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Y RNAs are a poorly-studied class of small non-coding RNAs (sncRNAs) which
have previously been implicated in the pathogenesis of different human diseases,
including cardiac and autoimmune conditions, as well as certain cancers. In
recent years, however, multiple studies have reported correlations between Y
RNA expressions and disease outcomes in viral infections (e.g., IAV, HIV, HPV, and
SARS-CoV-2) as well as potential mechanistic roles that Y RNAs may play in host
anti-viral defense. These studies suggest that Y RNAs may be associated with
upregulation of viral defense proteins as well as altered cell-cell communication
during viral infections. In this review, current literature detailing Y RNA effects on
human viral infection will be summarized and future directions in the study of
these relationships discussed.
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Introduction

Y RNAs are a class of small non-coding RNAs (sncRNAs) which were first described in
1981 (Lerner et al., 1981). Their name derives from the observation that they tend to localize
in the cytoplasm of cells. Thus, the “Y” in “Y RNA” derives from the “y” in “cytoplasm”, as
opposed to the “U” in the word “nucleus”. There are four distinct Y RNAs encoded in the
human genome in a “syntenic” cluster on chromosome 7q36: Y RNA1 (hY1), Y RNA3
(hY3), Y RNA4 (hY4), and Y RNA5 (hY5). All four of these genes are transcribed by RNA
polymerase III, and the resultant RNAs range from 83 to 112 nucleotides in length. Mature
Y RNA primary structures include a triphosphate group at the 5′ end, a polyuridine tail at
the 3′ end, and are thought to contain no modified nucleotides (Kowalski and Krude, 2015).
After transcription, Y RNAs undergo folding in the nucleus to form distinct secondary
structures, which are recognized and bound by the La and Ro60 proteins in a Ro-
ribonucleoprotein complex (RoRNP), then exported to the cytoplasm (Figures 1A,B)
(Valkov and Das, 2020). Previous studies have revealed roles for Y RNA in DNA
replication, RNA quality control, and response to cellular stress (Wang et al., 2014),
that said, major gaps in our understanding of their role(s) in human biology remain
uncharacterized.

Interestingly, recent research has shown that Y RNAs can also be cleaved to produce yet
another type of sncRNA, termed Y RNA-derived small RNAs (ysRNAs) typically
upregulated during cellular stress (Verhagen and Pruijn, 2011). It was previously
thought that these ysRNAs are a subclass of microRNAs (miRNAs), but research has
now shown that the biogenesis of ysRNAs is independent of the cellular factors driving the
biogenesis of miRNAs (e.g., Argonaute and Dicer) (Nicolas et al., 2012). While the cellular
mechanism of ysRNA biogenesis is not yet fully understood, recent research indicates that
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the mechanism of cleavage is dependent on an intact binding site for
Ro60 in the Y RNA structure and is potentially mediated by RNAse
L (Billmeier et al., 2022; Donovan et al., 2017).

Notably, potential links between Y RNAs, their associated
proteins, and various pathologies, including autoimmune
conditions, cardiovascular and neural disease, and specific
cancers, have been suggested (Cambier et al., 2017; Repetto et al.,
2015; Scheckel et al., 2016; Tebaldi et al., 2018; Dr et al., 2019; Ma
et al., 2022; Lunavat et al., 2015; Campo et al., 2025; Boccitto and
Wolin, 2019). In addition, a number of studies have now reported
significant correlations between Y RNA and ysRNA expressions and
activities and viral disease (Table 1), and in light of this, this review
summarizes recently reported associations of, and putative roles for,
Y RNAs during viral infection.

