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Long non-coding RNAs (lncRNAs) play a vital role in biological processes, and
their dysfunctions lead to a wide range of diseases. Due to advancements in
sequencing technology, more than 20,000 lncRNA transcripts have been
identified in humans, almost equivalent to coding transcripts. One crucial
aspect in annotating lncRNA function is predicting their subcellular
localization, which often determines their functional roles within cells. This
review aims to cover the experimental techniques, databases, and in silico
tools developed for identifying subcellular localization. Firstly, we discuss the
experimental methods employed to determine the subcellular localization of
lncRNAs. These techniques provide valuable insights into the precise cellular
compartments where lncRNAs reside. Secondly, we explore the available
computational resources and databases contributing to our understanding of
lncRNAs, including information on their subcellular localization. These
computational methods utilize algorithms and machine learning approaches
to predict lncRNA subcellular locations using sequence and structural
features. Lastly, we discuss the limitations of existing methodologies, future
challenges, and potential applications of subcellular localization prediction for
lncRNAs. We highlight the need for further advancements in computational
methods and experimental validation to enhance the accuracy and reliability
of subcellular localization predictions. To support the scientific community, we
have developed a platform called LncInfo, which offers comprehensive
information on lncRNAs, including their subcellular localization. This platform
aims to consolidate and provide accessible resources to researchers studying
lncRNAs and their functional roles (http://webs.iiitd.edu.in/raghava/lncinfo).
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1 Introduction

Human genomes contain around 3 billion base pairs, whereas the Human Genome
Project (HGP) shows that the human genome contains only 20,000 protein-coding genes. It
means only a fraction of the human genome codes for proteins that indicate the role of the
non-coding region of the genome (ENCODE Project Consortium, 2012). Among the non-
coding genome transcripts, lncRNA has gained significant interest due to its involvement in
biological and disease-related functions of specific genes. The ENCODE and FANTOM
projects have provided insights into the mammalian transcriptome and indicate that the
genome has a significant number of lncRNAs. One of the major challenges in the
postgenomic era is annotating these lncRNAs’ function. In the past, a significant focus
was on protein-coding transcripts. Identifying domains, family classification, subcellular
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localization, and biological function are the primary aspects of
functional annotation of a biological entity.

Subcellular localization forms an integral part of functional
annotation because, for lncRNA genes, the ultimate product is
RNA. Therefore, lncRNA functions depend on proximity-based
RNA physical interactions. Studying lncRNA subcellular
localization and its dynamic changes is a crucial step toward
elucidating the functions and mechanisms of newly discovered
lncRNAs. The specific localization of lncRNAs within subcellular
compartments allows them to exert precise regulatory effects on
gene expression. Recent reviews have discussed how nuclear-
localized lncRNAs, can interact with chromatin, participate in
epigenetic modifications that influence transcriptional regulation
and chromatin organization, and are crucial for organizing the
three-dimensional architecture of the genome, contributing to
genome organization, transcriptional regulation, and genome
stability (Romero-Barrios et al., 2018; Pisignano and Ladomery,
2021; Statello et al., 2021).

According to the review by Dykes and Emanueli (2017),
lncRNAs localized to the cytoplasm can be associated with
ribonucleoprotein granules, such as P-bodies or stress granules,
modulating mRNA stability and translation. In the review by
Statello et al. (2021) they have discussed how specific lncRNAs
localize to specialized subcellular domains, such as neuronal
dendrites or axons, where they are involved in RNA transport
and local translation, impacting synaptic plasticity and neuronal
development. LncRNAs also contribute to signaling pathways by
localizing to specific cellular compartments, such as the plasma
membrane or cytoplasmic signaling bodies, interacting with
signaling proteins, acting as scaffolds, or regulating protein
localization. In summary, the precise localization of lncRNAs
within cells is essential for their regulatory roles in gene
expression, cellular trafficking, signaling, and nuclear
organization, highlighting their diverse and significant biological
importance. Recent studies have identified certain lncRNAs that
may have been misannotated, as they possessed short open reading
frames (sORFs) (Carlevaro-Fita et al., 2016; Hartford and Lal, 2020;
Andjus et al., 2024). Some of these sORFs encode small proteins or
micropeptides with a wide array of fundamental biological
functions, including cell division, transcription regulation and cell
signaling (Chen et al., 2020; Wei and Guo, 2020).

Several experimental techniques like fluorescent in-situ
hybridization (FISH), MS2-system-based techniques, and high-
throughput RNA sequencing are used for in vitro visualization of
mRNA location to trace its subcellular localization (Fagerberg et al.,
2014; Wang et al., 2021; Zhang et al., 2021). These methods remain
the gold standard for studying the subcellular localization of
lncRNAs. These experimental techniques have limitations,
including cost, time, and the need for sophisticated
instrumentation as discussed by Savulescu et al. (2021) in their
perspective article. FISH-based methods suffer from artifacts when
multiplexing is done. Also, the detection efficiency decreases as the
number of RNA targets increases in FISH-based methods. Current
methods find it hard to balance target number and detection
efficiency, highlighting the significant limitations in generating
subcellular localization information.

These issues highlight the need to develop computational
methods for lncRNA subcellular localization prediction. An

extensive repertoire of computational resources has already been
developed to help predict the subcellular localization of lncRNA.
However, the dataset remains the same, more or less sourced from
RNALocate version 1. The number of lncRNA sequences in
RNALocate (version 2) has decreased significantly, leaving
researchers needing more localization information. Other existing
databases harboring localization data must be updated frequently,
making them outdated for computational model development.

Few review articles have recently been published discussing the
advances in tools designed for predicting lncRNA subcellular
localization. Among these, Wang et al. (2021) published a review
on lncRNA subcellular localization prediction tools. They have
covered four tools in terms of—dataset used, data preprocessing,
feature extraction, and algorithm for prediction. Firstly, they
provided an overview of all the tools and then described each
attribute separately. However, the review by Asim et al. (2021)
has a broader domain—covering RNA classification and RNA
subcellular localization. Much of the review focuses on the RNA
classification tool, as much work has been done in that field. A brief
description of the tools designed to predict subcellular localization is
provided, and they cover three types of RNA—mRNA, miRNA, and
lncRNA. In this article, we will complement the information
provided in existing reviews by including newer methods.
Additionally, we have reviewed all the databases that harbor
information on lncRNA subcellular localization.

To consolidate all the information, we collected while writing
this review, we have developed a web resource called—“LncInfo,”
developed using HTML5 and Apache.

2 Existing databases on lncRNA

Due to the rapid growth in lncRNA research, large-scale data is
being generated, and this information is annotated correctly and
stored in various databases that are designed to aid researchers. Most
of the databases were developed post-2015 when there was a surge in
high throughput methods for studying lncRNA. A list of the popular
databases based on lncRNA is provided in Table 1. All the existing
databases have been graphically presented in Figure 1.

