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Humans possess only five senses and very
effectively coordinate their cross-sensory
perceptions to situate themselves in uncer-
tain operational environments for extract-
ing context relevant actionable intelligence.
Machines, on the other hand, may be
embodied with a wider variety of elec-
tronic sensing devices but lack such sit-
uational intelligence in interpreting the
sensed information. Despite significant
advances in sensing technologies, machine
perception remains primitive when com-
pared to human perception. Lack of sit-
uational intelligence results in processing
of large amounts of irrelevant information,
leading to the often cited “curse of dimen-
sionality” and computational explosions.
These, in turn, limit the power of data-
driven abstract reasoning and problem-
solving algorithms, cause a lack of focus
for drawing upon relevant past knowl-
edge, and inhibit situational learning. As
a consequence, autonomous systems can-
not be trusted to adapt their behavior to
unanticipated operational conditions. Cur-
rent behavior-based modeling approaches
address these issues by developing world
models that modularly decompose the
problem space. This requires a very detailed
and somewhat complete understanding of
the operational environments as a pre-
requisite. Yet, such models invariably prove
inadequate for real world operations due
to the rigidness of the decompositions.
Autonomous system designs, therefore, are
not robust and machine learning methods
remain brittle.

Situationally aware sensor fusion and
machine perception present a new fron-
tier in machine automation, which holds
the promise of unprecedented levels of
autonomy in executing complex tasks in
dynamic operational environments. The
goal of such automation is to accomplish

these tasks with the perception and adapta-
tion of humans, and often in collaboration
with humans. Several technological chal-
lenges must be addressed to further the
state-of-the-art toward this goal.

CONTEXT LEARNING AND IN SITU
DECISION ADAPTATION
Faced with the challenge of data to action
in a complex noisy world, research meth-
ods have emerged in diverse fields, over
the past decade, for machines to extract
current operational context from sensor
data. These include physics based environ-
mentally adaptive sensing models, inno-
vations in image and scene processing,
natural language processing, ubiquitous
computing, and cognitive neuroscience.
Current state-of-the-art research in these
areas attempts to extract operational con-
text for a specific sensing modality, like
visual or auditory context, which is not
relevant to other modalities. The notion
of context itself is often incoherent and
ill-defined across sensing modalities and
applications: image processing research
generally assumes only the visual scene
to be the context for object detection;
for human–machine interactions, context
is often the linguistic semantics in which
humans express the current instruction
to autonomous systems; for ubiquitous
or mobile computing, it is the comput-
ing environment, and in cognitive sciences,
context is often modeled via attention and
memory. In a multi-sensor operational
environment, involving both hard and soft
sensing modalities, a broad unified notion
of context is needed. This notion should
characterize situations in the physical,
electronic, or tactical environments that
affect the acquisition and interpretation
of heterogeneous sensor data for machine
perception and adaptation to specified

goals. Furthermore, it is often necessary to
iteratively sense the context automatically
and treat it as an implicit dynamic input
to the application for robust context-aware
operations.

In their 2013 paper, Blasch et al. (2013)
survey recent research efforts to accommo-
date the effects of context in information
fusion for target tracking applications. Sev-
eral of these approaches attempt to miti-
gate the effects of context on the feature
space by designing statistical detection and
classification algorithms that are invari-
ant to context changes. However, feature
extraction techniques often do not adapt
well to the highly non-linear and non-
stationary effects of the operational envi-
ronment. An alternate approach to improv-
ing detection performance is to exploit dif-
ferences in sensor behaviors across envi-
ronments and treat them as a supplemen-
tal source for context-dependent-learning.
This approach was recently proposed in
Frigui et al. (2010) for learning regions of
similar responses for each sensor. Formal-
izing this approach, a mathematical charac-
terization of machine extractable context,
applicable to all sensing modalities rele-
vant to an application, was recently pre-
sented in Phoha et al. (2014), with the
objective of enabling contextual decision-
making in dynamic data-driven classifica-
tion systems. Both intrinsic context, i.e.,
factors, which directly affect sensor mea-
surements, as well as extrinsic context, i.e.,
factors that do not affect sensor measure-
ments directly, but affect the interpretation
of observed data, were analytically formu-
lated. This analytical foundation can be
used to characterize and represent situa-
tional intelligence for multi-sensor multi-
target applications. Further work in inte-
grating data-driven and model based meth-
ods for context learning, discovery of new
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contexts that were not labeled during the
training phase, and dynamic modeling of
context drift, remain promising research
areas for improving machine perception
and machine learning via situational intel-
ligence.