Human papilloma virus (HPV)

In 2020, Guglas et al. reported a potential relationship between Y
RNA expression and head and neck squamous cell carcinoma
(HNSCC). They observed an overall decrease in hY1 expression
in HNSCC tumor cells compared to non-malignant dysplastic
keratinocytes, but noted increased hY1 expression in tumors
from HPV-positive patients versus HPV-negative ones (Guglas
et al., 2020a). In a follow up study in 2023, Guglas et al. similarly
found hY3 expression was significantly higher in advanced-stage
HPV-positive tumors, and more notably, that elevated hY1 levels
were linked to better survival in HPV-positive patients. The study
also explored Y RNA interactions with host cellular defense, finding
that experimental overexpression of hY1 in HNSCC cell lines led to

an upregulation of immune-related pathways, including Fc-gamma
receptor signaling and phagocytosis (Guglas et al., 2020b; Guglas
et al., 2023). Collectively, the observed correlations between
hY1 expression and (i) distinct outcomes in HSNCC patients
with and without HPV infection, and (ii) host cell immune
response pathway activations, strongly support a role for Y
RNAs, particularly hY1, in HPV-related oncogenesis and
HNSCC pathology.

Respiratory syncytial virus (RSV)

In 2022 Pålsson et al. (2022) performed an experiment aimed at
identifying host small non-coding RNAs (sncRNAs) present in
bronchoalveolar lavage fluid (BALF) capable of inhibiting
respiratory syncytial virus (RSV) infection. Notably, they found
that two of the sncRNAs they identified corresponded to specific
~30 nt ysRNA sequences apparently excised from full length
hY4 and hY5. To assess their antiviral potential, mimics of these
ysRNAs were transfected into A549 lung epithelial cells prior to
infection with GFP-tagged RSV virions. Subsequent GFP
quantification confirmed significant reductions in RSV infectivity
in cells transfected with either ysRNA as compared to controls.
Further, cells transfected with either of these ysRNAs also exhibited
significantly reduced nucleolin antibody binding compared to
controls, suggesting that these ysRNAs interfere with the ability
of RSV to bind nucleolin, a known RSV co-receptor required for
viral entry. As such, this study represents one of the most definitive
characterizations of specific roles for ysRNAs in innate viral defense
yet reported.

FIGURE 1
Y RNA biology. (A)Graphical overview of general Y RNA structure. All four human Y RNAs form a complex stem-loop structure. Specific proteins bind
to certain Y RNA secondary structure elements. Ro60 binds the lower stem domains of all human Y RNAs to form Ro ribonucleoprotein (RoRNP)
complexes. The La protein similarly binds to the 3′ polyuridine tail of all Y RNAs. The large, internal loop structure is thought to associate with multiple
other cellular proteins (Teunissen et al., 2000). (B) Human Y RNA structures. YsRNAs are highlighted in green (Nicolas et al., 2012). Structures were
generated with mfold (Zuker, 2003). (C,D) Descriptions of hY4 and hY5 ysRNAs correlated with viral severity. Human Y RNAs hY4 and hY5 sequences are
shown and the ysRNAs correlated with viral severity excised from each are indicated in red. (C) Plasma levels of the indicated ysRNA excised from hY5
(initially annotated as hsa-miR-1975) is strongly correlated with influenza severity (Liu et al., 2021) and delivery of this ysRNA can inhibit influenza
replication (Liu et al., 2019). (D) Plasma levels of the indicated ysRNA excised from hY4 is strongly correlated with SARS-CoV-2 severity (Olliff et al., 2023).
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Kaposi’s sarcoma herpesvirus (KSHV)

KSHV is the etiological agent of Kaposi’s sarcoma (KS). In
2018 Ikoma et al. characterized KSHV miRNAs in plasma taken
from KSHV infected individuals in Uganda and confirmed that their
expressions correlated with KSHV plasma viremia. They also found
exosomal small RNA profiles were highly atypical with strikingly
high levels of Y RNAs (as much as 93% of the exosomal small RNAs
detected) (Ikoma et al., 2018). Notably, high levels of exosomal Y
RNAs was also previously observed in chronic lymphocytic
leukemia (CCL) with hY4 constituting the most abundant small
RNA in CCL patient plasma exosomes, and interestingly, addition of
these exosomes trigger monocyte activation through Toll-like
receptor (TLR) 7/8 signaling leading to enhanced tumor growth
(Farahani et al., 2015). That said, Ikoma et al. similarly found hY4 to
be the most abundant small RNA in exosomes isolated from plasma