2.1 General databases

The FANTOM5/CAT project is dedicated to exploring the
regulatory landscape of human and mouse genomes by
generating comprehensive transcriptomic data (Hon et al., 2017).
Researchers may use this vast collection of transcriptome data from
many biological contexts as a valuable tool to study the control of
gene expression, transcriptional networks, and functional
components of the mammalian genome. GENCODE is dedicated
to maintaining protein-coding and non-coding genes (Frankish
et al., 2019). Its main objective is to provide a thorough, current,
and accurate annotation of these genomes by locating and
describing the protein-coding genes, long non-coding RNAs
(lncRNAs), and other functional non-coding RNAs. The
annotation provides crucial details for the discovered genes and
transcripts, such as gene loci, exon boundaries, coding sequences,
untranslated regions (UTRs), and functional and structural

Frontiers in RNA Research frontiersin.org02

Choudhury et al. 10.3389/frnar.2024.1419979

https://www.frontiersin.org/journals/rna-research
https://www.frontiersin.org
https://doi.org/10.3389/frnar.2024.1419979


annotations. There are now 62,703 genes reported by GENCODE,
19,393 of which are protein-coding and 19,928 long non-coding
RNAs. In order to create these annotations, the research combines
experimental and computational techniques, including high-
throughput sequencing technologies, transcriptome data, protein-
coding potential analysis, comparative genomics, and
manual curation.

2.2 Expression databases

The ENCODE is a comprehensive repository of experimental
data and metadata generated by the ENCODE project (Luo et al.,

2020). The portal utilizes a standardized metadata architecture that
facilitates understanding data in biological terms, enabling the
representation of experiments and their analyses. The ENCODE
database provides researchers access to a wide range of data,
including genomic sequences, epigenetic marks, and transcription
factor binding sites. LncExpDB is an expression database focused on
human long non-coding RNA (lncRNA) genes (Li et al., 2021). Its
main objective is to provide a wide-ranging collection of expression
profiles for lncRNA genes, enabling the exploration of their
expression characteristics, capacities, and potential functional
significance. The database also aims to establish connections
between lncRNAs and protein-coding genes across different
biological contexts and conditions. LncBook, an extensive

TABLE 1 Summary of existing databases on lncRNA.

Database Brief description Website link Reference Year

General databases

FANTOM Cat A database for functional annotation of the mammalian genome https://fantom.gsc.riken.jp/cat/ Hon et al. (2017) 2017

GENCODE A database that provides comprehensive gene annotation for the human
and mouse genome

https://www.gencodegenes.org/ Frankish et al. (2019) 2022

Expression databases

ENCODE A database of functional annotation based on sequencing data https://www.encodeproject.org/ Luo et al. (2020) 2018

lncExpDB A comprehensive database of experimentally validated lncRNA and
circRNA.

https://ngdc.cncb.ac.cn/lncexpdb/ Li et al. (2021) 2021

LNCbook 2.0 A database long non-coding RNAs and their functions https://ngdc.cncb.ac.cn/lncbook/ Li et al. (2023b) 2023

GTEx Genotype-Tissue Expression database https://gtexportal.org/home/ Hon et al. (2017) 2020

TANRIC A database of non-coding RNAs in cancer https://www.tanric.org/ Li et al. (2015) 2022

GEO A public repository for gene expression https://www.ncbi.nlm.nih.gov/geo/ Barrett et al. (2013) 2013

Sequence Annotation

LNCipedia A database for lncRNA sequences and their annotation https://lncipedia.org/ Volders et al. (2019) 2018

CANTATAdb A database of long non-coding RNAs in plants http://cantata.amu.edu.pl/ Szcześniak et al. (2019) 2019

RNA Atlas An atlas of human non-coding RNAs http://r2platform.com/rna_atlas Lorenzi et al. (2021) 2021

NONCODEV6 A database developed to maintain non-coding RNAs and their annotation http://www.noncode.org/ Zhao et al. (2021) 2021

RNACentral A comprehensive ncRNA sequence collection representing all ncRNA
types from a broad range of organisms

https://rnacentral.org/ RNAcentral Consortium
(2021)

2021

CHESS A repository that contains human genes and transcripts http://ccb.jhu.edu/chess Pertea et al. (2018) 2022

Subcellular Localization

LncAtlas A quantitative resource for lncRNA subcellular localization https://lncatlas.crg.eu/ Mas-Ponte et al. (2017) 2017

LncSLdb A manually curated database of RNA subcellular localization http://bioinformatics.xidian.edu.cn/
lncSLdb

Wen et al. (2018) 2018

RnaLocate Curation of RNA subcellular localization from public resources like
literature, RNA-seq datasets

http://www.rna-society.org/
rnalocate/

Cui et al. (2022) 2021

Disease Association

LncRNADisease2 A repository that contains lncRNA and associated diseases http://www.rnanut.net/
lncrnadisease/

Bao et al. (2019) 2019

Lnc2Cancer v3.0 A resource for experimentally supported lncRNA/circRNA cancer
associations

http://bio-bigdata.hrbmu.edu.cn/
lnc2cancer/

Gao et al. (2021) 2020
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repository of lncRNAs) (Li et al., 2023), which is widely used in
various studies. The updated version, LncBook 2.0, offers significant
improvements and enhancements. This resource empowers users to
unravel the functional significance of lncRNAs within different
biological contexts.

The Genotype-Tissue Expression (GTEx) project is a valuable
resource for studying human gene expression, regulation, and its
association with genetic variation (Hon et al., 2017). This initiative
involves collecting and analyzing gene expression data from tissues
obtained from deceased human donors and their corresponding
genotypic information. GTEx is an invaluable resource for
researchers investigating the intricate relationship between genetic
variation, gene expression, and the specific biology of different
tissues. Furthermore, it establishes a valuable foundation for
investigating the regulatory mechanisms governing gene expression.
TANRIC is a database that maintains cancer-associated lncRNAs
mainly extracted from TCGA. The Gene Expression Omnibus
(GEO) is a globally accessible public repository that houses
functional genomic data sets obtained through high-throughput

microarray and next-generation sequencing technologies. These
resources are indexed, crosslinked, and made searchable to facilitate
easy access and exploration (Barrett et al., 2013).

2.3 Sequence annotation

LNCipedia is a database for collecting and annotating human long
non-coding RNA (lncRNA) sequences (Volders et al., 2019). One of its
main features is the consolidation of redundant transcripts from various
sources, resulting in a consistent and reliable database with grouped
transcripts. LNCipedia 5 has expanded its content by incorporating new
lncRNAs from resources like FANTOM CAT. It also includes minor
improvements, such as an enhanced filtering pipeline and support for
official HGNC gene names. CANTATADb 2.0 is a database of
LncRNAs that maintain lncRNA from plants and algae species
(Szcześniak et al., 2019). Reads from hundreds of RNA-SEQ
libraries were aligned with corresponding plant genomes. Gene
prediction software was used to re-annotate plant genomes, and

FIGURE 1
An overview of the different classes of databases developed for lncRNA.
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annotation data was used as a reference. NONCODE is a
comprehensive database of non-coding RNAs, with a particular
emphasis on lncRNAs (Zhao et al., 2021). The number of lncRNAs
in NONCODEV6 has reached 644,510 including 173,112 human
lncRNA transcript.

