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In this study, we aimed investigated the differential gene expression profiles of
samples from uninfected individuals (control group) and study groups of
asymptomatic human T-lymphotropic virus 1 (HTLV-1) carriers and patients
with HTLV-1-associated myelopathy (HAM) by exploratory RNA sequencing
(RNA-Seq) analysis. The gene expression profiles of individuals in the
asymptomatic group were represented by 3 genes, most associated with
cell cycle regulation. The gene expression profiles of individuals in the
HAM group were represented by 12 genes, the majority of which are
associated with the immune response. The HLA-A gene and the non-
coding RNA LINC02470 were upregulated in the asymptomatic and HAM
groups. The HLA-DQB1 and HLA-C genes were downregulated in the
asymptomatic and HAM groups. In this pilot study, although limited in
terms of methodological rigor, we showed differential gene expression
profiles in different clinical groups of HTLV-1 infection. However, further
studies are needed to confirm these findings.
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1 Introduction

Human T-lymphotropic virus (HTLV) is a deltaretrovirus (International Committee
on Taxonomy of Viruses- ICTV, 2022), with approximately 10 million individuals
infected worldwide. HTLV-1 infection is most prevalent and considered endemic in
parts of southwestern Japan, sub-Saharan Africa, South America, the Caribbean, the
Australo-Melanesia region and some regions in the Middle East (Eusebio-Ponce et al.,
2019). The second most prevalent type of HTLV infection, HTLV-2 infection, has a
limited distribution among intravenous drug users in the United States, Europe, and
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Southeast Asia and among Native Americans from North America
to South America (Ishak et al., 2020).

Brazil is a country with a high prevalence of HTLV infections
(700 thousand to 2 million infected individuals) (Miranda et al.,
2022). The State of Pará (northern Brazil) is the site of most
epidemiological studies of HTLV infection in the Brazilian
Amazon region to date and has a variety of different
populations, with prevalence rates ranging from 0.3% to more
than 30% and infections occurring mainly in indigenous
populations (Abreu et al., 2022; Brito et al., 2022; de Lima
et al., 2022; Lopes et al., 2022).

HTLV-1 is associated with inflammatory or lymphoproliferative
diseases; two such diseases, i.e., adult T-cell leukemia/lymphoma
(ATLL) and HTLV-1-associated myelopathy (HAM) are clearly
related to the virus, as are other diseases, such as uveitis,
dermatitis, strongyloidiasis and tuberculosis (Eusebio-Ponce et al.,
2019). Activation of viral genes, such as Tax and HBZ, may be
partially related to the pathogenicity of HTLV-1 (Martinez et al.,
2019; Brites et al., 2021). However, from the host perspective, the
need to understand the factors that trigger different clinical
outcomes remains (Vallinoto et al., 2019; Forlani et al., 2021).

In the genomic era, RNA sequencing (RNA-Seq) approaches for
obtaining transcriptomes are tools with great potential for answering
challenging questions about gene expression profiles of organisms
under different conditions and at specific developmental stages and
are applied in the analysis of various pathological conditions
(Girgenti and Duman, 2018; Schwartz and Stern-Ginossar, 2019).
For example, a differential transcriptome of nuclear and cytoplasmic
factors that correlates with Tax protein activity has been observed in
cell lines transformed by HTLV-1 (Singh et al., 2011). In ATLL
models, integrated molecular analyses have revealed transcriptomic
abnormalities involving key genes related to cell proliferation, with
proliferative potential being associated with specific mutation
patterns (Kataoka et al., 2015; Yamagishi et al., 2021).

Microarray analysis has shown that the gene expression of
intermediary regulators of the immune response, proliferation
and cell migration is increased in individuals with HAM, and the
activation of apoptosis factors is likely to regulate signaling involving
the proteins encoded by these genes (Menezes et al., 2017; Mozhgani
et al., 2019).

In a relatively recent study, a greater number of differentially
expressed protein-coding genes were identified and a broader
quantitative range of changes in expression levels was detected by
RNA-Seq than by microarray analysis in a toxicogenomic evaluation
of rat liver tissue (Rao et al., 2018). Specifically, regarding HTLV-1
infection, a meta-analysis revealed that microarray technology can
indeed be used to simultaneously measure the expression of tens of
thousands of genes in different tissue samples in a cost-effective and
high-throughput manner (Jeffery et al., 1999). However, as the
results of microarray analysis may not be reproducible or may be
influenced by disordered data, the RNA-Seq technique appears to be
satisfactory for our research purposes.