taken from individuals with asymptomatic malaria infection, and as
TLR7/8 signaling can induce KSHV reactivation from latency, their
observations support a model in which malaria infection results in
increased KSHV reactivation rates in co-infected individuals and so,
account for the observed association between KSHV sero-positivity
and malaria in Ugandan people (Ikoma et al., 2018).

Human immunodeficiency virus type 1
(HIV-1), dengue (DENV), and
measles virus

At times, dying cells, especially through necrosis, release cellular
RNA complexed with riboproteins capable of binding TLRs and
stimulating innate immune response via increased interferon
signaling (Boccitto and Wolin, 2019). Relatedly, in 2022, (Vabret

TABLE 1 Reported Y RNA associations with viral pathogens.

Virus Signifcant viral associations Genome PMID(s)

Dengue Virus (DENV) Infection triggers hY4 association with RIG-1/enhanced
IFN-I signaling

ssRNA (+) 35789859

Enterovirus 71 (EV71) Infection triggers marked upregulation of hY5 ysRNA
hsa-miR-1975 in human epidermoid carcinoma (Hep2)
cells

ssRNA (+) 20625495

Human Immunodeficiency Virus type 1 (HIV-1) Infection triggers hY4 association with RIG-1/enhanced
IFN-I signaling

ssRNA (+) 35789859, 29083374

Human Papilloma Virus (HPV) • Overexpression of hY1 in HNSCC cell lines
upregulates immune-related pathways, including Fc-
gamma receptor signaling and phagocytosis

• hY1 and hY3 expressions are significantly higher in
HPV + HNSCC tumors

dsDNA 32455790, 32784396

Influenza A Virus (IAV) • hY5 ysRNA, hsa-miR-1975, is the most upregulated
small RNA in human lung epithelial cells following
IAV infection, and increased

• hsa-miR-1975 inhibits IAV replication via directing
increased IFN-B expression. hsa-miR-1975 is
packaged into exosomes by infected cells and
transferred to neighboring cells, enhancing their
antiviral response

ssRNA (−) 31416454, 32814996, 39326700

Kaposi’s Sarcoma HerpesVirus (KSHV)/Human
HerpesVirus-8 (HHV-8)

Exosomal hY4 suggested to trigger TLR7/8 signaling and
KSHV reactivation from latency

dsDNA 29425228

Measles Virus/Morbillivirus Infection triggers hY4 association with RIG-1/enhanced
IFN-I signaling

ssRNA (−) 35789859

Moloney Murine Leukemia Virus (MMLV) Y RNAs are the most prevalent non-coding RNAs
packaged into MLV virions

ssRNA (+) 19776129

Respiratory Syncytial Virus (RSV) Infectivity is significantly reduced in cells transfected
with hY4 and/or hY5 ysRNAs likely due to these
ysRNAs interfering with the ability of RSV to bind
nucleolin, a known RSV co-receptor required for viral
entry

ssRNA (−) 35682669

SARS-CoV-2 • A ysRNA excised from hY4 is significantly less
abundant in the serum of patients with severe
COVID-19 compared to the serum of patients with
mild disease or healthy controls