RNAcentral is a state-of-the-art database that consolidates the
non-coding sequences of 44 RNA resources, including more than
18 million ncRNA sequences from various organisms (RNAcentral
Consortium, 2021). The new version of RNAcentral also contains the
secondary structure of 13 million sequences, making it the world’s
most extensive 2D structure database. CHESS is an extensive
collection of human genes derived from approximately
10,000 RNA sequencing experiments (Pertea et al., 2018). The
database comprises a comprehensive set of genes, encompassing
19,838 protein-coding genes and 17,624 lncRNA) genes. RNA
Atlas is an experimentally derived database that advances our
understanding of human non-coding RNAs (ncRNAs). By
analyzing a diverse set of 300 human samples, including 45 tissues,
162 cell types, and 93 cell lines, researchers have expanded the existing
catalog of ncRNAs, identifying a total of 44,428 long non-coding
RNAs (lncRNAs). This comprehensive dataset, accessible through the
R2 webtool, provides a foundation for further exploration of RNA
biology and function (Lorenzi et al., 2021).

2.4 Subcellular localization

LncATLAS is a subcellular localization database of lncRNA,
where information has been obtained from RNA-sequencing data of
human cell-lines (Mas-Ponte et al., 2017). The RNA-seq datasets
were obtained from the ENCODE database. In order to quantify
subcellular localization, a measure called relative concentration
index (RCI) was introduced. LncSLdb is a specialized database
designed to collate and manage qualitative and quantitative
information on the subcellular localization of lncRNAs (Wen
et al., 2018). The latest release of LncSLdb encompasses data on
more than 11,000 lncRNA transcripts derived from three species
(human, mouse, and fruit fly). RNALocate v2.0 is a comprehensive
repository of information on RNA subcellular localization. It is
compiled from scientific literature, public databases, and RNA
sequencing datasets (Cui et al., 2022). It contains around
200 thousand entries, and each entry provides detailed
information about RNA, including their subcellular localization.
Additionally, it provides three prediction tools to cater to different
user requirements.

2.5 Disease association

The LncRNADisease2 database is dedicated to maintaining
ncRNA-associated diseases, including cancer, cardiovascular
diseases, and neurological disorders (Bao et al., 2019). It contains
a collection of experimentally validated lncRNAs linked to specific
diseases, detailed annotations on their molecular functions,
subcellular localizations, interacting proteins, and experimental
evidence. The LncRNADisease database documents
205,959 lncRNA-disease associations and 2,297 lncRNA causative
associations. The Lnc2Cancer v3.0 database is a comprehensive

resource focusing on experimentally validated associations
between lncRNAs and cancers (Gao et al., 2021). The updated
version of Lnc2Cancer includes new features, such as an
increased number of cancer-associated lncRNA entries. The
database also offers details on microRNAs, transcription factors,
genetic variations, methylation, enhancers, and other regulatory
mechanisms.

3 Experimental techniques to
investigate subcellular localization

One of the primary aspects of the functional annotation of
lncRNA is their subcellular localization. The function of lncRNA
heavily depends on its location in cells as it interacts with biological
molecules in the exact location of the cell (Savulescu et al., 2021). In
order to investigate subcellular localization, many experimental
techniques have been developed. Figure 2 provides an overview
of all the experimental techniques developed in this regard. Deep-
sequencing studies have unveiled numerous long non-coding RNAs
(lncRNAs) expressed in mammalian genomes, but most remain
poorly understood. Essential aspects such as subcellular localization
and absolute abundance in single cells remain largely unknown.
Knowledge of lncRNA localization can provide insights into their
biological functions, while their abundance is crucial for
understanding molecular mechanisms. RNA fluorescence in situ
hybridization (RNA FISH) has been instrumental in uncovering the
localization of specific lncRNAs, but conventional methods lack the
sensitivity to detect low-abundance lncRNAs. One of the pioneer
subcellular localization experiments where X-inactivation by
lncRNA XIST was first studied (Brown et al., 1991; Brockdorff
et al., 1992), utilized a primitive RNA-FISH method to understand
the mechanism of action (Brown et al., 1992) fully. Previously, it was
known that XIST could inactivate one X chromosome in females.
However, RNA-FISH explained the same—indicating how XIST
stays in the nucleus and coats the inactive X-chromosome (Brown
et al., 1991).

Further improvement in resolution was achieved when Cabili
et al. (2015) deployed single-molecule RNA-FISH to systematically
quantify and categorize the subcellular localization patterns of a
representative set of 61 lncRNAs in three different cell types.
However, there needs to be a more systematic exploration of
lncRNA localization and abundance using these techniques,
especially for intergenic lncRNAs (lincRNAs). They observed a
wide range of localization patterns, with lncRNAs predominantly
localizing to the nucleus. They also found that the low abundance of
lncRNAs is not due to a small subset of highly expressing cells and
that lncRNAs exhibit similar cell-to-cell heterogeneity as mRNAs.

In this section, we have covered most of the popular
experimental techniques. A summary of the existing experimental
methods is provided in Table 2.

3.1 FISH-based methods

Fluorescence In Situ Hybridization (FISH) is a molecular
cytogenetic technique commonly used to identify the location of
biological molecules like DNA and entire chromosomes in a cell.
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One of the significant features of FISH is that it allows the detection
of many biological molecules simultaneously. Single-molecule FISH
(smFISH) is a modified version of FISH for single-cell resolution. It
allows for visualizing the localization and abundance of individual
RNA molecules within cells or tissues (Femino et al., 1998; Raj and
Tyagi, 2010; Lubeck and Cai, 2012). In smFISH, RNA molecules are
hybridized with fluorescently labeled probes to generate a
fluorescent signal that can be detected using fluorescence
microscopy. Single Molecule Inexpensive FISH (smiFISH) is a
user-friendly and versatile approach for visualizing and
quantifying RNA. It uses fluorescently tagged secondary detector
oligonucleotides and unlabeled primary probes (Tsanov et al., 2016).
The primary probes, which are gene-specific, are unlabeled, making
them cost-effective to synthesize. This cost advantage allows for
using more probes per mRNA, significantly improving detection
efficiency. Single-nucleotide variant FISH (SNV-FISH) is a highly
sophisticated method that detects single-nucleotide variations in an
RNA transcript (Levesque et al., 2013; Symmons et al., 2019). One
more variety of FISH is inosineFISH or inoFISH, which capture
image of adenosine-to-inosine RNA altering occasions with single-
particle resolution (Mellis et al., 2017).