In this study, we sought to obtain differential gene expression
profiles via exploratory RNA-Seq analysis of samples fromHTLV-1-
infected individuals (with asymptomatic infection and with HAM)
and uninfected individuals inhabiting the Brazilian Amazon region,
aiming to identify markers related to the pathogenesis of and/or
immune response to HTLV-1 infection.

2 Materials and methods

2.1 Sampling and ethical aspects

Blood samples collected in tubes containing ethylenediamine
tetraacetic acid (EDTA) from 18 individuals treated at the
Ambulatory of the Tropical Medicine Center of the Federal
University of Pará (NMT/UFPA) and at the Fundação Centro de
Hematologia e Hemoterapia do Estado do Pará (HEMOPA) were
used for this study.

The individuals were over 18 years of age, of both sexes, had
laboratory confirmation of HTLV-1 infection with or without
clinical indications of HAM and were not being treated with
antiretroviral drugs and/or glucocorticoids. The control group
was composed of voluntary blood donors who were seronegative
for HTLV-1/2. All individuals belonged to the population of the
capital Belém (Pará State) and were ethnically characterized as being
of mixed race.

The project was approved by the Ethics Committee for Research
with Human Beings of the Institute of Health Sciences of the Federal
University of Pará (CAAE: 73782017.8.0000.0018).

2.2 DNA and RNA extraction

Total DNA was extracted from peripheral blood using a
PureLink® Genomic DNA Mini Kit (Thermo Fisher Scientific,
Waltham, MA, United States) following the
manufacturer’s protocol.

RNA was extracted from blood samples using a TRIzol™ Plus
RNA purification kit (Thermo Fisher Scientific, Waltham,
Massachusetts, United States).

2.3 Quantification of leukocytes and the
HTLV-1 proviral load

Leukocytes were quantified using a BC-2800Vet hematology
analyzer (Mindray, Shenzhen, China) following the manufacturer’s
recommendations.

The viral load was quantified by qPCR using three target
sequences synthesized with the TaqMan® system (Life
Technologies, Carlsbad, California, United States) according to a
previously described protocol (Tamegão-Lopes et al., 2006). The
values obtained were adjusted with respect to the leukocyte
count per mm3.

2.4 RNA purification and sequencing

Extracted RNA was purified using a PureLink RNA Mini Kit
(Thermo Fisher Scientific, Waltham, Massachusetts, United States)
following the manufacturer’s recommendations.

After purification, the RNA was quantified using a Qubit RNA
HS Assay Kit and a Qubit 4.0 fluorometer (Thermo Fisher Scientific,
Waltham, Massachusetts, United States). For qualitative analysis of
RNA, the integrity of the extracted RNA considering the RNA
integrity number (RIN) was determined with Bioanalyzer
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equipment using an Agilent RNA 6000 Pico Kit (Agilent, Saint
Clara, California, United States); RNA transcripts with RIN values of
less than 7 were disregarded for downstream analyses.

An RNA library was prepared following the guidelines of the
SureSelect Strand-Specific RNA Library Prep System Kit (Agilent,
Saint Clara, California, United States) and subjected to paired-end
sequencing (2 × 100) on the NextSeq 500 platform (Illumina, San
Diego, California, United States) with the NextSeq 500/550 High
Output Kit v2.5 (300 cycles) according to the manufacturer’s
recommendations.

2.5 Data analysis

The raw sequencing data were analyzed with the miRNA-Seq
and RNA-Seq Multiprocess Analysis (miARma-Seq) pipeline using
edgeR software for differential expression analysis and the criterion
of a false discovery rate (FDR) ≤ 0.05 (Andrés-León and Rojas,
2019). We based our analysis on the reference human genome
GRCh38. p13 in the National Center for Biotechnology Information
(NCBI) database. The data generated in this study were uploaded to
the NCBI public database under accession code GSE224047. Quality
control data is available as Supplementary Data S1. Significant gene
expressions were represented in reads per million mapped reads
(RPKM) in boxplot graphs, showing the medians, their respective
interquartile ranges and outliers.

