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The pathophysiology underlying coronavirus disease 2019 (COVID-19) across
tissues and cell types upon severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection remains to be fully characterized. Diverse cellular
processes have been described, including interferon (IFN) and pro-
inflammatory responses and functions of ACE2 and TMPRSS2 proteins.
Characterizing how transcriptional programs are activated or repressed could
give us a better understanding of the disease progression; this can be better
understood via gene regulatory network reverse engineering. Here, we make use
of multiple publicly available transcriptional data, such as primary cells and tissue
samples obtained from COVID-19 patients’ lung autopsies, to build the
transcriptional regulatory networks for each condition. Our results describe
the regulatory mechanisms underlying SARS-CoV-2 infection across tissues
and cell lines, identifying antiviral and pro-inflammatory networks.
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1 Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has spread around the world and continues to be a major risk
to public health worldwide. Previous work has established that SARS-CoV-2 enters cells
through interaction between the viral S protein and its cellular receptor, ACE2 (Yan et al.,
2020) mediated by TMPRSS2. ACE2 and TMPRSS2 are highly expressed in epithelial cells
but can also be found in other cell types, such as myocardial, renal, enterocytes, and
endothelial cells (Hoffmann et al., 2020; Xu et al., 2020). Determining the interaction
mechanism of these viral and cellular proteins has been key to the understanding of the
disease—COVID-19 symptoms, including respiratory limitations and diarrhea, are
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probably related to epithelial cells infection in the lung and gut (Ryu
and Shin, 2021; Guimarães Sousa et al., 2022).

Inside the infected cell, the virus uses the cellular machinery to
replicate, eventually resulting in cell death. Cells can recognize viral
nucleic acids through pattern recognition receptors (PRRs),
triggering a transcriptional response mediated by IFN regulatory
factors (IRFs) and nuclear factor kB (NF-kB) (Hur, 2019). While
somemechanisms are shared across infections from different viruses
due to evolutionary constraints (García-Sastre, 2017), each viral
infection will trigger a unique response.

Determining the molecular mechanisms triggered by these
host–virus interactions is key to understanding COVID-19 and
the reasons for its high variability in symptoms. A transcriptome
analysis on the host response to SARS-CoV-2 infection in lung
epithelium-derived cell lines found that it causes a reduced IFN
response but an exacerbated inflammatory response that could
explain the virus active replication and severe inflammation
(Blanco-Melo et al., 2020). Moreover, tissue infection
transcriptome analyses have helped in understanding the
relationship between IFN response, presence of viral RNA, and
disease duration (Desai et al., 2020). However, the full detailed
extent of the transcriptional regulatory networks that are involved in
this response is not yet clear.

Transcriptional regulatory mechanisms can help establish the
information cascades that trigger or repress gene expression during
SARS-CoV-2 infection. Computational approaches can determine
gene regulatory networks from gene expression data and identify co-
regulated genes and the transcription factors (TFs) involved in this
regulation. Lung regulatory networks built using single-cell

RNA-seq data have allowed the identification of the regulating
presence of TFs and the absence of tropism factors specific to
SARS-CoV-2 that could explain differences in cell-type infection
(Tong et al., 2022). This study helped identify regulatory
mechanisms that change the expression of tropism factors after
SARS-CoV-2 infection. However, a more global infection analysis of
regulatory networks to understand the full cellular response to
infection remains to be done.

Here, we aim to determine the gene regulatory networks deployed
during the response to SARS-CoV-2 infection in humans. To achieve
this, we analyzed published SARS-CoV-2 transcriptome infection
data in cell lines and tissues, identifying regulatory interactions
affecting gene expression. Our results will help complete current
knowledge on human-SARS-CoV-2 interactions by providing
insights into relevant regulatory mechanisms.