SABER, an acronym for signal amplification by exchange
reaction, is a technique that enhances the signals obtained from
oligonucleotide-based FISH probes by attaching long, single-
stranded DNA chains (Kishi et al., 2019). It can amplify RNA/
DNA signals in cells and tissues. Click-amplifying FISH is a precise
method that achieves remarkable signal amplification with a high
gain (Rouhanifard et al., 2018). It allows the detection of RNA
species using low-magnification microscopy and RNA-based flow

cytometry. Sequential FISH (seqFISH) is an advanced technology
that identifies thousands of molecules within single cells while
preserving their spatial context (Eng et al., 2019). SeqFISH allows
researchers to obtain super-resolved images that provide insights
into genomic-level processes with exceptionally high efficiency and
accuracy. Multiplexed error-robust FISH (MERFISH) is a powerful
single-molecule imaging technique developed for determining copy
numbers of thousands of RNA molecules (Chen et al., 2015; Xia
et al., 2019). It revolutionizes transcriptome-scale RNA imaging at
the single-cell level by utilizing error-robust barcodes to encode
individual RNA species. Notably, the MERFISH protocol has
undergone updates to enhance detection efficiency, allowing the
transcriptome-scale imaging of approximately 1,000 RNA species in
single cells.

3.2 Imaging based biochemical methods

STARmap is a novel approach that allow to measure gene
expression at single cell compartment in intact tissue, providing
insights into the activity of over a thousand genes (Wang et al.,
2018). In the future, integrating this intact-system gene expression
measurement with complementary methodologies will offer
cellular-resolution analysis. One of the powerful technologies in
this category is in situ sequencing (ISS), which utilizes padlock
probes and rolling circle amplification. An enhanced version of ISS,
known as HybISS (hybridization-based in situ sequencing), has been
developed to improve the spatial detection of RNA transcripts
(Gyllborg et al., 2020). HybISS incorporates modifications in

FIGURE 2
A graphical representation of the major classes of experimental methods used in lncRNA research.
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TABLE 2 A summary of the existing experimental techniques to investigate lncRNA.

Methods Brief description of the method Pubmed ID

FISH based methods

smFISH Experimental technique smFISH (single-molecule FISH) is used for visualization and
quantification of RNA molecules in cells

Femino et al. (1998), Raj and Tyagi (2010),
Lubeck and Cai (2012)

smiFISH Single molecule inexpensive FISH is easy to uses and flexible techniques used for
quantification of RNA molecules in cells

Tsanov et al. (2016)

SNV FISH Single nucleotide variant FISH can detect single-base changes in DNA sequences within
cells or tissues

Levesque et al. (2013), Symmons et al. (2019)

inoFISH inosine FISH allow one to visualize and quantify adenosine-to-inosine edited transcripts in
situ

Mellis et al. (2017)

SABER-FISH Signal amplification by exchange reaction FISH uses a hybridization-based signal
amplification to detect low-abundance RNA targets in cells and tissues

Kishi et al. (2019)

ClampFISH Click-amplifying FISH is a improved version of FISH, which have high specificity and
signal amplification

Rouhanifard et al. (2018)

seqFISH+ Spatially resolved transcriptomics by FISH enables simultaneous detection of thousands of
RNA molecules in situ

Eng et al. (2019)

MERFISH Multiplexed Error-Robust FISH can detect and localize thousands of RNA molecules
simultaneously within cells

Chen et al. (2015), Xia et al. (2019)

Imaging based biochemical methods

STARmap STARmap is hybrid technique that combines hydrogel-tissue chemistry and DNA
sequencing to detect expression of genes

Wang et al. (2018)

HyblSS Hybridization-based in situ sequencing combines in situ hybridization with DNA
sequencing to identify RNA molecules at the single-cell level

Gyllborg et al. (2020)

FISSEQ Fluorescent In Situ Sequencing combines FISH with next generation sequencing for
detecting RNA molecules

Lee et al. (2015)

RNA stem-loop system The RNA stem-loop system developed for controlled expression of RNAmolecules in cells
by using a stem-loop structure

Heinrich et al. (2017)

Cas system CRISPR-mediated RNA imaging technique involves the use of a modified CRISPR-Cas
system to target RNA molecules

Abudayyeh et al. (2017), Chen et al. (2020b)

lncRNA profiling

RNA-seq RNA sequencing is a next generation sequencing technology that can be used to sequence
lncRNA in a given cell location

Wang et al. (2009)

Microarray Microarray RNA profiling is a commonly used technique for measuring expression RNA
transcripts

Schena et al. (1995)

Tiling arrays Tiling arrays are used to determine genome binding in ChIP assays or to identify
transcribed regions

Bertone et al. (2004)

SAGE CAGE Cap analysis gene expression, is an extension of SAGE, used for quantifying transcripts
including lncRNA

Velculescu et al. (1995), Shiraki et al. (2003)

PARE Parallel Analysis of RNA Ends allows one to quantify RNA molecules in a sample German et al. (2009)

GRO-seq GRO-seq (Global Run-On sequencing) is a method used to study transcriptional activity of
the genome at a global scale

Gardini (2017)

RIP-Chip RIP-Chip developed for measuring interaction between RNA and proteins Keene et al. (2006)

TIF-seq Transcription initiation footprinting and sequencing is used to study the initiation of
transcription in a genome

Pelechano et al. (2013)

SHAPE Selective 2′-hydroxyl acylation by primer extension is a high-resolution technique to
measure RNA structure

Smola et al. (2015)

PARS Parallel Analysis of RNA Structure allow to study structure and function of wide range of
RNAs at genome scale

Wan et al. (2013)

(Continued on following page)
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probe design, enabling a new barcoding system through sequence-
by-hybridization chemistry. The HybISS design offers increased
flexibility, allowing for enhanced multiplexing and improved
signal-to-noise ratio, all while maintaining the efficiency required
for imaging large fields of view. Fluorescent In Situ Sequencing
(FISSEQ) is a molecular technique that allows the simultaneous
visualization of RNA molecules and their sequences in intact
biological samples (Lee et al., 2015). FISSEQ uses barcoded
oligonucleotide probes to hybridize targeted RNA molecules.
These probes are amplified and labeled with fluorescent dyes,
allowing the visualization of the RNA molecules. In the widely
adopted RNA labeling method, query RNA molecule is labeled with
a specific stem-loop. This stem-loop sequence binds to the
bacteriophage coat protein and fused to a fluorescent protein that
enables the visualization of the labeled RNA using fluorescence
microscopy (Heinrich et al., 2017). Using CRISPR-Cas based RNA
imaging, which offers target programmability without genetically
altering the target, it is possible to track a variety of endogenous
long-chain RNAs (like mRNA) in live cells in real-time (Abudayyeh
et al., 2017; Chen et al., 2020). The CRISPR-mediated RNA imaging
technique involves the use of a modified CRISPR-Cas system that
targets specific RNA molecules and recruit fluorescent proteins.

