeat this process for
all pairs of true SRDR relationships and matching datasets.

5 Experimental details

Our data preprocessing steps include lowercasing all
text prior to generating concept embeddings. We generate
our embeddings using the Large-scale Information Network
Embedding (LINE) (Tang et al., 2015) algorithm. This algorithm
offers four main hyperparameters to generate embeddings: order,
sample, size, and number of threads. To represent each concept
in the vocabulary for each dataset, we generate two sets of
embeddings: first and second-order embeddings. We provide a
description of the LINE algorithm in Section 2.2.2 (Embedding

Nodes In Latent Space). We use the following settings to generate
the concept embeddings: 10 threads, size of 50 and 1,000 samples.
For first-order, we set the order parameter to 1, and for second-
order we set the order parameter to 2. We then concatenate both
sets of embeddings to form our unique set of 100-dimensional
concept embeddings for each HOC dataset.

We build our LBD experimental framework, Neural Network
Architectures for Literature-Based Discovery (NNLBD),1 using
Tensorflow version 2.9 (Abadi et al., 2015) and Python 3.10.11. For
our MLP model, we utilize the number of embedding dimensions

1 https://github.com/NLPatVCU/NNLBD
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from our input concepts as number of hidden units at each layer.
We train our models on NVIDIA Tesla V100 PCIe 32 GB GPUs
using the standard ADAM optimizer with cosine similarity loss
and the hyperbolic tangent activation function at the output layer.
Our training settings include a learning rate of 1e-4. We use a
batch size of 256 and dropout is set to 10%. For the number of
training epochs, we found some combinations of datasets and input
representations reached optimal convergence on the evaluation
set after 5 epochs while others needed 400 epochs. We found the
stability of our earlier converging models remained consistent with
increased training iterations. Therefore, we train all of our models
for 400 epochs. We evaluate our models after every training epoch
and report the ranking of the B concept within the true A-B-C

link among all B concepts in the evaluation set vocabulary. For
our input scaling experiments, we multiply our A and C concept
representations by a factor of 10 before forward propagating
through the neural network. Our non-input scaled experiments do
not perform this modification.

6 Results

In this section, we show and discuss our results, and
compare our method to previous works using two types of
vocabularies: (1) evaluation and (2) comprehensive vocabularies.
The evaluation vocabulary contains all unique B concepts within
each evaluation dataset (i.e., list of filtered B concepts by semantic
type), and the comprehensive vocabulary contains all known
(unique) B concepts (i.e., complete list of known B concepts).
We evaluate over two vocabularies to provide an in-depth
and direct comparison against previous work (i.e., the CD-2

method only reports performance over the evaluation vocabulary).
We identify statistically significant performances by grouping
significant performances among all compared methods using
their evaluation vocabularies. Lastly, we provide an analysis of the
architectural differences between each comparedmodel and discuss
the merits of each method.

We also explore scaling our input representations to improve
inductive biases during model training and expedite convergence.
Previous works such as Crichton et al. (2020) and Cuffy and
McInnes (2023) have shown performance improvements when
performing this approach. However, we found no significant
difference between scaling our input representations by a factor of
10 and not performing this approach for our task. To compare and
detect at least one pair of significant performances between both
approaches, we use the method described by Demšar (2006). We
use the non-parametric Friedman Test (NPFT) (Friedman, 1940)
to determine if a significant performance exists among at least
one pair of models using their evaluation vocabularies and the
Nemenyi Post-Hoc Test (NPHT) (Nemenyi, 1963) to group models
by significant performances. For the NPFT, we use the following
parameters: k = 6 models (3 input scaled and 3 non-input scaled
representations) and N = 5 datasets. We obtain our critical value
(CV) by computing our degrees of freedom(s) as (k − 1) and (k −
1)(N − 1) which provides the CV = 2.71 using the F-Distribution
table with a significance level of α = 0.05. We utilize the following
hypotheses to determine significant performances:

• H0: There are no significant performances among all models.
• HA: There is a significant difference between at least one pair

of models.

