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The field of Probabilistic Logic Programming (PLP) has seen significant advances in the last
20 years, with many proposals for languages that combine probability with logic program-
ming. Since the start, the problem of learning probabilistic logic programs has been the
focus of much attention. Learning these programs represents a whole subfield of Inductive
Logic Programming (ILP). In Probabilistic ILP (PILP), two problems are considered: learning
the parameters of a program given the structure (the rules) and learning both the struc-
ture and the parameters. Usually, structure learning systems use parameter learning as a
subroutine. In this article, we present an overview of PILP and discuss the main results.

Keywords: logic programming, probabilistic programming, inductive logic programming, probabilistic logic
programming, statistical relational learning

1. INTRODUCTION
Probabilistic Logic Programming (PLP) started in the early 90s
with seminal works such as those of Dantsin (1991), Ng and
Subrahmanian (1992), Poole (1993), and Sato (1995).

Since then, the field has steadily developed and many propos-
als for the integration of logic programming and probability have
appeared, allowing the representation of both complex relations
among entities and uncertainty over them. These proposals can be
grouped into two classes: those that use a variant of the distribu-
tion semantics (Sato, 1995) and those that follow a Knowledge Base
Model Construction (KBMC) approach (Wellman et al., 1992;
Bacchus, 1993).

The distribution semantics underlines many languages such
as Probabilistic Logic Programs (Dantsin, 1991), Probabilistic
Horn Abduction (Poole, 1993), PRISM (Sato, 1995), Independent
Choice Logic (ICL) (Poole, 1997), pD (Fuhr, 2000), Logic Pro-
grams with Annotated Disjunctions (LPADs) (Vennekens et al.,
2004), ProbLog (De Raedt et al., 2007), P-log (Baral et al., 2009),
and CP-logic (Vennekens et al., 2009). While the number of lan-
guages is large, all share a common approach so that there are
transformations with linear complexity that can translate one lan-
guage into another. Under the distribution semantics, a probabilis-
tic logic program defines a probability distribution over normal
logic programs (termed worlds). The probability of a ground query
Q is then obtained from the joint distribution of the query and
the worlds: it is the sum of the probability of the worlds where the
query is true.

The languages following a KBMC approach include Relational
Bayesian Network (Jaeger, 1998), CLP(BN) (Santos Costa et al.,
2003), Bayesian Logic Programs (Kersting and De Raedt, 2001),
and the Prolog Factor Language (Gomes and Santos Costa, 2012).
In these languages, a program is a template for generating a ground
graphical model, be it a Bayesian network or a Markov network.

Learning probabilistic logic programs has been considered
from the start: Sato (1995) already presented an algorithm for
learning the parameters of programs under the distribution

semantics. This is the first problem that was considered in the
domain of learning and was the only one until recently, when
works regarding the induction of the structure (the rules) and
the parameters at the same time began to appear. The whole field
was called Probabilistic Inductive Logic Programming (PILP) in
(De Raedt and Kersting, 2004) and an overview of the field was
provided in De Raedt et al. (2008a).

PILP uses declarative probabilistic languages that allow learned
models to be easily understood by humans. Moreover, lan-
guages based on the distribution semantics are Turing complete,
thus representing very expressive target formalisms. Recently,
effective PILP systems have been proposed that achieve good
results on a variety of domains, including biology, chem-
istry, medicine, entity resolution, link prediction, and web page
classification.

In the following, we present an updated overview of PILP by
concentrating on languages under the distribution semantics.

2. LANGUAGES UNDER THE DISTRIBUTION SEMANTICS
We illustrate the distribution semantics through ProbLog (De
Raedt et al., 2007), the language with the simplest syntax. A
ProbLog program consists of a set of (certain) rules and a set
of probabilistic facts of the form:

pi :: Ai .

where pi ∈ [0,1] and Ai is an atom, meaning that each ground
instantiation Aiθ of Ai is true with probability pi and false with
probability 1− pi. From a ProbLog program, we obtain normal
programs called worlds by including the set C of certain rules
and a subset L of the (ground) probabilistic facts. Each world is
obtained by selecting or rejecting each grounding of each proba-
bilistic fact. The probability of a world is given by the product of a
factor pi for each grounding of a probabilistic fact pi :: Ai included
in the world and of a factor 1− pi for each grounding of a proba-
bilistic fact not included in the world. The probability of a ground
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Riguzzi et al. Probabilistic Inductive Logic Programming

atom (query Q) is then the sum of the probabilities of the worlds
where the query is true.

Example 1: The following program encodes the fact that a per-
son sneezes if he has the flu and this is the active cause of sneezing,
or if he has hay fever and hay fever is the active cause of sneezing:

sneezing (X) :- flu(X), fluSneezing (X).

sneezing (X) :- hayFever(X), hayFeverSneezing (X).

flu(bob).

hayFever(bob).