2 Methods

2.1 Data

Four RNA-seq datasets were retrieved from public databases for
the present analysis (Figure 1). Cell line data (Blanco-Melo et al.,
2020) were retrieved from NCBI using the SRP253951 BioProject
identifier. For COVID patient tissue data, a search was done in NCBI
using the key terms “rna-seq,” “lung,” “COVID,” and “Homo
sapiens”. Two available datasets were selected for tissue data: i)
data from Desai et al. (2020) downloaded using BioProject identifier
SRP261138 (lung, heart, liver, bowel, and kidney samples), and ii)

FIGURE 1
Data Summary. Data origin: studies and databases used to retrieve data. Sample origin: cell lines, patient or control biopsies, and in vitro viral
infection or tissue. Last columns show number of samples in each analysis.
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data from Delorey et al. (2021) downloaded from GEO using the
GSE171668 identifier (lung samples). Due to the lack of healthy
tissue samples in the available datasets, for the purpose of our project
we retrieved lung data (TPM count matrix) from the GTEx project
version 8 (Aguet et al., 2020). To be able to compare gene expression
in cell culture vs. cells-in-tissue context, we retrieved single-cell data
from Liao et al. (2020) using GEO with the GSE145926 identifier.

2.2 RNA-seq data preprocessing

A uniform RNA-seq in-house preprocessing pipeline was used
when raw data were available. In brief, a quality check was done
using FastQC 0.11.3 (Andrews, 2010). Low-quality base calls,
TruSeq2 adapters, and reads <40 base pairs (bps) were removed
using Trimmomatic 0.33 (Bolger et al., 2014). Transcript
quantification was performed using kallisto quant 0.45 (Bray
et al., 2016) with GENCODE v38 as transcriptome reference (as
similarly used in retrieved count matrices), and TPM counts were
used for downstream analyses. A count matrix was generated using
costume-made code (see Section 2.5). Batch correction was
performed using ComBat_seq from the sva package 3.38.0 (Leek
et al., 2012) with dates and sequencing platforms as batches and cell
lines or tissue and state (healthy or infected) conditions as
covariates.

Data were normalized to CPM counts when available only as
count matrices. Batch correction was not performed for the
Delorey et al. (2021) dataset as no sequencing differences were
reported. For GTEx data, we divided data by tissues of interest
(lung, heart, liver, bowel, and kidney samples) and performed
batch correction using ComBat_seq across samples using a
combination of batches identified by nucleic acid isolation and
sequencing run (see Supplementary Table S2.1) and using tissue of
origin as a covariate.

For downstream analyses, data were merged into three separate
joint datasets: the first contained cell line data; the second contained
all tissue data from Desai COVID samples and GTEx healthy
samples; and the third joint dataset contained all lung samples
from the first three sources (Supplementary Table S1). Each dataset
was further processed and analyzed in parallel: i) data were
summarized to one protein-coding transcript per gene (removing
isoforms), and ii) batch correction was performed across samples
when necessary. Batch correction was verified using PCA base
function in R (Team, 2021).

For single-cell RNA-seq data, data were transformed to pseudo-
bulk data using the function “aggregateAcrossCells” with default
options from the scuttle version 1.0.4 package in R (McCarthy
et al., 2017).

2.3 Construction of regulatory networks and
regulon filtering

Gene regulatory networks were constructed using pySCENIC
(Van de Sande et al., 2020) with the scenic_multiruns pipeline
implemented by vsn-pipelines version 0.25.0 in a Nextflow
(version 20.10.0) workflow, running it 100 times (params.sc.
scenic.numRuns = 100) per joint dataset.

Regulons (sets of transcription factors and their target genes)
were filtered according to their reproducibility; regulons had to be
found at least 10 times across all runs, and target genes had to be
assigned to the same TF at least five times. Assessment for
differential activation (DA) was done with AUC SCENIC’s
metric of transcriptional activity by comparing infected and
mock samples using both Mann–Whitney U and
Kolmogorov–Smirnov tests. Multiple testing correction was done
using the Benjamin–Hochberg method in Python using the SciPy
package (adjusted p-value <0.05 threshold was used for tissue
analysis, and an adjusted p-value <0.1 for cell lines, given that
detecting DA regulons for SARS-CoV-2 infecting Calu-3 was
minimal). Regulon tissue/cell line and infection specificity was
assessed using log2 fold change of the regulon specificity score
log2 fold change (RSS LFC ≥ 0.001) by comparison with
corresponding mock samples. Regulons were further filtered for
over-activation (DA LFC >0).

2.4 Data analysis in R

Further data analysis was performed in R with Bioconductor
packages. For general purposes, the tidyverse packages were used.
For heatmaps and upset plots, the ComplexHeatmap (Gu, 2022)
package was used. In-house code was developed to search for specific
shared regulons across conditions. For biological term enrichment
analysis, clusterProfiler and enrichplot were used (Wu et al., 2021).

