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In this paper, I review recent work in evolutionary robotics (ER), and discuss the perspec-
tives and future directions of the field. First, I propose to draw a crisp distinction between
studies that exploit ER as a design methodology on the one hand, and studies that instead
use ER as a modeling tool to better understand phenomena observed in biology. Such a
distinction is not always that obvious in the literature, however. It is my conviction that ER
would profit from an explicit commitment to one or the other approach. Indeed, I believe
that the constraints imposed by the specific approach would guide the experimental design
and the analysis of the results obtained, therefore reducing arbitrary choices and promoting
the adoption of principled methods that are common practice in the target domain, be it
within engineering or the life sciences. Additionally, this would improve dissemination and
the impact of ER studies on other disciplines, leading to the establishment of ER as a valid
tool either for design or modeling purposes.
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INTRODUCTION
For about 25 years, evolutionary robotics (ER) has aroused much
interest for its ability to automatically synthesize robots and their
behavior, and to model the emergence of adaptive abilities within a
Darwinian selection process (Lipson, 2005; Floreano et al., 2008).
Soon after its introduction, ER demonstrated a great potential for
synthesizing efficient robot controllers that exploit the properties
of a fine-grained sensorimotor coordination. Similar results were
difficult to obtain with traditional engineering/AI approaches,
mainly due to the lack of precise models to deal with the inherent
stochasticity and uncertainty of the robot–environment inter-
action. However, the continuous development of better robots
with more precise and informative sensors, together with more
advanced techniques and control approaches, has eroded the
advantage that ER first manifested, at least in the single-robot
domain (Thrun et al., 2005; Siegwart et al., 2011; Zucker et al.,
2011). At the same time, the scope of ER studies significantly
broadened, in the attempt to provide solutions to the control
problems of ever more complex robotic systems (Paul et al., 2006;
Baldassarre et al., 2007), as well as to address problems relevant
to cognitive sciences and evolutionary biology (see, for instance,
Tuci et al., 2011; Wischmann et al., 2012). Unfortunately, this
broadening has not led to the establishment of ER as a mature
discipline. In my opinion, the causes are to be found in the obser-
vation that ER studies often oscillate between incompatible lines
of action, in which both modeling and design approaches are
present. It is my conviction that this problem is a by-product of
the strong bio-inspiration that informs ER studies. In advocating
a resurgence of ER in mainstream robotics, Stanley (2011) states
that “when applied to robotics, evolutionary algorithms should
produce artifacts that remind us of nature, which provides our
primary inspiration for running evolution in the first place.” If this
is acceptable when the target is producing robots that display “the
robustness and fluidity of organisms in nature” (Stanley, 2011), it

also bears the risk of promoting studies that veer between provid-
ing design solutions and modeling biological phenomena. Indeed,
it is clear that much work in ER is affected by the difficulty of
disentangling modeling biological systems from designing arti-
ficial ones. I believe that sensible progress can be achieved only
through a strong commitment to one or the other approach, in
order to convey clear-cut messages and unlock the full potential of
ER. It is important to acknowledge that the need to shift toward
a sharper distinction between modeling and design has recently
started to be recognized in the community, as also demonstrated
by several studies that maintain either one or the other stance. This
paper seeks to reinforce this attitude by providing a selection of
studies that should be considered as best practice (see Section
Design and Section Model). Far from being a comprehensive
review of the field, the handful of selected papers contains several
methodological aspects that should be followed in future studies
to properly exploit the potential of ER in modeling biological sys-
tems or designing artificial ones. The interested reader can refer
to recent reviews highlighting the variety of methodologies and
problems addressed in ER (Floreano and Keller, 2010; Bongard,
2013; Bongard and Lipson, 2014; Doncieux and Mouret, 2014).