We compute our Friedman statistic (FF) as 0.5573. Since our
FF < CV we reject our HA hypothesis and accept the H0

hypothesis. Thus, there is no significant difference between the two
approaches to represent input. We report the scaled input results as
a basis for further analysis and comparison against previous works.

6.1 Comparison with previous work

Table 3, shows the performance of our model over the
Hallmarks of Cancer datasets, compared to the best performing
methods described by Cuffy and McInnes (2023) [MLP (CD)]
and Crichton et al. (2020) (CD-2) (i.e., feature-scaled input
representations). The CD-2 model is a shallow two-layer neural
network where the input is a set of vertex triplets (i.e., A-B-
C) within the KG. The first (hidden) layer contains 100 units,
and the second is an output layer that uses the softplus (Nair
and Hinton, 2010) activation function and binary crossentropy to
output a score indicating the likelihood that edges exist between
all inputs (i.e., strength of the connection). Compared to the CD-
2 model, MLP (CD) uses a five-layer DL (MLP) model to identify
implicit relationships where the model input is a pair of KG vertices
(A & C), and each hidden layer contains at least 200 units. Similar
to the CD-2 model, binary crossentropy is used to generalize
the model’s training objective, and sigmoid activation is used to
restrict the upper and lower bounds between [0, 1]. This model
predicts scores among all B concepts in the vocabulary which
indicates the likelihood that edges exist between the input concepts
(A & C) and each known B concept. Our method combines the
advantages of both prior approaches for SRDR and uses cosine
similarity to generalize the training objective. We provide more
details of our base model architecture in Section 4.2 (Base Model),
and details of our input and output representation approaches in
Sections 4.3 (Input representation) and 4.4 (Output representation).

When comparing the evaluation vocabulary performances of
each method, we found the results varied depending on the method
of comparison chosen. Comparing the averaged performances
among all input representations shows our method performs
optimally on the HOC1 and HOC4 datasets using the averaged and
concatenated representations. The CD-2 model achieves the best
performance on the HOC2 datasets for all input representations,
and the best performance on the HOC5 dataset using the
averaged and concatenated representations. The MLP (CD) model
outperforms the remaining models on the HOC3 dataset for all
representation approaches and across the HOC5 dataset using
Hadamard inputs. When comparing mean performances among all
input representation approaches for all three methods, our results
show our method performs the best on the HOC1 and HOC4
datasets. The MLP (CD) model performs the best on the HOC3
and HOC5 datasets while the CD-2 model performs the best on
the HOC2 dataset. We found the latter of these results differs from
the former due to outlier performances when computing the mean
among all input representations for each method. Thus, careful
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TABLE 3 Our model vs. previous works.

Rank

Evaluation vocabulary Comprehensive vocabulary

Dataset Input type OM MLP (CD) CD-2 OM MLP (CD)

HOC1 Average 4.2 18.0 50.4 4.6 19.0

Concat 5.8 14.6 26.2 6.2 17.6

Hadamard 4.4 25.2 1.4 4.4 27.2

Mean 4.8/2,294 19.3/2,294 26.0/2,294 5.07/29,903 21.27/29,903

HOC2 Average 101 205.2 5.8 147 350

Concat 106.4 170.4 7.4 146.6 275.8

Hadamard 121.8 210.6 13.4 185.6 384.4

Mean 109.7/654 195.4/654 8.9/654 159.73/29,969 336.73/29,969

HOC3 Average 24.8 14.4 76.6 34 35.4

Concat 56.6 16.4 123.2 99.8 37.2

Hadamard 28.2 23.0 254.2 35.8 53.2

Mean 36.5/425 17.9/425 151.3/425 56.53/29,253 41.93/29,253

HOC4 Average 112.6 300.0 256.2 289.4 300

Concat 68 234.4 115.8 132.6 234.4

Hadamard 117.4 323.4 21.0 301 323.4

Mean 99.3/444 285.9/444 131.0/444 241/26,393 285.93/26,393

HOC5 Average 254.4 179.6 67.2 410.8 239.2

Concat 205.2 166.8 84.4 329.8 209.8

Hadamard 171.4 247.8 597.4 309.2 417.2

Mean 210.3/1,049 198.1/1,049 249.7/1,049 349.93/29,903 288.73/29,903

We compare mean ranks among five runs for our averaged, concatenated, and Hadamard input representations for our model (OM), to the methods described by Cuffy and McInnes (2023)