2.5 Code availability

The whole code developed for this project is available in GitHub:
https://github.com/amedina-liigh/PulmonDB_COVID/.

3 Results

3.1 SARS-CoV-2 infection response in cell
culture is ruled by specific transcription
factors not found for other viral infections

To identify regulatory mechanisms unique to SARS-CoV-2
infection, we set out to characterize regulatory networks analyzing
transcriptome data of viral infections by different respiratory
viruses published by Blanco-Melo et al. (2020). They infected
A549, NHBE, and Calu-3 cell lines with SARS-CoV-
2 respiratory syncytial virus (RSV), influenza A virus (IAV),
and human parainfluenza virus 3 (HPIV3). In order to further
disentangle the impact of infection in the cellular response, they
used a NS1 mutant for IAV (IAVdNS1), overexpressed ACE2
(cellular receptor used by SARS-CoV-2 to infect cells) in A459, and
stimulated IFNβ response for NHEB.

To gain a general appreciation of how gene expression changes
are triggered by each viral infection, we performed principal
component analysis (PCA) (Figure 2A). After correcting for
batch effects, we observed that samples from the same viral
infection on the same cell type were clustered together (the same
can be observed in the corresponding heatmap in Supplementary
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FIGURE 2
Analysis of transcriptome data for SARS-CoV-2 infection response in human lung cell lines. PCA of the transcriptome profile of cell lines with viral
infections. (A) All viral infections (SARS-CoV-2, RSV, IAV, HPIV3, and IAVdNS1) and/or treatment (IFNβ and ACE2 expression) of A549, NHBE, and Calu-3.
Each experimental condition has a specific color and data point shape and is indicated in the labels. (B) Same data as in (A) plus pseudo-bulk profiles of
annotated lung epithelial and immune cells from single-cell RNA-seq from BALF. Dot shape corresponds to experiment or cell type and dot color to
whether it is epithelial (green) or not (red). Epithelial cells from BALF are labeled. (C)Upset plot of differentially active and specific regulons per experiment
compared to mock. Enriched Gene Ontology terms for (D) RXRG and SMARCA5, the regulons uniquely turned on upon SARS-CoV-2 infection.
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Figure S1A). In general, different viral infection data points
generated separate clusters, the only exception being SARS-CoV-
2 infecting Calu-3 and HPIV3 infecting A549 experiments that
clustered together. SARS-CoV-2 infections cluster together with
NHBE treated with IFNβ and A549 overexpressing ACE2,
indicating that ACE2 is key for SARS-CoV-2 infection as
reported by Yan et al. (2020). As expected, NHBE infected by
IAV and the less pathogenic variant IAVdNS1 are located on
opposite sides of the PCA. Moreover, we observed that cells
cluster based on the extent of the IFN response to the viral
infection. In general, our observations are consistent with
previous reports (Blanco-Melo et al., 2020).

To assess whether cell culture data could recapitulate viral
infection in a tissue context, we integrated single-cell
transcriptomic data for epithelial cells AT1 or AT2 from
bronchoalveolar lavage fluid (Liao et al., 2020) and pseudo-
bulked it to make it comparable to the bulk RNA-seq datasets. In
our PCA, the AT2 data point (labeled as epithelial) was located in the
vicinity of A549 infected by SARS-CoV-2 (Figure 2 B), confirming
that cell line modeling could recapitulate this cell-type gene
expression.