DESIGN
As mentioned above, ER has been proposed principally as an
automatic design methodology for robotic systems, following the
idea that the experimenter would be exempted from arbitrary,
sub-optimal choices in the definition of the robot controller, and
leaving to the evolutionary machinery the burden of finding the
best controller for a given performance metric. In this respect, it
is tempting to consider the evolutionary algorithm as a black-box
optimization tool for the robotics problem at hand, following the
misconception that biological evolution always produces optimal
designs. However, as noted by Doncieux and Mouret (2014), ER
is not black-box optimization: there exist several design choices
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that interact with the optimization process, and determine its fate.
In other words, the definition of an ER experiment requires sev-
eral choices that de facto shift the engineering problem from the
robotic system to the evolutionary setup (Trianni and Nolfi, 2011).
Each choice may introduce selective pressures and/or alter the
search space (Doncieux and Mouret, 2014), and needs to be per-
formed with a principled methodological approach. Without a
strong commitment to produce an engineering methodology, the
success of ER as a design tool is bounded by the ingenuity of the
experimenter. It is therefore necessary to abandon the approach in
which ER should work just because it is a model of natural evo-
lution, and instead focus on providing design guidelines and/or
task-independent methods that make ER suitable for engineering
robotic systems. Trianni and Nolfi (2011) identify four different
aspects that need to be correctly engineered in ER. In the following,
I report these four aspects and review some related work.

The robot morphology and sensorimotor configuration consti-
tutes the interface between the external world and the control
system. This also includes the processing of raw sensor readings
(e.g., feature extraction from the camera images), of actuator
outputs (e.g., redundant encodings), as well as the definition of
communication protocols. The correct engineering of the robot
configuration can lead to improved performance: Trianni and
Nolfi (2011) demonstrate how an appropriately defined communi-
cation protocol can lead to better scalability in a synchronization
task with respect to the naive protocol previously defined (Tri-
anni and Nolfi, 2009). Similarly, Fehérvári et al. (2013) show the
performance difference related to varying sensorimotor configu-
ration in the evolution of a coordinated motion behavior. These
studies demonstrate that an appropriately defined sensorimotor
configuration can ease the evolutionary process in finding opti-
mal solutions. Pushing the concept further, Pfeifer et al. (2007)
introduced morphological computation as the ability of the physical
body to perform actual computations in support of the organism
adaptive behavior [see also Paul (2006)]. It is therefore possible –
and sometimes advisable – to co-evolve the robot morphology
and control system, because certain aspects of the brain–body–
environment dynamics can be devolved to appropriately defined
morphologies and can result in more robust and efficient systems.
For instance, Bongard (2010) demonstrates that the advantage of
placing the robot’s morphology under evolutionary optimization
increases with task complexity.

The genotype-to-phenotype mapping represents the link
between the evolutionary algorithm and the robotic system. The
choice of the mapping clearly influences the efficiency of the evo-
lutionary optimization. The most common approach is the usage
of a direct encoding that provides a one to one correspondence
between genotype and phenotype. However, indirect encodings
may prove particularly beneficial for complex tasks presenting
some regularity (Clune et al., 2011). Mapping genotype to pheno-
types is also challenging in the collective robotics context, where
it is necessary to specify the behavior of a group/team of robots.
Lichocki et al. (2013) demonstrate how to engineer an evolution-
ary experiment when a single genotype encodes the control system
for the whole team. Instead, when genotypes define the controllers
of individual robots, it is necessary to appropriately assemble the
groups from multiple genotypes. Here, genetic relatedness has a

bearing in the evolution of collective behaviors, as shown by Waibel
et al. (2009) in a foraging task.

The fitness function and the evolutionary algorithm determine
the way in which potential solutions are retained or discarded,
and how the search space is explored. In ER, much attention has
been dedicated to the definition of the fitness function, while algo-
rithms have been mostly mediated from research in evolutionary
computation. Nelson et al. (2009) provide a comprehensive review
of the different methods employed to define the fitness function.
Improvement on conventional methods can be achieved by tech-
niques that enhance the ability to search the space of all potential
solutions. Trianni and López-Ibáñez (2014) discuss the usage of
multi-objective optimization in ER, and identify the related advan-
tages. Lehman and Stanley (2011) propose “novelty search” as a
methodology of avoiding deception from ill-defined fitness func-
tions, and to explore the solution space more widely. Mouret and
Doncieux (2012) join the advantages of task-specific metrics and
novelty search in a multi-objective optimization paradigm, show-
ing its superiority with respect to other approaches to maintain
diversity during task-dependent evolution. For a broad review of
selective pressures in ER (not limited to the fitness function and
the evolutionary algorithm), see Doncieux and Mouret (2014), in
which a broad division is proposed among techniques to refine the
goal of the evolutionary optimization and techniques to support
the search process.