[MLP (CD)] and Crichton et al. (2020) (CD-2). We report the best performances for all compared methods (i.e., feature-scaled ranked performances for the CD-2 andMLP (CD)methods). We

separate performances using two discrete vocabularies: (1) evaluation and (2) comprehensive. The evaluation vocabulary contains all unique B concepts within an evaluation dataset (i.e., filtered

concepts by semantic type). The comprehensive vocabulary contains all known (unique) B concepts within the entire vocabulary (i.e., complete listing without filtering). We indicate the best

performing models, separated by vocabulary type, in bold.

consideration and precautions must be exercised when selecting
the appropriate input representation approach for the CD-2

method. We found variance between averaged ranks is high as
seen within the HOC5 performance metrics. In comparison, our
method achieves lower variance between input representation
approaches when comparing the performances over the
same dataset.

To determine and group significant performances among all
compared methods using their evaluation vocabularies, we use
the NPFT with our aforementioned hypotheses. However, for this
test, we’re comparing all input representation approaches among
all three methods. This results in nine total models. Thus, our
k = 9 and N = 5 for the NPFT. We determine our critical
value (CV) to be 2.27 for (k − 1) and (k − 1)(N − 1) degrees
of freedom using the F-Distribution table with a significance
level of α = 0.05. We compute the Friedman Statistic (FF)
as 0.4183, and found we must reject the HA hypothesis and
accept the H0 since FF < CV . Therefore, the NPFT shows
no significant groupings among compared input representations
over all compared methods. This indicates all methods perform
similarly.

To demonstrate the effectiveness of our method, the right
side of Table 3 shows our model performances when comparing
against all known B concepts when identifying each true HOC
relationship triplet (i.e., the comprehensive vocabulary). Despite
the large increase in the number of compared concepts (e.g.,
29,903 comprehensive vs. 2,294 evaluation vocabulary concepts for
HOC1), we found our method outperforms theMLP (CD)method
over the HOC1, HOC2, and HOC4 datasets. For the HOC3 dataset,
our method performs best using the average and Hadamard input
representation approaches. Lastly, over the HOC5 dataset, our
method outperforms the MLP (CD) method using the Hadamard

approach.
To perform significance testing among the comprehensive

vocabulary models, we use the following parameters with the NPFT
and our aforementioned hypotheses (H0 & HA): k = 6 models
[3OM and 3MLP (CD)] andN = 5 datasets. We obtain our critical
value (CV) by computing our degrees of freedom(s) as (k − 1)
and (k − 1)(N − 1) which provides the CV = 2.71 using the
F-Distribution table with a significance level of α = 0.05. We
compute our Friedman statistic (FF) as 6.1744. As our FF > CV we
accept our HA hypothesis and reject the H0 hypothesis. Therefore,
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FIGURE 3

Our model vs. MLP (CD)—statistical significance groupings: we use the Nemenyi post-hoc test (Nemenyi, 1963) to compare our method against

the MLP (CD) method described by Cu�y and McInnes (2023) and group statistically significant performances over the comprehensive vocabularies.

We determine our critical di�erence to be 3.3717 (i.e., the length of the red and black bars). Pairwise di�erences between performances that exceed

this bar (or value) are considered statistically significant. We use the black bar to group performances that are not statistically di�erent. Our figure

shows that our method’s averaged and Hadamard approaches outperform the MLP (CD) method’s Hadamard approach by a statistically significant

margin.

FIGURE 4

Method comparison table. We highlight the overall advantages and limitations of each compared method.

there are at least one pair of pairwise significant performances
among these approaches over the comprehensive vocabularies.
Figure 3 shows the model groupings by statistically significant
performances. We use the NPHT with our k = 6, the Studentized
Range q Table, and determine our critical value to be 2.850 (i.e.,
(k, inf)/

√
2 −→ 4.03/

√
2) and the critical difference as 3.3717

for α = 0.05. The NPHT shows that our method’s averaged

and Hadamard approaches significantly outperforms MLP (CD)’s

Hadamard approach with no other significant differences noted
among the remaining models.