CROSS-SENSORY FUSION
Today’s intelligent machines operate on
a sensing infrastructure for measurement,
communication, and computation with
which they perceive the evolution of phys-
ical dynamic processes in their opera-
tional environment. Sensors require phys-
ical interaction with sensed phenomena
to generate time series of measurements
(temperature, pixel intensity, etc.) of the
evolutionary dynamics caused by physical
stimuli. Thus, they are subject to a number
of noise factors. The multivariate Informa-
tion Space generated by these time series
represents an amorphous computing envi-
ronment of high dimensionality with much
redundancy. Furthermore, sensors of dif-
ferent modalities are subject to contextu-
ally variable performance in noisy envi-
ronments. To extract reliable information
from multi-modal sensors, soft or hard, it
is necessary to more fully exploit their het-
erogeneity by fusing complementary infor-
mation across modalities. Extant informa-
tion fusion literature exploits this hetero-
geneity very minimally. Usually, decision-
level fusion algorithms fuse the probabil-
ity distributions generated independently
by each sensor into a single decision. For
humans, this is equivalent to fusing the
perceptions of a blind person and a deaf
person, instead of coordinating visual and
aural sense perceptions of one individ-
ual. Causal information regarding feature
level dependencies is lost in this process.
Machine perception methods are needed,
which more fully exploit sensor dependen-
cies at the feature level. Contextual com-
plementarity of heterogeneous sensors, for
example, can be used to overcome sens-
ing inaccuracies or data incompleteness.
Just as humans can aptly coordinate their
visual and auditory information to dis-
ambiguate scenes or sounds, automated
algorithms are needed that exploit cross-
sensor dependencies. These algorithms will
exploit sensor-specific non-linear and non-
stationary effects such as phase transitions
caused by physical stimuli. Addressing the
scientific and engineering challenges of

deriving actionable intelligence from mul-
tiple sources of electronic inputs, with dif-
fering modality and contexts, is particularly
important for adapting the behaviors of
physical systems. Situationally intelligent
synthesis of autonomous heterogeneous
sensors will enable more robust and accu-
rate perception of a physical process than
what is possible from traditional meth-
ods of fusing perceptions of independent
single-sensors.

CHARACTERIZING ACTION DYNAMICS
Information in a signal is physically
encoded as patterns of organization
(Stonier, 1990). Patterns in raw data are
noise perturbed manifestations of causal
structural relationships – spatial, tempo-
ral, or informational. There is compelling
evidence that both perception of action
(particularly visualization of events) and
action itself are composed of certain invari-
ant primitives that are performed with
a certain structure (Verfaillie and Daems,
2002). Machine perception of multi-object
action dynamics is the next challenge in
this area. Fundamental innovations in sig-
nal representation methods are needed to
discover action primitives in data streams
as mathematical objects, and their organi-
zational structure formulated as a gener-
ative grammar (Jerne, 1993) to synthesize
them into higher level concepts. Treating
these primitives as words formed from a
symbolic representation of the Informa-
tion Space, and their organizational struc-
ture as the generating grammar for event
synthesis, a complex multi-object inter-
action in the real world can itself be
described as a trajectory of words in a
structured formal language. The formal
language will consist of all possible tra-
jectories in the Information Space. In the
existing scientific literature, such models
are heuristically abstracted from human
understanding, and are almost always inad-
equate machine representations of the
causal dynamics that generate the system
trajectories. General purpose approaches
are needed for rigorous constructive meth-
ods to discover the formal computational
language (words and grammar) embedded
in the observed sensor data as the most
likely scientific mechanism that would gen-
erate system trajectories that preserve the
statistics of the observed dataset. Such a sci-
entific mechanism endows a probabilistic

computational language to autonomous
systems to characterize and explore the
causal structure of the vast Information
Space. Such characterizations can be used
to address today’s fundamental limitations
of machine perception, characterize multi-
object interactions, enable cross-sensory
disambiguation, and improve machine
learning and contextual decision making.
Mathematically rigorous concepts of sym-
bolization, syntactic abstraction, and simi-
larity are needed to construct the com-
bined algebraic and topological structure
of the Information Space. These funda-
mental advances will enable the modeling
of causal dependencies between emerg-
ing primitives of action captured in data
streams and development of algorithms for
prediction and inference. Initial research
in this direction is presented in Wen
et al. (2013). Thus, a general probabilis-
tic theory for characterizing the multi-
modal information dynamics is needed
to simultaneously support in situ data
compression and situation awareness for
the entire spectrum of information analy-
ses from data collection to actionable
intelligence.

OTHER TECHNOLOGY CHALLENGES
Another technology challenge that will
accelerate and promote the progress in
machine perception and cognition of
sensed information is that of percep-
tual user interfaces that add human
understandable rendering of complex data
sources and facilitate human–machine
interactions.

These and other innovations in machine
perception are essential for harnessing
the potential of a dynamic data-rich
world through multi-sensor, multi-level,
data-to-decision approaches. They will
enable unprecedented levels of depend-
able autonomy for traditional applica-
tions such as surveillance, object classifi-
cation, target tracking, pattern discovery,
machine learning, and data mining. In
addition, they will enable new develop-
ments in cyber physical systems that will
improve our quality of life in fields such
as remote health care, emergency response,
traffic flow management, power genera-
tion and delivery, machinery condition
monitoring and diagnostics, geo-spatial
analyses, social networking, economy, and
humanities.
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