The ecological context represents the possible task variations
that need to be tackled. This normally corresponds to varying
starting positions of the robots, as well as varying parameters of
the task environment. The way in which the ecological context is
explored during the evolutionary optimization may produce selec-
tive pressures that have a bearing on the flexibility and robustness
of the generated solutions [see also the already mentioned review
by Doncieux and Mouret (2014)]. For instance, Ampatzis et al.
(2008) show that communication and cooperation evolve solely
as a result of the ecological conditions encountered by the evolv-
ing robots. The ecological context also has a bearing on the so
called “reality gap” problem, that is, the difficulty in transferring
controllers evolved in simulation to the real world. Recent stud-
ies propose to alternate evolution in simulation with tests on the
real robot, in order to reduce the effect of simulation errors (Bon-
gard et al., 2006; Koos et al., 2013). Francesca et al. (2014) frame
this problem – and more generally, the generalization problem
in ER – as the bias–variance trade-off well studied in machine
learning. They propose the automatic optimization of probabilis-
tic finite state machines, which allow us to inject some “bias” from
the experimenter and conversely to reduce the variance in the
obtained results, obtaining more robust solutions, which also effi-
ciently transfer to real robots. A radically different approach to
deal with the ecological context is to resort to embodied evo-
lution, having the evolutionary algorithm running on a group
of physical robots while they perform their task. Bredeche et al.
(2012) introduce a task-independent method for environment-
driven adaptation, in which selective pressures are determined
solely by the ability of genotypes to diffuse within the robot
population. Haasdijk et al. (2014) propose an approach to embod-
ied evolution in which both environment-driven adaptation and
task-specific selective pressures are present. In both systems, it
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is possible to continuously adapt to unknown and dynamically
changing environmental conditions.

MODEL
Modeling has always been an important component of evolution-
ary computation studies when applied to the behavior of artificial
agents. Modeling studies were originally developed within the
Artificial Life and Adaptive Behaviors communities. Here, robots
are considered as artificial organisms immersed in a synthetic
ecology, and are often referred to as “animats” (Meyer and Wil-
son, 1991). In this context, ER offers the unique possibility to
run evolutionary experiments in silico, where robotic organisms
undergo a Darwinian selection process that shapes their morphol-
ogy and behavior within the given ecological context. In principle,
ER allows us to identify the causal relationship between selective
pressures and adaptive traits, thanks to the possibility of having
complete control over the evolutionary process. In this context,
the modeling effort is focused on the evolutionary dynamics. Wis-
chmann et al. (2012) showed that evolutionary drift can determine
the communication strategy adopted by a population of robots
engaged in a foraging scenario, and showed the existence of a
trade-off between communication efficiency and robustness from
invasion of different strategies. Mitri et al. (2011) studied a popula-
tion of evolving robots competing for food, and demonstrated that
genetic relatedness influences the reliability of the emitted signal:
the higher the genetic relatedness, the lower the signal ambiguity.
In non-homogeneous groups, genetic relatedness can compensate
for the costs of cooperation, as theorized by Hamilton (1964).
An experimental demonstration of Hamilton’s theory has been
provided by Waibel et al. (2011) by evolving robots for coopera-
tion and carefully controlling the genetic relatedness. Olson et al.
(2013) provided an experimental demonstration of the emergence
of swarming behavior as a means to confound predators. When
the perceptual accuracy of predators is reduced by the presence of
multiple aggregated agents, swarming spontaneously evolves in the
prey population. By co-evolving predators and prey, Olson et al.
(2013) also found that predators evolve a refined perceptual system
to reduce the confusion effect, similar to that observed in nature
for predators specialized in hunting of swarming animals. Elfwing
and Doya (2014) propose an artificial ecology in which polymor-
phic mating strategies emerge as a result of opposing pressures
to collect energy and mate with conspecifics, and demonstrate
the evolutionary stability of polymorphism and its relation to the
availability of energy resources in the environment. Finally, Auer-
bach and Bongard (2014) studied the influence of environmental
features on the morphological complexity of virtual creatures in
which the whole body plan and its motion control were under evo-
lutionary pressure for efficient locomotion. They conclude that the
environment plays a crucial role in determining the complexity of
the body plan, which is varied to match the requirements imposed
by the complexity of the locomotion problem.