Interprotein interaction networks (interactomes) were inferred
using Cytoscape 3.9.1 software (Seattle, Washington,
United States) with the GeneMANIA database as a search
source; we opted for resulting networks with a maximum of
fifty functionally enriched genes and the option of automatic
weighting for the selection of networks. Network
modularization was carried out using clusterMaker and the
MCODE clustering algorithm, followed by selection of the
largest network as the main highlight.

Venn diagrams were generated via the Lucidchart website (Utha,
United States) according to the number of biological functions of the
inferred genes in each network. GraphPad Prism 8.0 software (San
Diego, California, United States) was used to graphically visualize
gene expression. Multivariate clustering was applied to evaluate
similarities between the differential gene expression profiles of the
groups, withWard’s method used for agglomeration, selection of the
type of Euclidean distance and standardization of the variables
(Ayres et al., 2008). Comparison of the proviral load among the
groups was performed using the Mann‒Whitney test (Ayres
et al., 2008).

3 Results

3.1 Sample integrity

Among the samples from the 18 subjects, a satisfactory RIN for
downstream analyses was obtained for 10 samples: 4 from
participants with HAM, 3 from asymptomatic individuals and
3 from individuals in the control group. All individuals with
HTLV-1 infection were female; in the control group, two
individuals were male (Supplementary Table S1). The

log10 values of the proviral load in patients with HAM (4.71
(4.60–4.75)) were greater than those of asymptomatic individuals
(0.90 (0.49–1.61); p = 0.0209).

When comparing the groups, we disregarded sex-linked genes
(Supplementary Table S2), resulting in a set of 11,946 genes with
differential expression (as determined by the fold change (FC)
values). A total of 457 of these genes were significantly
differentially expressed among the comparison groups, but only
21 genes had an FDR≤ 0.05, as explained below. Principal
component cluster analysis (PCA) showed that not all samples
were grouped into the same class, however, we observed a
tendency for patient samples to cluster in different quadrants
from the control group (Figure 1A).

3.2 Differential expression between the
control group and the asymptomatic group

In the comparison between the control group and the
asymptomatic group, 6 genes had an FDR≤0.05, of which 3 were
upregulated (Figure 1B) and 3 were downregulated (Figure 1C) in
the asymptomatic group. Among the upregulated genes, lysine
demethylase 5 days (KDM5D) was upregulated by approximately
11-fold (logFC: 11.20; p = 1.33–07; FDR: 0.0002), human leukocyte
antigen of the A locus (HLA-A) was upregulated by approximately
7-fold (logFC: 6.72; p = 5.54–06; FDR: 0.032), and the noncoding
gene LINC02470 was upregulated by approximately 5-fold (logFC:
5.40; p = 4.76–06; FDR: 1.86–05). Among the downregulated genes,
a chemokine receptor gene (CCR4) was downregulated by
approximately 2-fold (logFC: −2.01; p = 3.86–05; FDR: 0.03),
human leukocyte antigen of the C locus (HLA-C) was
downregulated by approximately 10-fold (logFC: −9.5; p =
2.02–06; FDR: 0.02), and human leukocyte antigen of the
DQB1 locus (HLA-DQB1) was downregulated by approximately
12-fold (logFC: −11.6; p = 7.49–06; FDR: 0.007). Figure 1D shows
the gene expression data as the RPKM values for all genes
differentially expressed in peripheral blood between the
asymptomatic and control groups.