Regulatory networks were calculated using SCENIC (Aibar et al.,
2017; Van de Sande et al., 2020). This tool uses correlation analysis
across genes and samples, coupled with motif enrichment to identify
regulatory networks. Using non-parametric tests (see “Methods”
above) and the regulon specificity score (RSS), we identified regulons
(sets of transcription factors and their target genes) that were
differentially activated (DA), either over-activated or down-
regulated, across cell types and viral infections. Supplementary
Table S2 lists the DA regulons in the different cell lines in SARS-
CoV-2 infection. We further selected DA regulons shared across
SARS-CoV-2 infected cell lines (Figure 2C). We observed regulons
RXRG and SMARCA5 to be unique to SARS-CoV-2 infection
compared to other viral infections, and we found FOXP4 and
ZNF730 regulons to be specific of SARS-CoV-2 infection in
A549. DA regulons in SARS-CoV-2 infection were enriched for
terms encompassing the main physiological responses related to
COVID-19, such as viral response, apoptosis, and NF-kB signaling
(Supplementary Figure S1C). Moreover, RXRG and
SMARCA5 regulons’ enriched terms describe AT2 response to
infection: viral response, apoptosis, and cell differentiation (Liao
et al., 2020) (Figure 2D). In particular, for SARS-CoV-2 infection in
NHBE, we found RNAi-mediated gene silencing terms, while for
Calu-3, we observed cell migration, growth factor, and TGFbeta
annotations, indicating tissue repair (Supplementary
Figures S1B,D).

3.2 SARS-CoV-2 lung infection regulons
indicate an extensive regulatory response
unique to this tissue

To assess the effect of SARS-CoV-2 in the regulatory response in
the tissue context, we used data from Desai et al. (2020) and Aguet
et al. (2017), taking data for patients and controls, respectively. In
order to reliably combine data from different experiments, we
performed a batch effect correction within each dataset and
between them (see “Methods”). This correction reduced bias due

to data origin (Figure 3B, Supplementary Figure S2). After
correction, PCA showed clustering based on tissue type and
infection; nevertheless, COVID-infected lung data showed the
highest heterogeneity.

Analyzing DA regulons in COVID tissues vs. controls
(Supplementary Table S4), we found that the lung had the
highest number (225) of tissue-specific DA regulons (Figure 3A),
indicative of a more pronounced response due to the extensive
consequences of an efficient viral replication. In comparison, other
tissues showed a limited number of tissue-specific DA regulons
(Figure 3A). The lung and heart shared the highest number (48) of
DA regulons. Interestingly, the lung, heart, and liver shared
22 regulons, which included TFs known to play a role in IFN
regulation—IRF1 and SMARCC1. The liver is one of the tissues
reported to suffer extensive damage during SARS-CoV-2 infection
(Lozano-Sepulveda et al., 2020). The KLF14 regulon is the only liver-
specific DA regulon, and it is related to down-regulation of the type
II receptors of TGFβ (Truty et al., 2009) (Supplementary Table S3).

Our functional enrichment analysis could not identify particular
terms enriched in lung DA-activated regulons, probably due to
extensive tissue damage. However, for the heart, liver, and kidney,
we found enrichment for terms related to tissue repair under
inflammatory conditions such as pathogen infection response,
endocytosis, and proteolysis (Supplementary Figure S3).

4 Discussion

In this study, we aimed to identify the DA regulons in SARS-
CoV-2 infection to help elucidate relevant regulatory mechanisms
that could open new research avenues. We set out to identify the DA
regulons across different biological conditions and a variety of
infected cell lines and tissues in order to identify regulons
involved in particular infection response mechanisms for SARS-
CoV-2 infection.

The comparison of DA regulons across cell lines infected with
different viruses enabled us to identify regulons unique to SARS-
CoV-2 infection, such as RXRG and SMARCA5. Target genes of
these regulons are related to general viral response (Figure 2D).
Retinoid X receptor α has been reported to suppress type I interferon
response in viral infection, increasing host susceptibility to
infections (Ma et al., 2014); hence, RXRG could underlie a
similar response requiring further characterization. SMARCA5 is
a general epigenetic remodeling factor, known for being related to
cell immortalization (Thakur et al., 2022); SARS-CoV-2 might be
triggering a survival response mediated by the upregulation of this
TF. Of particular interest is the FOXP4 regulon upregulation
because the loci have been recently reported to be related to long
COVID (Lammi et al., 2023). Little is known about the functions of
ZNF730; however, as with most zinc finger TFs, it was recently
reported as overexpressed in tick-borne encephalitis virus-infected
neurons and astrocytes (Selinger et al., 2022), making it of interest
for future research.

We recovered previously identified regulons related to
inflammatory response, such as IRF1 and SMARCC1. In
particular, IRF1 has been previously reported to be upregulated
in the lung, liver, and pancreas and related to changes in blood sugar
metabolism (Shin et al., 2022). We further confirm this finding and
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demonstrate that target genes are also changing expression; hence,
the regulon is likely active during SARS-CoV-2 infection.