In contrast with the evolutionary studies mentioned above, ER
can be exploited to automatically generate animats with relevant
behavioral and cognitive abilities. In this case, artificial evolution
serves just as the optimization process, and could in principle
be replaced by any other method of synthesizing the animat. In
other words, the modeling effort focuses on the animat itself, and

not on the process of obtaining it. One of the most influential
approaches in this respect consists in minimizing the complex-
ity of the animat and its environment in order to focus only on
the phenomenon of interest. Beer (2003) introduced the concept
of “minimally cognitive behavior”, that is, “the simplest behav-
ior that raises issues of genuine cognitive interest”. In this study,
Beer (2003) shows how a categorical perception problem can be
solved through the coupled brain–body–environment dynamics
displayed by a minimalistic agent. The task requires the agent to
categorize the shape of 2D objects, which can be either circles or
diamonds. The minimalistic agent moves on a line to catch or
avoid objects while they fall, and perceives them solely through
proximity sensors that give no direct information on their shape.
Categorization is operationally defined as the ability to catch cir-
cles and avoid diamonds. The study is a prototypical case in which
a supposedly complex cognitive ability is demonstrated in a very
simplified system, which however preserves the relevant brain–
body–environment interactions that pertain to biological systems
(Beer, 2003). Following this study, a number of similar minimal-
istic approaches have been proposed to account for the emergence
of cognition in artificial systems (Barandiaran, 2006; Dale and
Husbands, 2010; Buhrmann et al., 2013; Iizuka et al., 2013). In
few cases, a specific parallel with the target biological system has
been proposed. Froese and Di Paolo (2010) showed that structured
interaction between agents can be achieved without postulating
the need for internalization of the other’s mental state. They repli-
cated a minimalist experiment of perceptual crossing performed
with human subjects (Auvray et al., 2009), showing that evolved
agents could solve the problem solely on the basis of the interac-
tion dynamics. Vickerstaff and Di Paolo (2005) present a model
of path integration displayed by desert ants (Cataglyphis fortis).
Contrary to previous approaches, they make no a priori assump-
tion about the neural encoding of path information, and instead
use ER to build a complete brain–body–environment model. The
results show adherence with observations of the ants’ behavior,
such as systematic navigation errors and local search of the target
destination.

The minimally cognitive behavior approach is not the only way
of exploiting ER as a modeling tool. The relevance of ER models is
discussed by Seth (2007), who proposes a model of action selection
grounded on sensorimotor processes, and shows that apparently
irrational behavior is the result of action selection mechanisms
evolved in response to the peculiar ecological conditions. The
importance of ER models of adaptive behavior is revealed also by
an attentive analysis beyond qualitative observation. For instance,
Matsuda et al. (2014) explore deliberative decision-making in an
ER model, showing that robust deliberation is linked to the cou-
pled effects of continuous learning abilities and rich sensorimotor
experiences. Finally, Sellers and colleagues exploited the strengths
of ER to model plausible gaits of extinct species, from the Aus-
tralopithecus afarensis (Sellers et al., 2005) to sauropod dinosaurs
(Sellers et al., 2013). Starting from fossil traces, a 3D musculoskele-
tal simulation is built and its parameters optimized to maximize
speed and/or minimize energy costs, allowing Sellers et al. to test
hypothesis about the plausibility of different gaits and the exis-
tence of mechanisms to support the generation and accumulation
of forces.
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DISCUSSION
The selected studies presented in this paper demonstrate that ER
has a strong potential both for the design of complex robotic sys-
tems and for the study of biological ones. However, this potential
can be easily dissipated without a clear commitment to produce
high-quality studies that focus on the relevant aspects of either
modeling or design. To maximize the potential of ER, it is useful to
recall a distinction proposed by Mitri et al. (2012) about the usage
of (evolutionary) robotics to model biological systems, which may
be either exploratory or hypothesis-driven. In the former, exper-
iments are conducted to understand the possibilities offered by
robotics and ER as a modeling tool, with the goal of providing
existence proofs and producing novel testable hypotheses (Har-
vey et al., 2005). In the latter, the experimental effort is dedicated
toward testing specific hypotheses, and the whole experimental
design is conceived for this purpose. I maintain that a similar
dichotomy should be established also for the design approach, in
which exploratory studies investigate the potential for evolution-
ary methods to provide solutions to a specific control problem,
while hypothesis-driven studies are focused toward methodolog-
ical aspects as well as the demonstration of the advantages and
disadvantages of ER with respect to other approaches. In my opin-
ion, exploratory studies are the most susceptible to find themselves
in the limbo between modeling and design: they suffer a high risk
of adding very little to the current knowledge and are likely to
pass unnoticed by either community. Exploratory studies should
therefore be restricted to the extension of ER into novel terri-
tories [e.g., automatic design of robots with soft/unconstrained
bodies, see Hiller and Lipson (2012)]. It is under these condi-
tions that exploration can prove beneficial, as it can allow us to
unlock the potential of both the design methodology and the tar-
get domain. Otherwise, hypothesis-driven focused studies should
be preferred.