0.7 :: fluSneezing (X).

0.8 :: hayFeverSneezing (X).

This program has 4 worlds, Q= sneezing (bob) is true in 3 of them
and its probability P(Q) is 0.7× 0.8+ 0.3× 0.8+ 0.7× 0.2= 0.94.

Note that, in the case a ground atom can be derived from more
than one ground rule, the contributions in terms of probability
of the ground rules are combined with a noisy-OR gate. Hom-
merson and Lucas (2011) generalize the distribution semantics by
allowing the replacement of the noisy OR combining rules with
user-defined rules.

3. INFERENCE
The problem of computing the probability of queries is called
inference. Solving it by computing all the worlds and then iden-
tifying those that entail the query is impractical as the number of
possible worlds is exponential in the number of ground prob-
abilistic facts. Usually, inference is performed by resorting to
knowledge compilation (Darwiche and Marquis, 2002): accord-
ing to this, a propositional theory and a query are compiled
into a “target language”, which is then used to answer queries
in polytime. The compilation becomes the main computational
bottleneck, but considerable effort has been devoted to the devel-
opment of efficient compilers. The compilation methods differ for
the compactness of the target language and the class of queries and
transformations that it supports in polynomial time. We describe
in the following Section two major compilation approaches.

3.1. EXACT INFERENCE
An early method for exact inference in Relational Bayesian Net-
works (RBNs) was proposed in Chavira et al. (2006) where RBNs
were compiled into arithmetic circuits.

The first knowledge compilation approach for performing
inference on languages based on the distribution semantics (De
Raedt et al., 2007) required to find a covering set of explanations
for the query. An explanation is a minimal set of probabilistic
facts that is sufficient for entailing the query and a covering set
of explanations is a set that contains all possible explanations for
the query. From the set of explanations, a Boolean formula in
Disjunctive Normal Form (DNF) can be built, where each proba-
bilistic fact is associated with a Boolean variable, an explanation is
the conjunction of the facts that it contains and the whole formula
is the disjunction of the formulas for the different explanations.
In Example 1, if we associate the Boolean variable X 1 with fluS-
neezing (bob) and X 2 with hayFeverSneezing (bob), the Boolean
formula that encodes the set of explanations for Q will be X 1 ∨X 2.

Computing the probability of a Boolean DNF formula is an
intractable problem (Rauzy et al., 2003) but, by exploiting the
advances made in knowledge compilation, we can compile the
formula into a Binary Decision Diagram (BDD). BDDs allow to
compute the probability of a query with a dynamic programming
algorithm that is linear in the size of the diagram (De Raedt et al.,
2007). BDDs are rooted graphs with one level for each Boolean
variable; a node n in a BDD has two children: one correspond-
ing to the 1 value of the variable associated with the level of n
and one corresponding to the 0 value of the variable. The leaves
store either 0 or 1. A BDD for the function X 1 ∨ X 2 is shown in
Figure 1.

Other reasoning systems based on the BDD language are PICL
(Riguzzi, 2009), that was developed for ICL and computes the
explanations of queries using a modification of SLDNF-resolution,
and PITA (Riguzzi and Swift, 2011), which translates a general PLP
program into a normal program evaluated by a Prolog engine with
tabling. Library functions that perform BDD operations are added
to the normal program and BDDs are built representing the set of
explanations of the goals encountered during inference.

An alternative approach to exact inference can be realized using
compilation to d-DNNFs (deterministic Decomposable Negation
Normal Form) rather than BDDs (Fierens et al., 2011). In the first
step, the theory and the evidence are converted into Boolean for-
mulas in Conjunctive Normal Form (CNF), i.e., conjunctions of
disjunctions of literals. The Boolean formulas are then compiled
to d-DNNFs and the probability is computed by weighted model
counting (WMC). In WMC, the literals of the CNFs are assigned
weight p to A and weight 1− p to ¬A, if the program contains
a probabilistic fact p :: A, and weight 1 otherwise. A d-DNNF is a
rooted directed cyclic graph in which each leaf node is labeled with
a literal and each internal node is labeled with a conjunction or
disjunction. The graph must moreover satisfy a number of restric-
tions. BDDs form a subclass of d-DNNFs. WMC on d-DNNFs is
linear in the size of the graph.

3.2. APPROXIMATE INFERENCE
Since the cost of inference may be very high, approximate algo-
rithms have been developed. They either compute subsets of
possibly incomplete explanations or use random sampling. In the
first approach, a subset of the explanations provides a lower bound
and the set of partially expanded explanations provides an upper
bound (Kimmig et al., 2011; Renkens et al., 2014). In the second
approach, the truth of the query is repeatedly checked in a normal
program sampled from the probabilistic program. The probability

FIGURE 1 | Binary Decision Diagram for Example 1.
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Riguzzi et al. Probabilistic Inductive Logic Programming

of the query is then given by the fraction of the successes (Kimmig
et al., 2011).