3.3 Differential expression between the
control group and the group with HAM

In the comparison between the control group and the HAM
group, 13 genes exhibited an FDR≤0.05, 9 of which were upregulated
(Figure 2A) and 4 of which were downregulated (Figure 2B) in the
HAM group. Among the upregulated genes, human leukocyte
antigen of the DRB3 locus (HLA-DRB3) was upregulated by
approximately 11-fold (logFC: 11.28; p = 2.95–24; FDR: 1.7–20),
and C-type lectin domain family gene 12 (CLEC12A) was
upregulated by approximately 2-fold (logFC: 1.83; p = 0.005;
FDR: 0.01). Among the downregulated genes, plakoglobin (JUP)
was downregulated by approximately 2-fold (logFC: −1.71; p =
8.1–05; FDR: 0.037), and HLA-DQB1 was downregulated by
approximately 10-fold (logFC: −10.49; p = 2.35–05; FDR: 0.012).
Figure 2C shows the gene expression data as the RPKM values of all
genes differentially expressed in peripheral blood between the
control and HAM groups.
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FIGURE 1
Differential gene expression and profiles in the asymptomatic group vs the control group: (A) Principal component analysis graph showing the
distribution and clustering of patients in each group. (B) Genes upregulated in the asymptomatic group compared to the control group. (C) Genes
downregulated in the asymptomatic group compared to the control group. (D) Expression data presented as the log(RPKM) values of all genes
differentially expressed in peripheral blood between the asymptomatic and control groups.
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3.4 Differential expression between the
asymptomatic group and the group
with HAM

In addition, 6 genes were upregulated, with an FDR≤ 0.05, in the
HAM group compared to the asymptomatic group (Figure 3A).
Among these genes, human leukocyte antigen of the DRA locus
(HLA-DRA) was approximately 12-fold more highly expressed
(logFC: 11.55; p = 0.01; FDR: 6.05–27), and CLEC12B was
approximately 3-fold more highly expressed (logFC: 3.47; p =
3.67–05; FDR: 0.007). Figure 3B shows the gene expression data
measured in RPKM of all genes differentially expressed in peripheral
blood between the asymptomatic and HAM groups.

More genes were upregulated in the HAM group than in the
asymptomatic group. The KDM5D gene was the only gene
upregulated only in the asymptomatic group, whereas LINC02470
and HLA-A were upregulated in both groups (Figure 3C). Fewer
genes were downregulated than upregulated in either group; CCR4
was the only downregulated gene in the asymptomatic group, HLA-
DQB1 andHLA-C were downregulated in both groups, and JUP and
chemokine ligand type 1 (XCL1) were downregulated only in the
HAM group (Figure 3D).

We constructed a diagram with all the positively regulated and
negatively regulated genes ordered by FC. In the qaul we highlighted
the upregulated genes in red and the downregulated genes in blue in
each group; The font size of each word is related to the FC, the larger
fonts indicate the most regulated genes in each specific degree
(Figure 3E). In the control group, the JUP gene was the most
upregulated, and the HLA-DQB1 gene was the most
downregulated. In the asymptomatic group, KDM5D was the most
upregulated; in theHAMgroup,HLA-DRAwas themost upregulated.
In both the asymptomatic and HAM groups,HLA-DQB1 andHLA-C
were the most downregulated with respect to the control group.

3.5 Interactome

Interaction networks were inferred for the genes differentially
expressed in each group; by enrichment analysis, these genes were
categorized into four functional groups based on general biological
properties (Figure 4). The interactome of the control group was formed
by seven types of network categories, among which the physical
interaction type network accounted for approximately 77.64% of the
interactions. The largest cluster encompassed the CCR4, XCL1 and JUP

FIGURE 2
Gene expression profiles in the HAM group vs the control group: (A)Genes upregulated in the HAM group compared to the control group. (B)Genes
downregulated in the HAM group compared to the control group. (C) Expression data presented as the log(RPKM) values of all genes differentially
expressed in peripheral blood between the HAM and control groups.
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genes, with a clear predominance of categories such as physical
interaction and genetic interaction. Most of the genes shown were
grouped as immunoregulatory genes, among whichHLA-DQB1, HLA-
C andCCR4 are tightly related to the immune response.XCL1 clustered
into both the immune response and cell cycle regulation categories, and
JUP clustered narrowly among cell motility genes (Figure 4A).

The interactome of the asymptomatic group was formed by five
types of network categories, among which the coexpression type
network accounted for 30.3% of the interactions. The largest cluster
encompassed genes of the G1-type cyclin family (CCNE2 and CCNE1),
which are some of the genes that interact with the noncoding RNA
LINC02470; in this cluster, we observed a predominance of the
prediction type category among the interactions. Most of the genes
clustered as cell cycle regulation genes, among which all three genes
upregulated in the asymptomatic group were included, although the
HLA-A gene also clustered in the immune regulation and cell motility
categories, and the RNA LINC02470 clustered in the immune
regulation and kinase cascade regulation categories (Figure 4B).

