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This paper proposes a feature extraction and fusion methodology to perform fault detec-
tion and classification in distributed physical processes generating heterogeneous data.
The underlying concept is built upon a semantic framework for multi-sensor data inter-
pretation using graphical models of Probabilistic Finite State Automata (PFSA). While
the computational complexity is reduced by pruning the fused graphical model using an
information-theoretic approach, the algorithms are developed to achieve high reliability
via retaining the essential spatiotemporal characteristics of the physical processes. The
concept has been validated on a simulation test bed of distributed shipboard auxiliary
systems.
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1. INTRODUCTION
Sensor fusion has been one of the major focus areas in data
analytics for distributed physical processes, where the individual
sensory information is often used to reveal the underlying process
dynamics and to identify potential changes therein. Distributed
physical processes are usually equipped with multiple sensors
having (possibly) different modalities over a sensor network to
accommodate both model-based and data-driven diagnostics and
control. The ensemble of distributed and heterogeneous infor-
mation needs to be fused to generate accurate inferences about
the states of critical systems in real time. Various sensor fusion
methods have been reported in the literature to address the fault
detection and classification problems; examples are linear and
non-linear filtering, adaptive model reference methodologies, and
neural network-based estimation schemes.

Researchers have used multi-layer perceptron (Liu and Scher-
pen, 2002) and radial basis function (Haykin, 1999) configurations
of neural networks for detection and classification of plant compo-
nent, sensor, and actuator faults (Napolitano et al., 2000). Hidden
Markov Models and Gaussian Mixture Models are used on Multi-
scale fractal dimension as features for bearing fault detection
in Marwala et al. (2006). Similarly, principal component analy-
sis (Fukunaga, 1990) and kernel regression (Shawe-Taylor, 2004)
techniques have been proposed for data-driven pattern classifi-
cation. These approaches address non-linear dynamics as well
as scaling and data alignment issues. However, the effectiveness
of data-driven techniques may often degrade rapidly for extrap-
olation of non-stationary data in the presence of multiplicative
noise. Some of the above difficulties can be alleviated to a certain
extent by simplifying approximations along with a combination
of model-based and data-driven analysis as discussed below.

Robust filtering techniques have been developed to gen-
erate reliable estimations from sensor signals, because sensor
time-series data are always noise-contaminated to some extent

(Gelb, 1974; Grewal and Andrews, 2001). Recent literature has also
reported Monte Carlo Markov chain (MCMC) techniques [e.g.,
particle filtering (Andrieu et al., 2004) and sigma point techniques
(Julier et al., 2000)] that yield numerical solutions to Bayesian state
estimation problems and have been applied to diverse non-linear
dynamical systems (Li and Kadirkamanathan, 2001). The perfor-
mance and quality of estimation largely depend on the modeling
accuracy, which is the central problem in the filtering approach;
either the dynamics must be linear or linearized, or the data must
be strictly periodic or stationary for the linear models to be good
estimators. It is noted that the estimation error could be con-
siderably decreased with the availability of high-fidelity models
and usage of non-linear filters, which require numerical solutions;
such numerical methods are usually computationally expensive
and hence may not be suitable for real-time estimation. Many tech-
niques of reliable state estimation have been reported in literature;
examples are multiple model schemes (Gopinathan et al., 1998),
techniques based on analytical redundancy and residuals (Gertler,
1988), and non-linear observer theory (Garcia and Frank, 1997).
Regarding sensor fusion, abnormal Patterns from Heterogeneous
Time-Series have been selected via homogeneous anomaly score
vectorization for Fault Event Detection (Fujimaki et al., 2009). In
essence, the information from multiple sources must be synergis-
tically aggregated for diagnosis and control of distributed physical
processes (e.g., shipboard auxiliary systems).

This paper presents the development of a sensor data fusion
method for fault detection and classification in distributed phys-
ical processes with an application to shipboard auxiliary systems,
where the process dynamics are interactive. For example, the
electrical system is coupled with hydraulic system with time-
dependent thermal load. The challenge here is to mitigate several
inherent difficulties that include: (i) non-stationary behavior of
signals, (ii) diverse non-linearities of the process dynamics, (iii)
uncertain input-output and feedback interactions and scaling,
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Sarkar et al. Sensor fusion for distributed systems

and (iv) alignment of multi-modal information and multiplicative
process noise.

The sensor fusion concept, proposed in this paper, is built
upon the algorithmic structure of symbolic dynamic filtering
(SDF) (Ray, 2004). A spatiotemporal pattern network is con-
structed from disparate sensors and the fully connected network
is then pruned by applying an information-theoretic (e.g., mutual
information-based) approach to reduce computational complex-
ity. The developed algorithms are demonstrated on a test bed that
is constructed based on a notional MATLAB/Simulink model of
Shipboard Auxiliary Systems, where a notional electrical system is
coupled with a notional hydraulic system under a thermal load.
A benchmark problem is created and the results under different
performance metrics are presented.

The paper is organized in five sections including the present
one. Section 2 presents the semantic framework for multi-sensor
data modeling and explains how the proposed technique is
used to prune the heterogenous sensor network for informa-
tion fusion. Section 3 describes the test bed that is constructed
based on a notional MATLAB/Simulink model to simulate ship-
board auxiliary systems. Section 4 presents a fault injection
scheme for conducting simulation exercises and validates the
fault detection accuracy for different scenarios in the proposed
method of information fusion. Finally, the paper is summa-
rized and concluded in Section 5 with recommendations of
future work.