In Choi and Darwiche (2011), the system called Relax, Com-
pensate, and then Recover performs inference by first approximat-
ing the exact model by relaxing equality constraints contained
in the model. Then, this approximate model is improved by
compensation that enforces weaker notions of equality. Finally,
the system recovers some equivalence constraints in the relaxed
and compensated model, which can improve the quality of the
approximation.

In Riguzzi (2013), the disjunctive clauses of an LPAD are trans-
formed into normal clauses with auxiliary atoms in the body in
order to take the samples; tabling is exploited to avoid sampling
twice the same atom.

3.3. LIFTED INFERENCE
Recently, lifted inference approaches have appeared that perform
inference without first grounding the model. In this way, groups
of indistinguishable individuals are treated as a whole and not
individually. The exploitation of the symmetries in the model
can significantly speed up inference. For example, consider the
following program:

p :: famous(Y ).

popular(X) :- friends(X , Y ), famous(Y ).

In this case P(popular(john))= 1− (1− p)m where m is the
number of friends of john. This is because an atom in the head of
a clause with variables in the body only represents the noisy-OR
of the atoms in the body. In this case, we do not need to know
the identities of these friends, we just need to know how many are
there. Hence, we need not ground the clauses.

Bellodi et al. (2014) proposed to use Lifted Variable Elimina-
tion (Poole, 2003) for performing lifted inference in PLP. This
algorithm eliminates random variables from the factorization of
the probability distribution. It repeatedly applies operators that
either eliminate a group of variables or prepare the factorization
for elimination. In PLP, random variables corresponding to the
head of clauses represent the noisy-OR of variables in the body.
In order to deal with noisy-OR structures Bellodi et al. (2014)
introduced two new operators.

Van den Broeck et al. (2014) presented an algorithm that can
perform lifted inference in PLP by weighted first-order model
counting (WFOMC). The program is transformed by knowledge
compilation into a First-Order d-DNNF circuit from which the
weighted model count is computed. The paper presents a Skolem-
ization procedure that maps a logical input theory to an output
theory devoid of existential quantifiers and functions but with
identical WFOMC; the procedure takes into account the cases in
which program clauses may have variables in the body that do not
appear in the head too.

4. LEARNING
The problem that PILP aims at solving can be expressed as:

• Given
• background knowledge as a probabilistic logic program B

• a set of positive and negative examples E+ and E-

• a language bias L
• Find

• a probabilistic logic program P such that the probability of
positive examples according to P ∪ B is maximized and the
probability of negative examples is minimized.

This problem has two variants: parameter learning and struc-
ture learning. In the first, we are given the structure (the rules)
of P and we just want to infer the parameters of P, while in the
second we want to infer both the structure and the parameters of
P. Moreover, the examples can be given in the form of (partial)
interpretations, ground atoms, or (partial) proofs.

4.1. PARAMETER LEARNING
Parameter learning for languages following the distribution
semantics has been performed by using the Expectation Maxi-
mization (EM) algorithm or by gradient descent.

The EM algorithm is used to estimate the probability of mod-
els containing random variables that are not observed in the data.
This is the case of PLP under the distribution semantics because
of the use of combining rules: these imply the presence of unob-
served variables. The EM algorithm consists of a cycle in which
the steps of Expectation and Maximization are repeatedly per-
formed. In the Expectation step, the distribution of the hidden
variables is computed according to the current values of the para-
meters, while in the Maximization step, the new values of the
parameters are computed. Examples of approaches that use EM
are PRISM (Sato and Kameya, 2001), LFI-ProbLog (Fierens et al.,
2013), and EMBLEM (Bellodi and Riguzzi, 2013). The latter two
use knowledge compilation for computing the distribution of the
hidden variables. RIB (Riguzzi and Di Mauro, 2012) is a system for
parameter learning that uses a special EM algorithm called infor-
mation bottleneck that was shown to avoid some local maxima
of EM.

Gradient descent methods compute the gradient of the tar-
get function and iteratively modify the parameters moving in the
direction of the gradient. An example of these methods is LeP-
robLog (Gutmann et al., 2008) that uses a dynamic programming
algorithm for computing the gradient exploiting BDDs.

4.2. STRUCTURE LEARNING
One of the first structure learning works is (Koller and Pfeffer,
1997) where the authors learn the structure of first-order rules with
associated probabilistic uncertainty parameters. Their approach
involves generating the underlying graphical model using a Knowl-
edge Based Model Construction approach. EM is then applied on
the graphical model.

De Raedt et al. (2008b) presented an algorithm for performing
theory compression on ProbLog programs. Theory compression
means removing as many clauses as possible from the theory in
order to maximize the probability. No new clause can be added to
the theory.