The interactome of the HAM group was formed by five types of
network categories, among which the coexpression type network
accounted for 50.77% of the interactions. The largest cluster
encompassed the genes HLA-A, LILRB3, HLA-DRB3, HLA-DRA,
HLA-DPB1, CXCL8, EGR3 and NFKB1 (NFKB1 specifically interacts
with the LINC02470 RNA axis). Notably, all network categories were
represented in this cluster, although the strongest interactions were
observed in the physical interaction type category. Most of the genes
clustered as immunoregulatory genes, and only an early growth response
gene (EGR3) and the RNA LINC02470 clustered in the kinase cascade
regulation and cell cycle regulation categories (Figure 4C).

4 Discussion

In the present study, we reported different differential gene
expression profiles between people living with HTLV-1. We
observed that individuals with HAM showed greater diversity in

FIGURE 3
Gene expression profile in the HAM group vs the asymptomatic group and comparative gene expression diagram: (A)Genes upregulated in the HAM
group compared to the asymptomatic group. (B) Expression data presented as the log(RPKM) values of all genes differentially expressed in peripheral
blood between the HAM and asymptomatic groups. (C) Venn–Euler diagrams showing the upregulated genes in the asymptomatic and HAM groups.
(D) Venn–Euler diagrams showing downregulated genes in the asymptomatic andHAMgroups. (E)General diagram of the expression profiles with a
comprehensive illustration of the upregulated (red, superscript) and downregulated (blue, subscript) genes in all groups; the font size is directly
proportional to the logFC value.
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FIGURE 4
Interaction networks in the groups: (A) Interactome composed of upregulated genes in the control group, represented by seven network categories.
The largest network inferred by cluster analysis is highlighted. Four functional categories were proposed: immune response regulation, kinase cascade
regulation, cell motility and cell cycle regulation. (B) Interactome composed of upregulated genes in the control group, represented by five network
categories. The largest network inferred by cluster analysis is highlighted. Four functional categories were proposed: immune response regulation,
kinase cascade regulation, cell motility and cell cycle regulation. (C) Interactome composed of upregulated genes in the HAM group, represented by five
network categories. The largest network inferred by cluster analysis is highlighted. Four functional categories were proposed: immune response
regulation, kinase cascade regulation, cell motility and cell cycle regulation.
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the number of differentially expressed genes and gene
expression profiles.

The HLA-DQB1 and HLA-C genes were downregulated in
individuals with both clinical profiles of infection, possibly
suggesting the importance of these genes in the anti-HTLV-
1 immune response. Both HLA class I and class II proteins are
important in the immune response to HTLV-1 infection (Reith and
Mach, 2001). Studies have shown that some HLA-DQB1 alleles
associated with HAM are upregulated in different blood cell lines
and even in uninfected individuals (Yamano et al., 1997; Zajacova
et al., 2018). This observation suggests that the HLA class II-
mediated antigen presentation pathway may be effective in
maintaining the response to HTLV-1 infection but that
enhancement of this proinflammatory profile may be detrimental,
especially at the level of the nervous system, as previously suggested
(Enose-Akahata et al., 2017).

The HLA-C gene was the second most downregulated gene in
patients with HTLV-1 infection. Specifically, one previous study
indicated the association of genetic variability inHLA-Cwith clinical
aspects of HTLV-1 infection, based on the role of this gene in
infections with other retroviruses (Penova et al., 2021). Furthermore,
a genome-wide association study (GWAS) in an HTLV-1 endemic
population suggested that haplotypes formed by classical HLA class
II alleles in linkage disequilibrium with HLA-C alleles act as
protagonists in immune homeostasis during infection (Lei and
Takahama, 2012). This observation supports our findings of joint
downregulation of HLA class I and II molecules in patients with
HTLV-1 infection.