3.3 RNA-seq based techniques

In the last decade, RNA sequencing (RNA-seq) has been heavily
used for a wide range of omics, including a comprehensive analysis
of gene expression and sequencing of the transcriptome. It now
encompasses various methods that enable the investigation of
diverse aspects of RNA biology. Furthermore, the advent of long-
read sequencing and direct RNA-seq technologies, coupled with
improved computational tools for data analysis, has revolutionized
RNA-seq (Wang et al., 2009). In contrast to classical sequencing
technologies, RNA-Seq offers superior coverage and enhanced
resolution. Microarray RNA profiling is an older technique that
allows the simultaneous detection and quantification of thousands
of RNA transcripts in a single experiment (Schena et al., 1995). This
procedure has limitations, including its reliance on pre-designed
probes, which may not detect all RNA transcripts. A tiling array
consists of short nucleic acid fragments fixed onto a substrate
(Bertone et al., 2004). These arrays are specifically designed to
cover the entire genome of the target species. Tiling arrays are
widely utilized in various applications, such as ChIP assays, to
determine genome binding or to identify transcribed regions. By
employing tiling arrays, researchers can obtain valuable insights into
the binding patterns of the genome in ChIP assays.

Serial analysis of gene expression (SAGE) is a well-established
technique developed to study the transcriptome by identifying and
quantifying transcripts, including non-coding RNAs (ncRNAs)
(Velculescu et al., 1995). This method relies on restriction enzymes
to generate short, unbiased cDNA sequences known as SAGE tags. It
involves several steps, including isolating and converting mRNA into
cDNA, cutting the cDNA into smaller fragments, and adding tags to
each fragment. The fragments are then combined and sequenced,
providing information about which genes are present and how many
copies of each gene are being expressed. The limited length of the
sequence tags in SAGE may need to provide more information to
accurately determine the identity of a new sequence. To address this
limitation, a modified version of SAGE that utilizes more extended
tags has been developed, demonstrating increased usefulness in
transcript identification. Cap analysis gene expression (CAGE)
provides information about transcript abundance and promoter
identification (Shiraki et al., 2003). It is a high throughput method
that can identify and quantify 5′ ends of capped RNAs. It has been
used for study of RNA subcellular localization (Djebali et al., 2012)
and identification of transcription start sites (ENCODE Project
Consortium, 2012). The PARE is another technology used to
identify and quantify small RNA molecules in a sample (German
et al., 2009). PARE works by capturing the 5′ ends of RNA fragments
using a technique called ligation-mediated PCR. It is often used to
study the targets and functions of miRNAs.

GRO-seq was developed to study the transcriptional activity of
the genome at a global scale. It works by labeling nascent RNA
transcripts using BrUTP (bromouridine triphosphate) and isolating
and sequencing the labeled RNA molecules (Gardini, 2017). This
method allows researchers to identify the specific genomic regions
where transcription occurs and the direction and rate of
transcription. GRO-seq is often used to study gene expression
regulation and identify novel non-coding RNAs.

RIP-Chip is used for isolating and sequencing RNA transcripts that
bind to RNA-binding proteins (Keene et al., 2006). Various
downstream methods, such as high-throughput sequencing,
characterize the RNA molecules associated with the RNA binding
proteins. RIP is often used to study post-transcriptional regulation of
gene expression, particularly the regulation of mRNA stability and
translation. Transcript IsoForm Sequencing (TIF-Seq) is a powerful
technology that has been used to study transcript isoforms at the
genome scale (Pelechano et al., 2013). In TIF-Seq, both the 5′ and 3′
ends are simultaneously sequenced and it allows the user to accurately
determine the stand and end sites of individual RNA molecules.
Selective 2′-hydroxyl acylation analyzed by primer extension
(SHAPE) was developed to study the structure and folding of RNA
molecules at single nucleotide resolution (Smola et al., 2015). SHAPE

TABLE 2 (Continued) A summary of the existing experimental techniques to investigate lncRNA.

Methods Brief description of the method Pubmed ID

Biochemical methods

APEX-RIP Ascorbate Peroxidase Proximity-Dependent Biotinylation RIP allow to identify RNA-
protein interactions at genome scale

Kaewsapsak et al. (2017)

Biochemical Fractionation +
RNA-Seq

It is a powerful experimental method for subcellular localization of RNA molecules Tilgner et al. (2012)

Frontiers in RNA Research frontiersin.org08

Choudhury et al. 10.3389/frnar.2024.1419979

https://www.frontiersin.org/journals/rna-research
https://www.frontiersin.org
https://doi.org/10.3389/frnar.2024.1419979


experiments use the reactivity of the RNA ribose 2′-OH towards
hydroxyl-selective electrophilic reagents to model the secondary and
tertiary structure of RNA molecules. PARS is another method for
studying RNA structure and folding (Wan et al., 2013).

3.4 Biochemical methods

APEX-RIP allows the identification of RNA-protein interactions
by combining two techniques: APEX (Ascorbate Peroxidase-
mediated Protein Localization and Protein-Protein Interaction
Profiling) and RIP (RNA Immunoprecipitation) (Kaewsapsak
et al., 2017). APEX-RIP has been used to identify RNA-binding
proteins and their associated RNAs in a variety of systems, including
cancer cells, neuronal cells, and embryonic stem cells. Biochemical
fractionation is a technique used to isolate specific cellular
components or organelles from complex mixtures such as whole
cells or tissues. The distribution and expression of RNAmolecules in
different subcellular fractions is studied by combining biochemical
fractionation and RNA-seq (Tilgner et al., 2012). By fractionating
cells or tissues into different organelles or subcellular compartments,
researchers can isolate RNAs that are localized or enriched in
specific cell regions. This approach has been used to study
various aspects of RNA biology, including RNA localization.

4 Creation of datasets by different tools

Majority of the datasets used by the tools are derived from
RNALocate or ENCODE RNA-seq data. An overview of datasets
published by existing methods has been provided in Table 3.

4.1 RNALocate based methods

RNAlocate is a comprehensive resource that provides
information on the subcellular localization of different types of
RNA molecules (Zhang et al., 2017). The current version of
RNALocate contains a vast collection of over 37,700 manually
curated entries, each supported by experimental evidence of
RNA-associated subcellular localization. The database
encompasses more than 21,800 coding and non-coding RNAs
across 65 species. It covers a wide range of 42 subcellular
locations, focusing on Homo sapiens and Mus musculus.
RNALocate is a valuable repository for researchers seeking
knowledge about RNA localization and its functional
implications. The wealth of data available in RNALocate has
been utilized in the development of several popular datasets.
Notably, it has contributed to creating datasets used in
lncLocator (Cao et al., 2018) and iLoc-lncRNA (Su et al., 2018).
These resources leverage the comprehensive information provided
by RNALocate to enhance the study of subcellular localization
patterns in long non-coding RNAs (lncRNAs) and other
RNA molecules.

The dataset for lncLocator was extracted from RNALocate
version 1 (Zhang et al., 2017). A total of 1,361 lncRNA entries
with curated subcellular localization were retrieved from the
RNAlocate database, and multiple entries for the same lncRNA
were combined. Only those lncRNA were retained, with their
sequence information in NCBI (Sayers et al., 2022) and Ensembl
(Cunningham et al., 2022). Seven subcellular locations were used for
classification, and there were 19 combinations of these locations in
the dataset. Redundancy was removed using CD-HIT, which was
used to remove sequences with more than 80% similarity. Multi-

TABLE 3 Summary of datasets used in existing subcellular localization tools.