• ysRNAs are upregulated in cultured lung cells infected
with SARS-CoV-2

• Y RNAs are the most abundant differentially
upregulated ncRNAs in SARS-CoV-2 Delta-infected
normal human bronchial epithelial (NHBE) cells
compared to noninfected controls

ssRNA (+) 37662051, 37558133, 38314306,
40510596
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et al., 2022) observed an interaction between Y RNAs and RIG-1-like
receptors (RLRs) suggesting a potential role for Y RNAs in host cell
innate viral immunity. RLRs primarily function as sensors for viral
RNA that trigger interferon (IFN-I and IFN-III) responses when
viral RNA is detected. While RLRs are known to bind foreign RNA,
their interaction with endogenous RNA remains less understood.
That said, after infecting HEK293 cells with HIV-1, or with the
positive single stranded dengue or measles viruses, Vabret et al.
identified hY4 as significantly associating with RIG-1 in response to
all three infections. Interestingly, in HIV-1-infected cells, only
endogenous RNAs were found to be in complex with RIG-1,
distinguishing it from dengue and measles infections. Further
experiments in HIV-1-infected Jurkat T cells, found
hY4 underwent increased triphosphorylation, quantified using 5′-
PPPseq sequencing, and that this increased triphosphorylation was
required for viral downregulation of DUSP11, a phosphatase
normally charged with removing these phosphate groups.
Importantly, HIV-1 infection significantly reduced DUSP11 levels
in Jurkat T cells and CD4+ T cells, and DUSP11-knockout cells
showed increased hY4 binding to RIG-1 compared to controls.
Further, the study confirmed that this effect is dependent on the HIV
vpr gene, as strains lacking vpr failed to suppress DUSP11, induce
hY4 triphosphorylation, or enhance IFN-I signaling. Taken
together, these findings strongly suggest that HIV-1 alters Y
RNA modifications to manipulate host immune activation.

Moloney murine leukemia virus (MMLV)

Relatedly, a number of retroviruses (e.g., Rous sarcoma virus,
MMLV, and HIV-1) package SRP RNA, the core RNA of host signal
recognition particles, into their viral particles before release. While
MLV and HIV virions contain similar numbers of SRP RNAs
(~7 and 12 respectively), MLV virions contain significantly
higher levels of Y RNAs. Like MLV, HIV-1 does package at least
some Y RNA, although at much lower levels than SRP RNA. In
contrast, Y RNAs represent the most prevalent ncRNAs in MLV
virions with mouse Y RNAs mY1 and mY3 enriched in MLV
particles similar to that of SRP RNA in HIV-1 (Garcia et al., 2009).

Influenza a virus (IAV) and enterovirus
71 (EV71)

The most comprehensive characterization of the ability of a
ysRNA to inhibit viral infection performed to date was conducted by
Liu et al., (2019). In this study, (Liu et al., 2019) focused on hsa-miR-
1975, a ysRNA excised from hY5 initially misclassified as a
microRNA (Figure 1C), after finding that hsa-miR-1975 was the
most upregulated small RNA in human lung epithelial cells
following IAV infection. Importantly, they showed that
transfecting A549 cells with an hsa-miR-1975 mimic significantly
lowered viral nucleoprotein levels and titers, while transfection with
an hsa-miR-1975 sponge conversely increased viral replication.
Notably, the antiviral effects associated with increased levels of
hsa-miR-1975 was shown to be IFN-β-dependent, as inhibition
of IFN-β expression nullified the protective impact of hsa-miR-
1975. This effect was absent in Vero cells, which lack IFN-β

signaling, further confirming the role of hsa-miR-1975 in
modulating the immune response to IAV infection. Since IAV
infection induces apoptosis and Y RNAs are cleaved in a
caspase-dependent manner, the researchers also examined hsa-
miR-1975 levels in IAV-infected cells treated with a pan-caspase
inhibitor. They found that blocking apoptosis reduced hsa-miR-
1975 upregulation (and concurrent hY5 downregulation) linking its
production to apoptosis initiation and also showed that hsa-miR-
1975 inhibits IAV replication through directing increased
interferon-β (IFN-β) expression.