SEM-CP-logic (Meert et al., 2008) learns parameters and struc-
ture of ground CP-logic programs. It performs learning by con-
sidering the Bayesian networks equivalent to CP-logic programs
and by applying techniques for learning Bayesian networks. In
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Riguzzi et al. Probabilistic Inductive Logic Programming

particular, it applies the Structural Expectation Maximization
(SEM) algorithm (Friedman, 1998): it iteratively generates refine-
ments of the equivalent Bayesian network and it greedily chooses
the one that maximizes the BIC score (Schwarz, 1978).

ProbFOIL (De Raedt and Thon, 2010) combines the rule
learner FOIL (Quinlan and Cameron-Jones, 1993) with ProbLog.
Logical rules are learned from probabilistic data in the sense that
both the examples themselves and their classifications can be prob-
abilistic. The set of rules has to allow to predict the probability of
the examples from their description. In this setting, the parame-
ters (the probability values) are fixed and the structure has to be
learned.

SLIPCASE (Bellodi and Riguzzi, 2011) performs a beam search
in the space of LPADs by iteratively refining probabilistic theo-
ries and optimizing the parameters of each theory with EMBLEM.
This is possible as parameter learning is usually fast. SLIPCOVER
(Bellodi and Riguzzi, 2014) is an evolution of SLIPCASE that uses
bottom clauses generated as in Progol (Muggleton, 1995) to guide
the refinement process, thus reducing the number of revisions
and exploring more effectively the search space. Moreover, SLIP-
COVER separates the search for promising clauses from that of
the theory: the space of clauses is explored with a beam search,
while the space of theories is searched greedily. Both of them use
the log likelihood of the data as the guiding heuristics in the search
phases, evaluated by EMBLEM.

5. DISCUSSION AND DIRECTIONS FOR FUTURE WORK
PLP can be framed into the broader area of Probabilistic Program-
ming (PP), which is receiving an increasing attention especially
in the field of Machine Learning, as is testified by the ongo-
ing DARPA project “Probabilistic Programming for Advancing
Machine Learning.” PLP differs for the use of Logic Program-
ming, which provides a declarative reading of the programs. The
array of algorithms for performing inference with PLP is con-
stantly expanding, quickly approaching the variety of algorithms
available for other PP languages.

In the field of Statistical Relational Learning (SRL) (Getoor and
Taskar, 2007), relational probabilistic languages are used as the
representation of the data and of the theory to be learned. These
languages provide a compact way of specifying complex graphical
models but are not usually programming languages, i.e., they are
not Turing complete. SRL systems have achieved impressive results
on a plethora of datasets, especially the systems using Markov
Logic Networks (MLNs) (Richardson and Domingos, 2006). For
example, MLNs showed very good performances in link predic-
tion, entity resolution, and information extraction. Recently, the
performance of PILP systems has been compared with those using
MLNs with promising results. EMBLEM has been compared with
Alchemy (Richardson and Domingos, 2006) on the problem of
parameter learning and has achieved better results (Bellodi and
Riguzzi, 2012). A comparison (Bellodi and Riguzzi, 2014) of SLIP-
COVER with the LSM algorithm (Kok and Domingos, 2005) for
learning the structure of MLNs has shown that SLIPCOVER has
better performance. These results indicate that PLP is a viable alter-
native to mainstream SRL languages and that PILP is a promising
research area, given the better readability and Turing completeness
of PLP programs. The aim of PILP is to develop systems that are

fast, easy to configure and use, and that return accurate models on
a wide variety of domains.

There are many avenues for future research. Improving the effi-
ciency of inference is very important, since it is a basic component
of learning systems. The use of new languages for knowledge com-
pilation, such as Sentential Decision Diagrams (Darwiche, 2011)
is one possibility, as is the development of lifted inference systems.
In particular, the latter can be combined with techniques for iden-
tifying the portion of the program that is relevant to the query,
such as First-Order Bayes Ball (Meert et al., 2010), again without
grounding the model first.

Regarding learning systems, parameter learning should be com-
bined with lifted inference to speed up the process. Other forms
of parameter optimizations can be applied, drawing inspiration
from the algorithms developed for related formalisms such as
Markov Logic. For structure learning, other search approaches can
be investigated, such as local and randomized search, and methods
that learn the parameters and the structure at the same time can be
considered as Natarajan et al. (2012) do for Relational Dependency
Networks. Moreover, the configuration of PILP systems should be
simplified so that they can be used as much as possible out of the
box: at the moment, the user has to set many parameters; the aim
is to fully understand the effects of each parameter in order to
provide the user with strong guidelines.

AUTHOR NOTE
An earlier version of this paper appeared in the ALP
Newsletter (http://www.cs.nmsu.edu/ALP/2014/03/probabilistic-
inductive-logic-programming/).
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