Taking advantage of community efforts to unravel new biology by
reanalyzing data is key for research continuity. Our analysis is based on
public data that have been quickly released by the scientific community,

enabling us to identify regulons relevant for future characterization of
SARS-COV-2 infections. However, our study has limitations. Future
studies including the identification of regulons using single-cell data are
necessary as other efforts have been focused on releasing this type of
data (Stephenson et al., 2021). Moreover, our results remain

FIGURE 3
Analysis of transcriptome data for tissues with COVID-19 and controls. (A) Upset plot of differentially active and specific regulons per experiment
compared to controls. (B) PCA of transcriptome profiles of tissues with COVID-19 and controls after batch correction.
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exploratory, and additional experiments remain to be implemented
to confirm the biological relevance of our findings.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Materials; further inquiries can be
directed to the corresponding author.

Author contributions

MP-G: conceptualization, data curation, formal analysis,
investigation, methodology, software, visualization, and
writing–review and editing. LA-V: software and writing–review
and editing. AV: conceptualization, data curation, formal
analysis, methodology, supervision, and writing–review and
editing. YIB-M: conceptualization, data curation, investigation,
methodology, supervision, and writing–review and editing. LC:
conceptualization, supervision, and writing–review and editing. JD:
methodology, supervision, and writing–review and editing. DB-M:
conceptualization, data curation, methodology, supervision, and
writing–review and editing. AM-R: conceptualization, funding
acquisition, investigation, methodology, project administration,
resources, supervision, writing–original draft, and writing–review
and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. AMR was
supported by CONACYT-FORDECYT-PRONACES (grant no.
[11311]) and Programa de Apoyo a Proyectos de Investigación e
Innovación Tecnológica–Universidad Nacional Autónoma de
México (PAPIIT-UNAM) (grant no. IA203021). YIB-M was
supported by CONAHCYT-Fronteras (grant CF-2023-I-1653).

Funding was provided to MP-G by RIABIO (Red Iberoamericana
de Inteligencia Artificial para Big BioData, CYTED, reference
521RT0118, https://cyted.org/RIABIO) for a research stay in the
CiC-IBMCC (CSIC/USAL) of Salamanca (Spain) where part of this
work was developed.

Acknowledgments

This work received support from Luis Aguilar, Alejandro León,
and Jair García of the Laboratorio Nacional de Visualización
Científica Avanzada. The authors thank Carina Uribe Díaz,
Christian Molina-Aguilar and Alejandra Castillo Carbajal for
their technical support.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article or
claim that may be made by its manufacturer is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/frnar.2024.1334873/
full#supplementary-material

References

Aguet, F., Anand, S., Ardlie, K. G., Gabriel, S., Getz, G. A., Graubert, A., et al. (2020).
The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science
369, 1318–1330. doi:10.1126/science.aaz1776

Aguet, F., Ardlie, K. G., Cummings, B. B., Gelfand, E. T., Getz, G., Hadley, K., et al.
(2017). Genetic effects on gene expression across human tissues. Nature 550, 204–213.
doi:10.1038/nature24277

Aibar, S., González-Blas, C. B., Moerman, T., Huynh-Thu, V. A., Imrichova, H.,
Hulselmans, G., et al. (2017). SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083–1086. doi:10.1038/nmeth.4463

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence
data.

Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W., Uhl, S., Hoagland, D., Møller, R.,
et al. (2020). Imbalanced host response to SARS-CoV-2 drives development of COVID-
19. Cell 181, 1036–1045.e9. doi:10.1016/j.cell.2020.04.026

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30, 2114–2120. doi:10.1093/bioinformatics/
btu170

Bray, N., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal
probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527. doi:10.
1038/nbt.3519

Delorey, T. M., Ziegler, C. G. K., Heimberg, G., Normand, R., Yang, Y., Segerstolpe,
Å., et al. (2021). COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular
targets. Nature 595, 107–113. doi:10.1038/s41586-021-03570-8

Desai, N., Neyaz, A., Szabolcs, A., Shih, A. R., Chen, J. H., Thapar, V., et al. (2020).
Temporal and spatial heterogeneity of host response to SARS-CoV-2 pulmonary
infection. Nat. Commun. 11, 6319. doi:10.1038/s41467-020-20139-7