In addition, we observed an interaction network formed by
upregulatedXCL1, CCR4 and JUP only in the control group. There is
no direct interaction pathway between XCL1 and CCR4; however,
both participate in directional cell migration during immune
surveillance and inflammation and are expressed in the same cell
lineages (Aktary et al., 2017; Yoshie, 2021). Beyond its role in cell
adhesion, in this context, JUP may function in T-cell lineage
differentiation and the regulation of proinflammatory responses
(Yu et al., 2010; Saeidi et al., 2023). These findings first appear
controversial, considering that the same genes are expressed in
individuals with different clinical profiles of HTLV-1 infection:
cells that express CCR4 are the preferred target cells for viral
transmission and/or persistence, as seen mainly in ATLL (Bai
et al., 2017), XCL1 has been shown to be a serum marker of
myelopathy (Haynes et al., 2010), and the JUP-regulated
signaling pathway is associated with secondary cancer cell lines
in patients with ATLL (Tricarico et al., 2020). However, data show
these regulatory pathways are activated to promote immune control
of infection, but it is chronic activation due to viral persistence that
causes systemic damage, as immune homeostasis of the host
response is expected for satisfactory control (Watanabe et al., 2020).

Most of the genes represented in the gene expression profiles in
the asymptomatic group are related to cell cycle regulation processes.
Lysine demethylase 5D (KDM5D), the most upregulated gene in
asymptomatic individuals, and its paralog KDM5C encode lysine
demethylases that function as epigenetic regulators of large
chromatin-modifying complexes and that strongly influence gene
expression and processes related to DNA repair, including the
recruitment of other epigenetic modifiers and transcription factors
to specific sites on chromatin (Niederer et al., 2014).

Studies have shown that alterations in host DNA occur in the
asymptomatic phase of HTLV-1 infection (Yeh et al., 2016). In this
phase, the HTLV-1 provirus exhibits a tendency to integrate into
transcriptionally active regions that favor the expression of viral
genes (Chu et al., 2021). Indeed, differential expression of nuclear
and cytoplasmic factors was observed in a transcriptomic analysis of
cell lines transformed by HTLV-1, which correlated with the activity
of viral proteins (Kataoka et al., 2015). Additionally, alterations in
the native process of DNA demethylation were found to presuppose
the presence of previously detected malignancies in patients with
ATLL in a Brazilian population (Pessôa et al., 2023).

We highlighted the upregulation of the noncoding RNA
LINC02470 in both clinical profiles of HTLV-1 infection. The
immediate target genes of this noncoding RNA (NFKB, SMAD3,
CDK4, CCNE1 and CCNE2) were visualized in interaction networks,
with the interactomes of CCNE1 and CCNE2 notable in the
asymptomatic group. These findings contribute to the knowledge
about the prominent control of cell activity already observed in
asymptomatic individuals, as E-type cyclins also represent key
components of the central cell cycle machinery, as they primarily
phosphorylate several regulatory proteins of the G1 and S phases
(Nath et al., 1999; Itoh et al., 2018).

A recent Brazilian study showed the expression of relevant
microRNAs (miRNAs) in the control of the G1/S transition of the
cell cycle in a patient with ATLL after maintenance therapy based on
CHOP chemotherapy followed by IFN-α and zidovudine, with the
CCNE1 gene being one of the targets of the interaction pathway (Pessôa
et al., 2023). In another Brazilian study, differential expression of
128 miRNAs, 34 of which were novel, was detected in asymptomatic
patients, with the most evident biological functions of the differentially
expressed miRNAs also related to the control of cell proliferation,
differentiation and apoptosis (Valadão de Souza et al., 2020). These
findings support our finding of the prevalence of differentially
expressed noncoding RNAs interfering with pathways related to cell
cycle control among patients with different clinical profiles of HTLV-1
infection. The differences in the RNA expression profiles observed in
different Brazilian cohorts may be due to several factors, including the
ethnic origin of the population under investigation, as well as the
presence of other associated clinical conditions.

Our data showed that the HLA-A gene was expressed in
asymptomatic individuals, a contradictory finding if we evaluate
whether the cellular control generated by viral infection leads to
markedmaintenance of the immune response (Andrade et al., 2013).
Interestingly, one study showed that HLA class I expression induces
cell proliferation through functional inhibition of the
retinoblastoma protein (Rb) mediated by an interaction with the
E-type cyclin pathway (Lubben et al., 2007).