A follow-up study by this group in 2021 further investigated the
clinical relevance of hsa-miR-1975 in influenza patients. In this
work, Liu et al. (2021) discovered that hsa-miR-1975 is packaged
into exosomes by infected cells and transferred to neighboring cells,
enhancing their antiviral response. They found delivery of exosomes
containing hsa-miR-1975 to recipient cells significantly increased
IFN-β expression and impeded IAV replication. Furthermore, they
also found serum samples from influenza-infected patients were
characterized by significantly higher levels of hsa-miR-1975, and
additionally, hsa-miR-1975 levels, along with other clinical factors,
effectively predicted respiratory failure requiring mechanical
ventilation.

Relatedly, in 2010 Cui et al. identified marked upregulation of
ysRNA hsa-miR-1975 in human epidermoid carcinoma (Hep2) cells
infected with another single-stranded RNA virus, Enterovirus 71,
and common cause of hand, foot, and mouth disease (HFMD) in
infants and young children (Cui et al., 2010). Additionally of note
and further supporting the potential utility of ysRNAs as biomarkers
for influenza severity, a 2024 study by Ko et al. (2024) similarly
identified significant ysRNA upregulations in mice
infected with IAV.

SARS-CoV-2

Due to the global impact of SARS-CoV-2 in recent years, and its
continued impact on human health, our laboratory recently
performed a pilot study to investigate how the serum levels of
various sncRNAs correlate with disease outcome in patients infected
with SARS-CoV-2 (Olliff et al., 2023). Samples were stratified
according to patients who were SARS-CoV-2 negative, patients
who recovered from mild disease, patients with severe disease as
defined by the requirement of admission into an intensive care unit,
and those who died of SARS-CoV-2 infection. Small RNAs were
isolated from samples taken during active infection and also
following resolution of symptoms (when possible) then
sequenced. Five sncRNAs were identified as significantly
differential expressed between the outcome cohorts, but only one,
a ysRNA excised from human hY4 (Figure 1D), was consistently
expressed at reproducibly detectable levels (>100 reads per million).
Notably, this ysRNA exhibited significant differential expression
when sequencing data from patients who recovered from mild
SARS-CoV-2 infection (12,068 average RPM) were compared to
those who suffered from severe disease (1,303 RPM) (p = 0.019),
those who died from SARS-CoV-2 infection (2,496 RPM) (p =
0.032), and the combined average RPM of those who suffered from
severe infection/suffered fatalities (1,932 RPM) (p = 0.025).
Furthermore, there was significant differential expression between
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the combined data of patients who were negative for SARS-CoV-
2 and those who recovered from mild disease (10,666 RPM)
compared to those who suffered from severe disease or who died
from COVID-19 (p = 0.005) (Olliff et al., 2023).

Further supporting a potential role for ysRNAs during SARS-
CoV-2 infection, a study by Nersisyan et al. (2023), published later in
2023, similarly identified significantly lower ysRNA levels in the
platelets of COVID-19 patients as compared to healthy controls,
studies by Driedonks et al. (2024a) and Driedonks et al. (2024b)
reported significant ysRNA upregulations in cultured lung cells
infected with SARS-CoV-2, and a study by Ranches et al., in
2025 found various Y RNA species as the most abundant
differentially upregulated ncRNAs in SARS-CoV-2 Delta-infected
normal human bronchial epithelial (NHBE) cells compared to
noninfected controls (Ranches et al., 2025).