From a design perspective, ER would benefit from further stud-
ies tailored to characterizing the influence of certain design choices
on the expected performance. It is necessary to isolate the different
aspects that need to be defined and study their effect to evolution-
ary efficiency [e.g., as done with the effects of genetic relatedness
and selection level on task performance by Waibel et al. (2009)].
This would better delineate the features of ER as a design tool,
and would produce guidelines, which benefit developers who wish
to exploit ER for their applications. Novel algorithmic solutions
and design methods should also be proposed, and systematically
contrasted with the state of the art, possibly in the context of a well-
conceived benchmarking exercise (Clune et al., 2011; Mouret and
Doncieux, 2012; Trianni and López-Ibáñez, 2014). Benchmarking
would also be useful with respect to other control approaches,
in order to identify the benefits and drawbacks of ER against
the methodologies developed in other domains. Given the wide-
ranging scope of ER studies, multiple benchmarking exercises
could be proposed for different applications, and the proposed
techniques tested against one or more test suites. Finally,hybridiza-
tion of ER with other control approaches could prove beneficial,
above all to provide solutions to application-specific problems.

For what concerns modeling, ER is especially fruitful when it
is impossible or unpractical to run experiments directly with the
biological system, either as laboratory or field work. In particular,

the evolution of adaptive traits and cognitive responses is tightly
linked to ecological and social conditions. These conditions are
extremely difficult or impossible to be controlled and replicated
with empirical studies, while they can be completely managed in
evolutionary simulations (Adami, 2006). Therefore, ER can prove
highly beneficial for testing general hypotheses about behavioral
mechanisms and evolutionary dynamics. A tenet of ER is the rel-
evance of situatedness and embodiment in (the evolution of)
behavior and cognition. Therefore, experimental studies should
refrain of tackling issues where situatedness and embodiment have
a minor impact. Reducing the complexity of the evolving agents
allows us to focus only on the relevant issues [e.g., minimally cog-
nitive behaviors à la Beer (2003)]. In this respect, it is not always
necessary to refer to a real robotic system, but simulated agents can
be sufficient as long as situatedness and embodiment are properly
accounted for [e.g., the predator–prey interaction studied by Olson
et al. (2013)]. Real robotic systems instead are mostly useful when
the physical body and the way in which the world is perceived
through physical sensors may have a bearing on the phenomena
under study [see a similar discussion by Mitri et al. (2012)].

Whether the animat approach is suitable for modeling biolog-
ical phenomena is a highly debated issue [see the target article by
Webb (2009) and the responses from several authors in the same
journal issue]. In the ER context, considerable caution is needed
given that artificial evolution is a very simplified model of natural
evolution. In my opinion, however, it is wrong to a priori pro-
scribe ER as a modeling tool, but it is necessary to evaluate case
by case whether the proposed ER model can be of some value.
This will be facilitated by a stronger interaction with (evolution-
ary) biology, through a better knowledge of the related literature as
well as through the use of proper language and suitable analytical
tools. Indeed, by studying artificial systems with the tools normally
employed for biological ones, it may be easier to identify differ-
ences and similarities, and in parallel attempt to determine those
causal relationships that escape conventional research in biology
[e.g., the relationship between genetic relatedness and signal reli-
ability studied by Mitri et al. (2011)]. In behavioral studies, the
experimental setup should ideally be replicable also with biologi-
cal systems (Froese and Di Paolo, 2010), to attempt a generalization
of the identified results and possibly a direct comparison (Morlino
et al., 2014).

To conclude, I believe that there is much room for exciting
research in ER, be it for modeling or design purposes. To maxi-
mize the impact of future studies over ER and other disciplines,
ER practitioners are advised to frame their studies in a hypothesis-
driven way, which appears to me the best approach for a successful
research program.
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