We thus explored whether this interaction pathway is applicable
and found that HLA-A is involved in the interaction. The physical
interaction network model was very conclusive in inferring the
interactome of candidate genes. The most parsimonious interactions
among the HLA-A, Rb and CCNE1 proteins involved four
intermediate pathways, represented by PACS1–MYC,
CD8A–CDK1, TAP1–PSMD10 and CALR–CDK2 protein
interactions (Supplementary Figure S1). These interaction
pathways have not yet been clarified; however, some lines of
evidence indicating their plausibility have been published. For
example, interactions of HLA-A with PACS1 and MYC have
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been described, even as a pathway deregulated in individuals with
HIV infection (Zhao and Day, 2001; Lubben et al., 2007). In
addition, the MYC oncoprotein appears to interact with Rb
(Zhao and Day, 2001) and CCNE1 (Nakayama et al., 2016) in
cell cycle maintenance.

Collectively, these data suggests a complex system of
interactions in which HLA-A signaling activates an alternative
pathway that regulates the cell cycle. In this context, strategic
control of HLA expression can spontaneously inhibit the
expression of interferons (IFNs), as suggested by studies that
evaluated signaling pathways shared between these factors
(Browne et al., 2006; Jørgensen et al., 2020). This possibility
could justify the lack of detection of genes related to IFNs in
infected individuals, in contrast to expectations (Bidkhori
et al., 2020).

Most genes that were upregulated in asymptomatic individuals
were also expressed in individuals with HAM, indicating a transient
and relevant gene expression profile during the progression of
infection. Over time, the active contribution of the cellular
machinery in asymptomatic individuals likely results in a balance
in the expression of viral genes and infected cells, with the targeted
immune response being a selection (Chu et al., 2021). However,
notorious immune dyshomeostasis is a characteristic of HAM
pathogenesis and is strongly hypothesized to be a risk
determinant (Cook et al., 2013). This observation may clarify the
upregulation of 11 genes related to the immune response, especially
HLA class II genes, in patients with HAM.

Our results reinforce the immunological plasticity of HLA types
in the anti-HTLV response. Although the balance of HLA-A and
HLA-DR expression seems to favor clinical progression, the
expression of HLA-C and HLA-DQB suggests an attempt to
control the infection. These data are plausible if we consider that
this plasticity is well recognized, even among alleles of a single HLA
type (Andrade et al., 2013).

We inferred that the non-HLA genes expressed in the HAM
group may interact in the HLA regulation pathway. This inference
seems logical given thatNFKB (Souri et al., 2019) and EGR3 (Li et al.,
2012) regulate HLA expression in active T cells; moreover,
interestingly, some of the miRNAs downregulated in patients
with HAM may favor the expression of NFKB and likely
promote cellular senescence (de Souza et al., 2023). There is no
clear interaction pathway between the protein products of the
CXCL8 and HLA genes; however, the coexpression state of the
factors observed in our study may be linked to the relationship
between CXCL8 and the activation of CD4+ T lymphocytes (Crespo
et al., 2018). Finally, members of the LILRB3 gene family may be
associated with maintenance of the immune response through HLA
interactions (Bashirova et al., 2014).

An immunological counteroffensive is likely mounted via the
expression of the DEFA3 gene in individuals with HAM, as defensins
constitute a family of antimicrobial peptides related to the
antimicrobial activity of phagocytes, inflammatory fluids and
epithelial secretions (Ganz, 2003). The mechanism by which the
defensin pathway may influence the pathogenesis of HTLV-1
infection. However, in one study, it was proposed that one of the
functional outcomes of the serum vitamin D imbalance in individuals
with HAM is an imbalance in defensin production and a consequent
impact on the antiviral response (Derakhshan et al., 2020).

In the present study, we used RNA-Seq analysis to investigate
differences and similarities in gene expression profiles among
noninfected subjects, asymptomatic carriers of HTLV-1 and
patients with HTLV-1-associated HAM. Although the small
sample size is a limitation of our study, which may require the
reconsideration of further conclusions and inferences, we believe
that the results are interesting and demonstrate a gene expression
profile suggestive of an association with the clinical progression of
HTLV-1 infection. However, further multicenter studies utilizing
RNA-Seq analysis in a larger cohort, as well as quantitative analysis
of gene expression by quantitative PCR (qPCR), are needed to
confirm our results. Finally, we recognize that future studies
involving functional assays or in vitro experiments will help to
elucidate the functional significance of the gene expression
alterations identified herein.
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