García-Sastre, A. (2017). Ten strategies of interferon evasion by viruses. Cell Host
Microbe 22, 176–184. doi:10.1016/j.chom.2017.07.012

Gu, Z. (2022). Complex heatmap visualization. Imeta 1. doi:10.1002/imt2.43

Guimarães Sousa, S., Kleiton de Sousa, A., Maria Carvalho Pereira, C., Sofia Miranda
Loiola Araújo, A., de Aguiar Magalhães, D., Vieira de Brito, T., et al. (2022). SARS-CoV-
2 infection causes intestinal cell damage: role of interferon’s imbalance. Cytokine 152,
155826. doi:10.1016/j.cyto.2022.155826

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S.,
et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a
clinically proven protease inhibitor. Cell 181, 271–280.e8. doi:10.1016/j.cell.2020.02.052

Hur, S. (2019). Double-stranded RNA sensors and modulators in innate immunity.
Annu. Rev. Immunol. 37, 349–375. doi:10.1146/annurev-immunol-042718-041356

Lammi, V., Nakanishi, T., Jones, S. E., Andrews, S. J., Karjalainen, J., Cortés, B., et al.
(2023). Long COVID host genetics initiative, FinnGen, DBDS genomic consortium, GEN-

Frontiers in RNA Research frontiersin.org07

Padilla-Gálvez et al. 10.3389/frnar.2024.1334873

https://cyted.org/RIABIO
https://www.frontiersin.org/articles/10.3389/frnar.2024.1334873/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frnar.2024.1334873/full#supplementary-material
https://doi.org/10.1126/science.aaz1776
https://doi.org/10.1038/nature24277
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1016/j.cell.2020.04.026
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1038/s41586-021-03570-8
https://doi.org/10.1038/s41467-020-20139-7
https://doi.org/10.1016/j.chom.2017.07.012
https://doi.org/10.1002/imt2.43
https://doi.org/10.1016/j.cyto.2022.155826
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.1146/annurev-immunol-042718-041356
https://www.frontiersin.org/journals/rna-research
https://www.frontiersin.org
https://doi.org/10.3389/frnar.2024.1334873


COVID multicenter study. Genome-wide association study of long COVID. bioRxiv
Available at: https://www.medrxiv.org/content/10.1101/2023.06.29.23292056v1.

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., and Storey, J. D. (2012). The
sva package for removing batch effects and other unwanted variation in high-
throughput experiments. Bioinformatics 28, 882–883. doi:10.1093/bioinformatics/
bts034

Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., et al. (2020). Single-cell landscape
of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844.
doi:10.1038/s41591-020-0901-9

Lozano-Sepulveda, S. A., Galan-Huerta, K., Martínez-Acuña, N., Arellanos-Soto, D.,
and Rivas-Estilla, A. M. (2020). SARS-CoV-2 another kind of liver aggressor, how does
it do that? Ann. Hepatology 19, 592–596. doi:10.1016/j.aohep.2020.08.062

Ma, F., Liu, S.-Y., Razani, B., Arora, N., Li, B., Kagechika, H., et al. (2014). Retinoid X
receptor α attenuates host antiviral response by suppressing type I interferon. Nat.
Commun. 5, 5494. doi:10.1038/ncomms6494

Rostron, A. J., Stephenson, E., Reynolds, G., Botting, R. A., Calero-Nieto, F. J.,
Morgan, M. D., et al. (2021). Single-cell multi-omics analysis of the immune response in
COVID-19. Nat. Med. 27, 904–916. doi:10.1038/s41591-021-01329-2

Ryu, G., and Shin, H.-W. (2021). SARS-CoV-2 infection of airway epithelial cells.
Immune Netw. 21, e3. doi:10.4110/in.2021.21.e3

Selinger, M., Věchtová, P., Tykalová, H., Ošlejšková, P., Rumlová, M., Štěrba, J., et al.
(2022). Integrative RNA profiling of TBEV-infected neurons and astrocytes reveals
potential pathogenic effectors. Comput. Struct. Biotechnol. J. 20, 2759–2777. doi:10.
1016/j.csbj.2022.05.052