6.2 Discussion

Figure 4 lists the overall advantages and limitations among all
compared methods. While no significant difference exists between
all compared methods for SRDR assessment of the evaluation

vocabularies, it is imperative to highlight the merits of our method’s
technical contributions and advantages for open-ended research.

The CD-2 (Crichton et al., 2020) method utilizes a compact
model to perform the task of triplet link prediction among concepts
(i.e., predict edges among a set of concept triplets) and performs
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well for SRDR. However, it requires users to construct expert-
crafted queries to facilitate open-ended exploration. Construction
of these queries is a time-consuming process that requires explicit
domain knowledge. The MLP (CD) (Cuffy and McInnes, 2023)
method alleviates this prerequisite by reducing the high domain
knowledge requirement for constructing queries and produces a
listing of fruitful relationships to the user as a ranked list (i.e.,
it only requires the user to provide a starting and target concept
as input, and produces a set of potential linking terms along
with their confidence scores). For this model to achieve similar
performance to CD-2, it requires a significant increase in the
number of model parameters. This leads to greater computational
complexity which indicates more training is necessary to converge
as we introduce new data to the model. Our method combines
the advantages of both compared works. We explore a compact
model (i.e., a reduced number of parameters compared to theMLP

(CD) model) that converges in as low as 5 epochs compared to
the MLP’s 800. Compared to the CD-2 model, our linking concept
representation prediction approach requires fewer discriminative
inputs to achieve similar performance and provides an avenue to
leverage the primary advantage demonstrated in the MLP (CD)

method. It requires less domain-explicit knowledge to explore
and derive relationships of interest by providing a ranked list of
linking concepts while achieving comparable performance to both
compared studies. This is shown in our assessment of both types of
vocabularies (i.e., evaluation and comprehensive).

To analyze the efficacy of our method for SRDR of
the five known HOC relationships, we compare the true
performances of our method to ten randomly generated
relationships for each dataset. We list these random relationships
in Supplementary material document. Our rationale behind
this evaluation method is to show the difference in ranking
performance between both types of relationships (i.e., true vs.
random). Since higher ranking values equate to lower similarity
scores (i.e., an inverse relationship), it suggests that our model
predicts the likelihood of edges existing between the random
triplet’s vertices is low. We theorize the random relationships
will result in higher numerical rankings when compared to our
known relationships (i.e., higher ranking values). To accomplish
this, we follow the procedure and use the A-B-C random
relationships as defined in Cuffy and McInnes (2023). We ensure
that all generated A-B-C link concepts are unique and no repeat
relationship triples are evaluated. We scale our inputs by a factor
of 10 using the concatenated approach for representing input,
and report the mean rank among all ten random relationships
for each dataset. All remaining hyperparameters follow our
previous training and evaluation methods to determine system
performance.

When compared to the true relationships, we found the random
relationships produced higher ranking values with a minimal
number of ties. For HOC1, this results in a mean rank of 14549.6.
HOC2 performs the best among all datasets achieving a mean
rank of 9958.9. HOC3 and HOC5 performs similar to HOC1
achieving ranks of 12611.7 and 13507.3 respectively. Lastly, HOC4
performs the worst with a mean rank of 15299. These results
support our initial remarks and validate our findings for our
discovery replication methodology to demonstrate the efficacy of
our method.

7 Conclusion, limitations and future
work

In the section, we discuss our conclusions and provide several
areas for future work.

7.1 Conclusion

In this work, we introduce and explore a novel approach
for knowledge graph completion (KGC) in the context of closed
literature-based discovery (LBD), leveraging Unified Medical
Language System (UMLS) concepts for term representation. Unlike
traditional KGC models, which often require explicit domain
knowledge and rely heavily on predefined triplets, our method
shifts the focus to implicit relationship discovery by predicting
the embedding of the intermediate concept A-B-C triplet using
multiple edge representation techniques: averaging, concatenation,
and Hadamard product. This innovative use of concept embedding
prediction represents a departure from typical classification tasks
and introduces a more efficient pathway to identifying hidden
relationships.