Discussion

Emerging research continues to reveal the multifaceted roles of Y
RNAs and their derivatives in human pathophysiology. These sncRNAs
have now been implicated in a remarkably diverse array of disease
processes through distinct yet interconnected molecular mechanisms,
positioning them as crucial regulators of cellular homeostasis and
intercellular communication. As an example, a seminal study by
Cambier et al. (2017) found that cardiosphere-derived extracellular
vesicles containing Y RNA fragments exert significant cardioprotective
effects following myocardial infarction. These protective mechanisms
appear to operate through sophisticated modulation of fibroblast
activation states and extracellular matrix remodeling processes,
potentially offering novel avenues for post-infarction therapeutic
intervention. Complementary work by Repetto et al. (2015) further
solidified these findings by identifying distinct ysRNA signatures in
patients with coronary artery disease, suggesting the potential utility of
these molecules as diagnostic biomarkers or therapeutic targets in
cardiovascular pathologies. Similarly, pioneering research by Scheckel
et al. (2016) demonstrated that Y RNA dysregulation contributes
substantially to the aberrant RNA splicing patterns characteristic of
Alzheimer’s disease neuropathology. These effects appear mediated
through specific interactions with heterogeneous nuclear
ribonucleoproteins (hnRNPs), key regulators of neuronal RNA
processing. Expanding on these observations, Tebaldi et al. (2018)
found that Y RNA expression dynamics significantly influence
neuronal progenitor cell differentiation pathways, implying potential
roles in both neurodevelopmental disorders and neurodegenerative
processes. These findings collectively suggest that Y RNAs may serve as
critical nodes in the complex regulatory networks governing neural
development and maintenance.

As the field continues to evolve, Y RNAs are increasingly
becoming recognized not merely as cellular housekeeping
elements, but as central players in the complex interplay between
RNA biology and human pathophysiology. The remarkable diversity
of Y RNA disease involvements likely stems from several unique
structural and biochemical properties of Y RNAs. First, their ability
to serve as molecular scaffolds for ribonucleoprotein complexes
enables participation in diverse cellular processes. Second,
functioning as competing endogenous RNAs (ceRNAs) may
allow them to influence miRNA availability and activity (Ma

et al., 2022). Third, their capacity to generate bioactive small
RNA fragments through regulated processing creates additional
layers of regulatory potential. Finally, their involvement in both
intracellular signaling and intercellular communication via
extracellular vesicles positions them as multimodal signaling
molecules (Lunavat et al., 2015; Ikoma et al., 2018; Farahani
et al., 2015; Liu et al., 2019; Olliff et al., 2023; Nersisyan et al.,
2023; Dhahbi et al., 2013; van Balkom et al., 2015; Chakrabortty
et al., 2015; Lovisa et al., 2020; Tong et al., 2023; Driedonks et al.).
That said, despite significant recent advances, critical knowledge
gaps persist in our understanding of Y RNA biology. The field
currently lacks comprehensive characterization of tissue-specific Y
RNA functions and detailed mechanistic explanations for their
disease associations. Standardization of detection methodologies
and functional assays remains an urgent priority, as highlighted
by Guglas et al. (Shaw et al., 2025), given the methodological
variability across current studies. Three key areas warrant
focused investigation in future research: (i) the development of
sophisticated Y RNA-specific knockout models to enable precise
functional characterization, (ii) high-resolution structural studies to
elucidate the molecular details of Y RNA-protein interactions, and
(iii) comprehensive longitudinal clinical studies to correlate Y RNA
expression dynamics with disease progression and treatment
responses. These investigations will be essential for translating
our growing understanding of Y RNA biology into clinically
relevant applications, potentially yielding novel diagnostic tools
and therapeutic strategies for a wide range of human diseases
(Gulìa et al., 2020).