Shin, J., Toyoda, S., Nishitani, S., Onodera, T., Fukuda, S., Kita, S., et al. (2022). SARS-
CoV-2 infection impairs the insulin/IGF signaling pathway in the lung, liver, adipose
tissue, and pancreatic cells via IRF1. Metabolism 133, 155236. doi:10.1016/j.metabol.
2022.155236

Stephenson, E., Reynolds, G., Botting, R. A., Calero-Nieto, F. J., Morgan, M. D.,
Tuong, Z. K., et al. (2021). Single-cell multi-omics analysis of the immune response in
COVID-19. Nat. Med. 27, 904–916. doi:10.1038/s41591-021-01329-2

Team, R. C. (2021). R: a language and environment for statistical computing. Vienna:
R Foundation for Statistical Computing. Others (No Title).

Thakur, S., Cahais, V., Turkova, T., Zikmund, T., Renard, C., Stopka, T., et al. (2022).
Chromatin remodeler Smarca5 is required for cancer-related processes of primary cell
fitness and immortalization. Cells 11, 808. doi:10.3390/cells11050808

Tong, H., Chen, H., andWilliams, C. M. (2022). Identification of transcription factors
regulating SARS-CoV-2 tropism factor expression by inferring cell-type-specific
transcriptional regulatory networks in human lungs. Viruses 14, 837. doi:10.3390/
v14040837

Truty, M. J., Lomberk, G., Fernandez-Zapico, M. E., and Urrutia, R. (2009). Silencing
of the transforming growth factor-β (TGFβ) receptor II by krüppel-like factor
14 underscores the importance of a negative feedback mechanism in TGFβ
signaling. J. Biol. Chem. 284, 6291–6300. doi:10.1074/jbc.m807791200

Van de Sande, B., Flerin, C., Davie, K., De Waegeneer, M., Hulselmans, G., Aibar, S.,
et al. (2020). A scalable SCENIC workflow for single-cell gene regulatory network
analysis. Nat. Protoc. 15, 2247–2276. doi:10.1038/s41596-020-0336-2

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). clusterProfiler 4.0: a
universal enrichment tool for interpreting omics data. Innovation 2, 100141. doi:10.
1016/j.xinn.2021.100141

Xu, H., Zhong, L., Deng, J., Peng, J., Dan, H., Zeng, X., et al. (2020). High expression of
ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 12, 8.
doi:10.1038/s41368-020-0074-x

Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., and Zhou, Q. (2020). Structural basis for the
recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448.
doi:10.1126/science.abb2762

Frontiers in RNA Research frontiersin.org08

Padilla-Gálvez et al. 10.3389/frnar.2024.1334873

https://www.medrxiv.org/content/10.1101/2023.06.29.23292056v1
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1038/s41591-020-0901-9
https://doi.org/10.1016/j.aohep.2020.08.062
https://doi.org/10.1038/ncomms6494
https://doi.org/10.1038/s41591-021-01329-2
https://doi.org/10.4110/in.2021.21.e3
https://doi.org/10.1016/j.csbj.2022.05.052
https://doi.org/10.1016/j.csbj.2022.05.052
https://doi.org/10.1016/j.metabol.2022.155236
https://doi.org/10.1016/j.metabol.2022.155236
https://doi.org/10.1038/s41591-021-01329-2
https://doi.org/10.3390/cells11050808
https://doi.org/10.3390/v14040837
https://doi.org/10.3390/v14040837
https://doi.org/10.1074/jbc.m807791200
https://doi.org/10.1038/s41596-020-0336-2
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1038/s41368-020-0074-x
https://doi.org/10.1126/science.abb2762
https://www.frontiersin.org/journals/rna-research
https://www.frontiersin.org
https://doi.org/10.3389/frnar.2024.1334873

	Identification of regulons modulating the transcriptional response to SARS-CoV-2 infection in humans
	1 Introduction
	2 Methods
	2.1 Data
	2.2 RNA-seq data preprocessing
	2.3 Construction of regulatory networks and regulon filtering
	2.4 Data analysis in R
	2.5 Code availability

	3 Results
	3.1 SARS-CoV-2 infection response in cell culture is ruled by specific transcription factors not found for other viral infe ...
	3.2 SARS-CoV-2 lung infection regulons indicate an extensive regulatory response unique to this tissue

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