A key distinction of our approach lies in the semantic-based
learning of relationships, where we aim to capture grouped concept
similarities within the graph to facilitate the discovery of implicit
links. By reducing the need for expert-generated queries, we
lower the barrier to knowledge discovery, enabling researchers
to explore new connections with less prior domain expertise.
Additionally, our method introduces a significant improvement
in the generalization speed of relationship discovery, reducing
computational overhead while achieving competitive performance
compared to existing models.

We evaluate our approach on the Hallmarks of Cancer (HOC)
dataset, which is structured to capture explicit and implicit
relationships. Our model successfully replicates known discoveries
by identifying plausible A-B-C connections, demonstrating its
effectiveness in systematic knowledge discovery replication.
Moreover, the ability to rank all known concepts against input
pairs further distinguishes our method from existing systems,
as it supports open-ended exploration and highlights conceptual
bridges that may not be immediately apparent in traditional LBD
methods.

Our contributions include:

• Introducing a novel concept embedding prediction approach
that simplifies the task of uncovering hidden relationships in
knowledge graphs.

• Reducing the reliance on manual domain knowledge in
hypothesis generation by automatically ranking plausible
linking concepts.

• Achieving comparable performance to existing KGC methods
while improving efficiency in generalization and reducing the
input complexity for concept discovery.

We discuss these innovations in detail, comparing our method
to prior works, and highlight how it advances the state of the art in
closed LBD.
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7.2 Limitations and future work

We found our system predicts concept embeddings that can be
used for identifying implicit relationships for closed LBD. However,
we have identified several limitations of our method. First, our
method is trained using cosine similarity loss. This training
objective leverages pretrained static concept embeddings to link
related semantic spaces to discover new knowledge. In the current
implementation of our method, we do not train against negative
samples. We believe our results can be improved and method can
scale to larger KGs by backpropagating against intelligently selected
negative training samples. This can be performed by verifying
the generated negative samples do not exist within the evaluation
set. Next, our method does not address out-of-vocabulary terms
which contradicts its usefulness for adapting to unknown (or
new) concepts. To mitigate this concern, retraining the model on
new data will be required, or large language models (LLMs) can
replace the embedding generation method (LINE) used within
this work. However, careful considerations must be expressed
when selecting an LLM. These models are pre-trained on a large
number of corpora which may violate the time-slicing constraint
for discovery replication (i.e., the LLMmay have explicitly seen the
implicit relationship your discovery replication method is trying to
rediscover in the training corpora). This can lead to confirmation
bias due to data leakage during model evaluation. Additionally,
resource constraints (financial and hardware) may limit the
applicability of these architectures and inhibit researchers from pre-
training new LLMs for time slicing tasks. Finally, we utilize the
HOC datasets and static embeddings as the basis of our work.
These datasets perform an a-priori preprocessing step that maps
terms to concepts within the UMLS (i.e., concept mapping). While
this step is used to reduce the vocabulary size, eliminate spurious
terms, and address word homonymy, heteronymy, homographs
and polysemy, it produces smaller KGs by reducing the granularity
of lexical semantics represented within the literature that is used
to train our embeddings. Furthermore, the embedding generation
algorithm (LINE) used in our work presents a robust approach to
represent large KGs during the time of release (i.e., 2015). With
today’s larger KGs, LINE may experience scalability issues (i.e.,
preserving complex structural characteristics with larger KGs) and
experience information loss during the dimensionality reduction
step while encoding their node representations. Moreover, LINE
also experiences issues encoding directed graphs (i.e., its first-order
proximity KL-Divergence-based conditional joint distribution and
empirical probability distribution optimization approach) and does
not encode use-specified edge/node attributes. Reworking our
model architecture by incorporating alternative graph (e.g., graph
attention or graph convolution networks) or DL-based embedding
generation algorithms (e.g., contextual embeddings via pre-trained
LLMs) can address these concerns. These revisions, along with
our stated limitation mitigation approaches, can be adapted to
address the reduction in lexical granularity when mapping terms
to UMLS concepts and promote representations that embed

higher quality lexical semantics to potentially improve evaluation
performance.
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