Tools Cytoplasm Cytosol Exosome Nucleus Ribosome Total

lncLocator Benchmark 301 91 25 152 43 612

iLoc-lncRNA Benchmark 426 30 156 43 655

DeepLncRNA Benchmark 4,380 4,298 8,678

LncLocation Benchmark 426 240 344 314 1,324

Locate-R Benchmark 426 240 314 344 1,324

lncLocPred Benchmark 426 30 156 43 655

Independent 199 16 82 99 396

KD-KLNMF Benchmark 417 417 417 417 1,668

Independent 14 35 45 84 178

DeepLncLoc Benchmark 328 88 28 325 88 857

Test 20 10 7 20 10 67

GM-lncLoc Dataset1 292 292 292 292 292 1,460

Dataset2 417 417 417 417 1,668

Independent set 198 16 82 99 395

GraphLncLoc Benchmark 328 28 325 88 769

Independent 20 7 20 10 57
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locational lncRNAs were removed, and lncRNAs associated with
only one location were allowed. Two locations (Endoplasmic
reticulum and synapse) were removed as they had very few
samples. Finally, a dataset of 612 lncRNA was created, covering
five subcellular locations.

The dataset used in iLoc-lncRNA (Su et al., 2018) was created
from RNALocate version 1 (Zhang et al., 2017). 923 lncRNA
sequences with annotated subcellular localizations were obtained,
and CD-HIT reduced redundancy at 80% similarity. After removing
similar sequences, 655 non-redundant lncRNA sequences were
obtained. The dataset comprises 156 lncRNAs from the nucleus,
426 lncRNAs from the cytoplasm, 43 lncRNAs from the ribosome,
and S4 contains 30 lncRNAs from the exosome. This dataset was
also used in lncLocation, Locate-R, and lncLocPred.

The training dataset used in KD-KLNMF (Zhang and Qiao,
2020) is obtained from Yang et al. (2020), where they have used
923 sequences for the training dataset. CD-HIT was used at a
similarity index threshold of 80% to remove redundant sequences
from the dataset. The final training dataset contains 644 lncRNA
sequences - 154 sequences from the nucleus, 417 sequences from the
cytoplasm, 43 from the ribosome, and 30 from the exosome. In order
to balance the dataset, SMOTE (Synthetic Minority Oversampling
Technique) was applied to the dataset multiple times post-feature
extraction, such that the number of samples in the minority classes
equaled that of the majority class. In DeepLncLoc, LncRNAs located
in only one location were selected for model construction, the
dataset was created from RNALocate v1 (Zeng et al., 2022). GM-
lncLoc (Cai et al., 2023) obtained datasets from iLoc-lncRNA and
lncLocator, which were originally extracted from RNALocate. Both
datasets were subjected to oversampling using SMOTE, and all the
classes were equally represented. Dataset1 had 292 lncRNA samples,
while dataset2 had 417 samples. Also, an independent dataset was
created using the test dataset from DeepLncLoc. GraphLncLoc (Li
et al., 2023) uses the benchmark dataset of DeepLncLoc for training
their graph convolution network-based model.

4.2 RNA-seq derived datasets

Apart from RNALocate, somemethods have used RNA-seq data
to generate localization data by quantifying the gene expression in
subcellular locations.

DeepLncRNA (ENCODE Project Consortium, 2012) used
93 RNA-seq samples from 14 human immortalized cell lines
from the ENCODE database (ENCODE Project Consortium,
2012), of which 45 were from the cytosol, and 48 were from the
nucleus. Differential transcript expression was used to quantify the
differences in lncRNA transcript abundances between nuclear and
cytosolic cellular fractions for each cell type. Log2 fold change was
used to determine enrichment in the nucleus or cytosol. A sequence
was assigned to the cytosol if the log2 fold change <0, and it will be
assigned to the nucleus if the log2 fold change >2.8. Applying this
log2 fold change threshold resulted in a dataset containing
4,380 cytosolic lncRNAs and 4,298 nuclear lncRNAs.

LncLocator 2.0 (Lin et al., 2021) sourced data from two
databases—nucleotide sequences from the GENCODE (Frankish
et al., 2019) project and localization information from lncATLAS
(Mas-Ponte et al., 2017), combined by using common gene IDs.

lncATLAS uses relative concentration index (RCI) for quantifying
subcellular localization. RCI is defined as the log ratio between
concentrations measured by Fragments Per Kilobase Million
(FPKM) in two samples (Cytoplasm/Nucleus). Different numbers
of lncRNA samples are available based on the type of cell line as they
have filtered out the lncRNA with Cytoplasm/Nucleus RCI in the
range [−1, 1]. The dataset used in lncLocator 2.0 was also used to
develop the model in TACOS (Jeon et al., 2022), which is also a cell-
line-specific predictor. However, TACOS utilizes only ten cell lines
to develop their classifier.

5 Methods and their performance

Over the past few years, there have been several advancements in
predicting the subcellular localization of lncRNA sequences.
Typically, these advancements involve utilizing machine learning
techniques to create prediction models, with Support Vector
Machine (SVM) being the most frequently employed algorithm.
However, recent progress has shifted towards deep learning-based
methods, which eliminate the need for manual feature selection and
improve performance on benchmark datasets. For a comprehensive
overview of the current tools available for subcellular localization
prediction, please see Table 4. Additionally, Table 5 provides
information regarding the efficacy of these tools in terms of
predictive accuracy and other evaluation metrics.

LncLocator (Cao et al., 2018) used an unsupervised stacked
autoencoder (AE) engine that deployed on k-mer features to learn
efficient data representations. Both the raw and autoencoded
features were used for training the models. lncLocator achieves
accuracy, F1-score, and recall of 0.591, 0.367, and 0.363, respectively,
on the oversampled dataset, whereas the accuracy, F1-score, and
recall of the method on the original dataset were 0.598, 0.343 and
0.356, respectively. iLoc-lncRNA (Su et al., 2018) is an SVM-
ensemble method that utilizes a combination of Pseudo K-tuple
Nucleotide Composition and 8-mer composition. Furthermore,
feature selection was performed using Iterative Feature Selection
(IFS). lncLocation (Feng et al., 2020) utilizes a combination of
multiple features for training its model. These features
encompass different aspects such as sequence composition, basic
lncRNA characteristics, physical-chemical properties, and multi-
scale secondary structural features. Additionally included are multi-
scale secondary structural characteristics and physicochemical
properties. By considering multiple feature combinations and
utilizing SVM, lncLocation achieves its predictive capabilities for
the given task.