Particularly relevant to this review, despite being relatively
understudied, Y RNAs and their cleavage products (ysRNAs) are
rapidly emerging as important regulators of host-pathogen
interactions, with growing evidence suggesting their involvement in
antiviral defense mechanisms and disease prognosis (Table 1). Recent
studies have begun to uncover fascinating roles for these small non-
coding RNAs in modulating immune responses to viral infections,
though much remains to be learned about their precise mechanisms of
action. The current body of research, while limited, provides
compelling justification for deeper investigation into how Y RNAs
participate in cellular defense pathways and how their expression
patterns might serve as clinical biomarkers. Several key findings have
particularly highlighted their potential significance: (i) in influenza
infection, ysRNA fragments have been shown to enhance interferon
responses and correlate with disease severity (Liu et al., 2019; Liu et al.,
2021; Ko et al., 2024), (ii) in HIV infections specific Y RNAs interact
with innate immune sensors to amplify antiviral signaling (Vabret
et al., 2022), and similarly, (iii) our group recently showed that a
ysRNA excised from hY4 is significantly less abundant in the serum of
patients with severe COVID-19 compared to the serum of patients
with mild disease or healthy controls. Lower ysRNA levels in severe
COVID-19 cases raises important questions about its role in
modulating immune responses and whether its restoration could
mitigate disease progression (Olliff et al., 2023). While further
research is clearly needed to elucidate whether dysregulation of this
hY4-excised ysRNA is a cause or consequence of severe COVID-19,
our recent work suggests that higher plasma ysRNA levels may be
directly involved with priming cells for an enhanced interferon
response (Olliff et al., 2023). And, finally, (iv) alterations in Y RNA
and ysRNA expression profiles and/or associations with antiviral

Frontiers in RNA Research frontiersin.org05

Olliff et al. 10.3389/frnar.2025.1679653

https://www.frontiersin.org/journals/rna-research
https://www.frontiersin.org
https://doi.org/10.3389/frnar.2025.1679653


immunity pathways have also been observed in DENV (Vabret et al.,
2022), Measles Virus (Vabret et al., 2022), EV71 (Cui et al., 2010),
KSHV (Ikoma et al., 2018), HPV (Guglas et al., 2020a; Guglas et al.,
2020b), and RSV (Pålsson et al., 2022) infections, suggesting these
molecules may play broad roles in host defense across diverse
viral pathogens.

Also of note, Y RNAs are remarkably conserved, maintaining
more than 90% sequence similarity across vertebrate species, and Y
RNA orthologs have also been identified in several bacterial species as
well as in Caenorhabditis elegans. That said, two of the most
fundamental and evolutionarily preserved roles of Y RNAs in
vertebrates is (i) participation in the initiation of chromosomal
DNA replication and (ii) serving as integral components of Ro
ribonucleoprotein (Ro RNP) complexes which also contain the
highly conserved Ro60 protein—a chaperone that binds misfolded
non-coding RNAs (Valkov and Das, 2020). Research in Deinococcus
radiodurans, the first bacterium found to possess a Ro60 ortholog,
demonstrated that Ro60 and Y RNAs cooperate with 3′–5′
exoribonucleases to modulate transcriptome RNA profiles during
stress. In this well-characterized example, Y RNAs act as a scaffold
that links Ro60 to the exoribonuclease polynucleotide phosphorylase,
thereby enhancing the enzyme’s ability to degrade structured RNAs
(Sim andWolin, 2018). The highly conserved nature of both Y RNAs
and Ro60, together with their functional partnership, underscores an
ancient evolutionary relationship in which Y RNAs regulate Ro60’s
activity in RNAquality control. As such, although the roles of Y RNAs
and their processed fragments (ysRNAs) in antiviral defense remain
incompletely understood, as most reported Y RNA viral associations
involve RNA viruses (Table 1), it is tempting to speculate that Y RNA
association with a ribonuclease complex targeting highly structured
RNAs might be involved in innate antiviral immunity.

In summary, recent Y RNA discoveries not only reveal new layers
of complexity in the host-virus arms race but also open promising
avenues for diagnostic and therapeutic development. However, critical
gaps remain in our understanding of the molecular pathways through
which Y RNAs and ysRNAs exert their effects, their tissue-specific
functions during infection, and how different viruses may have
evolved to counteract or exploit these RNA-mediated defenses.
Addressing these questions through systematic research will likely
yield important insights into fundamental virological processes while
potentially identifying novel targets for antiviral interventions and
prognostic tools for viral diseases. The preliminary nature of current
findings underscores both the challenges and opportunities in this
nascent field of study, where each new discovery may significantly
reshape our understanding of RNA biology in the context of infection
and immunity.
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