Locate-R (Ahmad et al., 2020) was developed using k-mer and
n-gapped k-mer composition as features. The value of k was varied
from 1-6 while generating k-mers and, in the process, generating
5,460 features. N-gapped k-mer composition was also used, where
the number of gaps n, was varied from 1-10, and the value of k was
varied from 1 to 3. 39,312 new features were generated using
n-gapped k-mer composition. A non-linear version of SVM,
called locally deep support vector machine (LD-SVM), was used
for developing the model. The model achieved an overall accuracy of
90.69%. lncLocPred (Fan et al., 2020) is based on a logistic regression
model and three different types of features. The selected k-mer
features were merged with two other types of features—Pseudo-
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Dinucleotide Composition (PseDNC) and Local Structure-Sequence
Triplet Element (Triplet). While Triplet makes use of the structural
information of RNA sequences, PseDNC uses the sequential
information and physicochemical characteristics of the nucleotide
sequence. F-score-based feature selection was applied to this set of
features, and an optimal set of features was obtained. lncLocPred
manages to achieve an overall accuracy of 92.37%, which is an
improvement of 2% over other state-of-the-art tools.

KD-KLNMF (Zhang and Qiao, 2020) employed k-mer
composition and dinucleotide-based spatial autocorrelation for
generating features. Kullback-Leibler divergence-based
nonnegative matrix factorization (KLNMF) was employed as a
feature selection method to enhance the features’ effectiveness.
The Support Vector Machine (SVM) with a Radial Basis
Function (RBF) kernel demonstrated the best performance
among various classifiers. The model achieved an impressive
overall accuracy of 97.24%, as determined by the jackknife test.
DeepLncLoc (Zeng et al., 2022) utilizes deep learning algorithms and
natural language processing techniques to develop a classifier for
subcellular localization. The generation of features in DeepLncLoc
involves subsequence embedding. Following subsequence
embedding, an average pooling layer is used to capture the
patterns of each subsequence, resulting in a matrix representation
of the lncRNA sequence. Lastly, a textCNN is employed to learn
high-level features and perform the prediction task. GM-lncLoc (Cai

et al., 2023) used a Graph Convolution Network along with Model-
agnostic meta-learning to develop the classification model.

Methods developed using RNA-seq data are primarily binary
classifiers. They are designed to compare the expression of lncRNA
between two locations. DeepLncRNA (Gudenas and Wang, 2018)
uses a neural network to classify lncRNA samples into cytoplasm/
nucleus based on their location labels. Three different types of
features were combined to generate a feature set for the dataset.
Genome loci and the presence of RNA-binding protein motifs were
also used as features. lncLocator 2.0 (Lin et al., 2021) is a regression-
based tool that predicts the Cytosol/Nucleus Relative Concentration
Index (CNCRI). lncLocator 2.0 uses GloVe for sequence embedding
and generating word vectors for downstream training. CNN is used
for learning features from the word vectors. CNN and Bi-LSTM
structure take the word vectors as the input and obtain a fixed-length
feature vector. This fixed-length vector is provided to an MLP
classifier, which uses the continuous CNRCI values and acts as a
regressor model.

6 Challenges and future perspectives

The remarkable progress in experimental techniques has
significantly contributed to the generation of large-scale data on
lncRNAs. Fluorescence in situ hybridization (FISH), initially

TABLE 4 Summary of the existing subcellular localization prediction tools.

Method Year Feature Algorithm Number of subcellular
compartments

Citation

lncLocatora 2018 k-mer Random forest, SVM,
Autoencoder

5 (Nucleus, Ribosome, Cytoplasm,
Exosome, Cytosol)

Cao et al. (2018)

iLoc-lncRNA 2018 PseKNC SVM 4 (Nucleus, Ribosome, Cytoplasm,
Exosome)

Su et al. (2018)

DeepLncRNA 2018 k-mer, Genome loci, RNA binding motifs Neural Networks 2 (Nucleus/Cytosol) Gudenas and Wang
(2018)

LncLocation 2020 k-mer, physico-chemical properties SVM 4 (Nucleus, Ribosome, Cytoplasm,
Exosome)

Feng et al. (2020)

Locate-R#2 2020 k-mer, n-gapped k-mer Locally deep SVM 4 (Nucleus, Ribosome, Cytoplasm,
Exosome)

Ahmad et al. (2020)

lncLocPred 2020 k-mer, PseDNC Logistic regression 4 (Nucleus, Ribosome, Cytoplasm,
Exosome)

Fan et al. (2020)

KD-KLNMF 2020 k-mer, Di-nucleotide-based spatial
autocorrelation

SVM 4 (Nucleus, Ribosome, Cytoplasm,
Exosome)

Zhang and Qiao
(2020)

lncLocator 2.0 2021 Word embedded sequences GloVe + CNN + BiLSTM
+ MLP

2 (Nucleus/Cytoplasm) Lin et al. (2021)

DeepLncLoc 2022 k-mer, Subsequence embedding TextCNN 5 (Nucleus, Ribosome, Cytoplasm,
Exosome, Cytosol)

Zeng et al. (2022)

TACOS 2022 Composition-based, Dinucleotide
physicochemical properties

AdaBoost 2 (Nucleus/Cytoplasm) Jeon et al. (2022)

GM-lncLocb 2023 k-mer GCN based on MAML 4/5 (Nucleus, Ribosome, Cytoplasm,
Exosome)/Cytosol

Cai et al. (2023)

GraphLncLoc 2023 de Brujin Graphs Graph Convolution
Networks

4 (Nucleus, Ribosome, Cytoplasm,
Exosome)

Li et al. (2023a)

aSOS oversampling.
bSMOTE oversampling.
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TABLE 5 Performance of existing subcellular localization prediction tools.

Metrics Sensitivity/Recall (%) Specificity (%) Precision (%) Accuracy (%) MCC F1-score AUC

lncLocator Overall 36.3 59.1 0.367

iLoc-lncRNA Nucleus 77.56 97.59 0.796

Cytoplasm 99.06 67.68 0.742

Ribosome 46.51 99.83 0.652

Exosome 16.67 1 0.4

Overall 86.72

DeepLncRNA 83 62.4 72.4 0.451 0.744 0.787

LncLocation Nucleus 74.19 95.83

Cytoplasm 100 85

Ribosome 55.56 100

Exosome 33.33 100

Overall 87.78

Locate-R Nucleus 65.92 95.15 0.658

Cytoplasm 84.74 89.1 0.725

Ribosome 100 98.37 0.97

Exosome 100 99.17 0.978

Overall 90.69

lncLocPred Nucleus 96.79 96.79 0.915

Cytoplasm 99.06 85.59 0.876

Ribosome 60.47 99.84 0.751

Exosome 20 100 0.439

Overall 92.37

KD-KLNMF Nucleus 90.65 99.52 0.928

Cytoplasm 98.56 96.8 0.93

Ribosome 99.76 100 0.998

Exosome 100 100 1

Overall 97.24 0.9981

(Continued on following page)
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TABLE 5 (Continued) Performance of existing subcellular localization prediction tools.

Metrics Sensitivity/Recall (%) Specificity (%) Precision (%) Accuracy (%) MCC F1-score AUC

lncLocator 2.0 15 cell lines (min-max) 0.6088–0.8499

DeepLncLoc Nucleus 0.67

Cytoplasm 0.76

Ribosome 0.657

Exosome 0.804

Cytosol 0.806

Overall 54.8 0.421 0.82

TACOS Overall (10 cell-lines) 77.72 72.81 75.26 0.5064 0.8339

GM-lncLoc Overall (Dataset1) 93.3 93.4 0.933

Nucleus (Dataset2) 88.85 98.21 0.889

Cytoplasm (Dataset2) 93.21 96.06 0.879

Ribosome (Dataset2) 96.8 98.99 0.959

Exosome (Dataset2) 99.07 99.38 0.982

Overall (Dataset2) 94.2

GraphLncLoc Overall 47.5 69.1 61.2 0.506
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developed for visualizing single nucleotide targets, has evolved over
time to enable the visualization of thousands of nucleotide targets at
single-cell resolution. However, despite the advancements, the data
produced by these methods are often not readily available in the
form of public databases. One primary disadvantage of FISH-based
methods is that they do not allow de novo identification of
transcripts due to the requirement of probes. Also, when
multiplexing is performed, overcrowding of signals can cause
issues in the detection of transcripts. It has been observed that
the detection efficiency drops with increasing RNA targets.
Amplification of signals by techniques like hybridization chain
reaction can create artifacts and increase the number of false
positives. Identification and decoding barcodes, in the case of
multiplexed RNA-FISH techniques, require complex software and
heavy computational power.

Profiling methods have also made considerable strides,
transitioning from microarrays to bulk RNA-seq and eventually
to single-cell sequencing. The improved annotation of lncRNAs by
resources like GENCODE has facilitated the quantification of
lncRNA expression. However, single-cell expression data poses its
own set of challenges, primarily related to low read counts of
lncRNA transcripts. Unlike protein-coding genes, lncRNAs often
lack well-defined functional domains, making their functional
characterization more challenging using sequencing data alone.

Despite these challenges, the continuous advancement of
experimental techniques and annotation resources has
significantly enhanced our understanding of lncRNAs. Future
efforts should focus on addressing the limitations associated with
data availability, cost, and functional characterization. By promoting
data-sharing practices, ensuring comprehensive annotations, and
integrating complementary experimental approaches, we can
overcome these obstacles and gain deeper insights into the
functional roles and mechanisms of lncRNAs.

The field of lncRNA research has witnessed the development of
numerous databases aimed at facilitating sequence and functional
annotation. These comprehensive databases encompass various
aspects related to lncRNAs, including sequence annotation,
expression data, functional annotation, disease associations, and
subcellular localization. Such resources have become indispensable in
managing the vast volumes of data generated by high-throughput
methods. However, certain limitations hinder the full utility of these
databases. One prevalent issue is the outdated nature of some databases.
Several well-known databases, such as LNCpedia and
LncRNADisease2, have not been updated since 2018, rendering
them inadequate for covering the newly generated lncRNA
sequences. This lack of timely updates limits their relevance and
usefulness within the rapidly evolving field. Another significant
problem lies in the lack of uniformity in the naming nomenclature
of lncRNA sequences across different annotation databases. Each
database tends to assign its own set of names to the lncRNA
sequences, resulting in confusion and defeating the purpose of
accurate annotation. This inconsistency hampers effective data
integration and comparability across databases. Furthermore, when
it comes to subcellular localization, lncATLAS, a database specifically
focused on this aspect, falls short. Last updated in 2017, lncATLAS only
covers two subcellular locations, namely, the nucleus and cytoplasm.
This limited coverage restricts the usability of the data, as other existing
databases include annotations for major organelles beyond the nucleus

and cytoplasm. Outdated databases fail to keep pace with the rapid
expansion of lncRNA knowledge, naming inconsistencies hinder
integration, and the limited coverage of subcellular localization
databases restricts their applicability. Overcoming these limitations is
essential for enhancing the effectiveness and utility of lncRNA
annotation databases in advancing our understanding of these
important regulatory molecules.

A primary challenge in the area of subcellular localization is the
scarcity of sufficient training and validation data for developing
prediction methods. The training datasets used to develop these
prediction tools are often limited in size and diversity, which can
impact the accuracy and robustness of the predictions. With the
exception of RNALocate, there is a lack of well-annotated databases
that provide comprehensive subcellular localization information. Many
existing prediction tools rely on data from RNALocate version 1, even
though an updated version 2 was released in 2021. Additionally, cell-
line-specific subcellular localization information available in ENCODE
is underutilized despite its potential relevance. RNA-seq data, which is
commonly used for localization prediction, can be noisy and prone to
inaccuracies due to variations in expression values caused by differing
cell states and analysis workflows. Moreover, it has been observed that
the localization of lncRNAs can vary between fixed cells and live cells,
adding another layer of complexity to the prediction process. Currently,
the MERFISH technique provides a promising solution by enabling the
identification of RNAs associated with subcellular compartments with
high sensitivity and low false discovery rates at a genome-wide scale.
The availability of MERFISH datasets would greatly enhance
researchers’ ability to quantify subcellular localization more
accurately. Addressing these limitations will require concerted efforts
to expand and diversify training datasets. Recent advances in spatial
transcriptomics, enables the profiling of transcripts at subcellular
resolution, providing insights into the spatial localization of RNAs
within cells. This technique has become increasingly important in
understanding the complex regulation of gene expression within
cells, particularly in the context of disease formation and cellular
processes. The availability of image data generated from spatial
transcriptomics techniques offers a rich resource for investigating the
spatial expression patterns of genes in different cell types and in
response to environmental stimuli. These datasets can be used to
identify the spatial distribution of RNAs within cells, which is
crucial for understanding cellular processes such as RNA localization
and its role in disease.

Despite the advancements in lncRNA subcellular localization
prediction, the current methods still face limitations in terms of their
accuracy, and further research is necessary to improve their
performance. While these tools may demonstrate high accuracy
when evaluated on their own training datasets, their performance on
independent datasets remains notably poor. For instance,
lncLocPred, Locate-R, and iLoc-lncRNA exhibited high accuracy
rates of 92.37%, 90.69%, and 86.72%, respectively, on their training
datasets. However, when these methods were tested on an
independent dataset, their accuracies dropped significantly to
44.44%, 38.64%, and 35.86%, respectively. This decline in
performance suggests the presence of bias in the machine-
learning algorithms used by these methods. A similar trend was
observed when GM-LncLoc compared its own method with iLoc-
lncRNA, Locate-R, and lncLocPred based on an independent
dataset. While these models achieved high accuracies of 94.20%,
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86.72%, 90.69%, and 92.39% on their training datasets, their
accuracy drastically decreased to 46.21%, 35.86%, 38.64%, and
44.44%, respectively, on the independent dataset. These findings
underscore the need for further investigation into the underlying
biases and limitations of current machine-learning algorithms
employed in lncRNA subcellular localization prediction.

7 Conclusion

Despite all the challenges, functional annotation has made
significant progress over the last few years. The generation of data
using high throughput techniques should be prioritized, and the data
should bemade publicly accessible usingwell-annotated databases. The
availability of large volumes of data will lead to the development of
better subcellular localization prediction tools. Improved algorithms,
training datasets, and rigorous validation of independent datasets are
essential for the development of more accurate and robust lncRNA
subcellular localization prediction methods.
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