2. MULTI-SENSOR DATA MODELING AND FUSION
This section presents a semantic information fusion framework
that aims to capture temporal characteristics of individual sen-
sor observations along with co-dependence among spatially dis-
tributed sensors. The concept of spatiotemporal pattern net-
works (STPNs) represents temporal dynamics of each sensor and
their relational dependencies as probabilistic finite state automata
(PFSA). Patterns emerging from individual sensors and their
relational dependencies are called atomic patterns (AP) and rela-
tional patterns (RP), respectively. Sensors, APs, and RPs are repre-
sented as nodes, self-loop links, and links between pairs of nodes,
respectively, in the STPN framework.

2.1. MODELING OF TEMPORAL DYNAMICS OF INDIVIDUAL SENSOR
DATA

This subsection briefly describes the concept of symbolic dynamic
filtering (SDF) (Ray, 2004) for extracting atomic patterns from
single-sensor data. The key concepts of SDF are succinctly
presented below for completeness of the paper.

Symbolic feature extraction from time-series data is posed as
a two-time-scale problem that is depicted in Figure 1. The fast
scale is related to the response time of the process dynamics. Over
the span of data acquisition, dynamic behavior of the system is
assumed to remain invariant, i.e., the process is quasi-stationary
at the fast scale. On the other hand, the slow scale is related to
the time span over which non-stationary evolution of the system
dynamics may occur. It is expected that the features extracted from
the fast-scale data will depict statistical changes between two dif-
ferent slow-scale epochs if the underlying system has undergone a
statistical change.

The algorithms of symbolic dynamic filtering (SDF) are formu-
lated via symbolization of the time-series generated from dynam-
ical systems along with subsequent state machine construction.
The next step is the computation of the state probability vectors
(or symbol generation matrices) as representatives of the statistical
nature of the evolving dynamical system. To achieve this goal, the
time-series data are partitioned by maximum-entropy partition-
ing (MEP) (Rajagopalan and Ray, 2006) to construct the symbol
alphabet gma for generating symbol sequences. In this way, the
information-rich regions of the time-series form finer partition-
ing and those with sparse information are partitioned coarser; the
objective here is to maximize the Shannon entropy (Cover and
Thomas, 2006) of the symbol sequence.

In the left hand corner of Figure 2, each cell is labeled by a
symbol, where the alphabet of all these symbols is denoted by 6.
If 6= {α, β, γ , δ}, then a time-series x0, x1, x2. . . would generate
a symbol sequence as: s0, s1, s2. . ., where si ∈6. Starting from an
initial state, this mapping is called symbolic dynamic representa-
tion of the dynamical system as seen in the top right hand corner
of Figure 2. The time-series data at an epoch tk is used to com-
pute the state-transition probabilities πk

ij , of moving from state qi

to state qj upon occurrence of a symbol, and the state probabili-

ties pk
j , i.e., the probability of being in the state qj at time epoch

tk. The stochastic stationary irreducible state-transition matrix is
obtained as: 5k , [πk

ij ], i = 1, 2, · · · , |Q|, j = 1, 2, · · · , |Q|,

and the corresponding state probability vector is obtained as:
pk , [pk

1 , · · · , pk
|Q|], where |Q| is the cardinality of the set

Q of PFSA states, i.e., the number of PFSA states. The quasi-
stationary statistics of the symbol sequence represented by the
state-transition matrix 5k at a (slow time scale) epoch tk may

FIGURE 1 | Notion of two-time-scale dynamics.

FIGURE 2 | Construction of finite state automata (FSA) for symbolic
dynamic filtering (SDF).
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Sarkar et al. Sensor fusion for distributed systems

evolve to 5l at a future epoch tl. A viable candidate for the pat-
tern at an epoch tk is the (|Q|× |6|) symbol generation matrix

(also called morph matrix) 5̃
k

whose elements are the probabil-

ities of symbols generated at the PFSA states. It is noted that 5̃
k

carries more information than the respective pk at the expense of
higher dimensionality. The scalar-valued non-negative measure at
an epoch tk is obtained as the divergence [e.g., Euclidean distance,
or Kullback–Liebler divergence (Cover and Thomas, 2006)] d(pk,

p0) [resp., d(5̃
k
, 5̃

0
)] between the current pattern pk [resp., 5̃

k
]

from the reference pattern p0 [resp., 5̃
0
] at the nominal condition

denoted by the superscript “0.”
The core assumption in the construction of SDF is that the

symbolization process under both nominal and faulty conditions
is approximated as a Markov chain of order D (a positive integer),
which is called the D-Markov machine. While the details of the D-
Markov machine are given in Ray (2004), Adenis et al. (2012), and
Li et al. (2014), the pertinent definitions and their implications are
presented below.

Definition II.1. A deterministic finite state automaton (DFSA) is
a 3-tuple G= (6, Q, δ) where (Ray, 2004; Adenis et al., 2012; Li
et al., 2014):

(1) 6 is a non-empty finite set, called the symbol alphabet, with
cardinality |6|<∞;

(2) Q is a non-empty finite set, called the set of states, with
cardinality |Q|<∞;

(3) δ:Q×6→Q is the state-transition map; and6* is the collec-
tion of all finite-length strings with symbols from6 including
the (zero-length) empty string ε.

Remark II.1. Definition II.1 does not refer to an initial state
because, in a statistically stationary setting, no initial state is
required (Adenis et al., 2012).

Definition II.2. A probabilistic finite state automaton (PFSA) is
constructed upon a DFSA G= (6, Q, δ) as a pair K = (G, π), i.e.,
the PFSA K is a 4-tuple K = (6, Q, δ,π), where (Ray, 2004; Adenis
et al., 2012; Li et al., 2014):

(1) 6, Q, and δ are the same as in Definition II.1;
(2) π̃ : Q × 6 → [0, 1] is the symbol generation function (also

called probability morph function) that satisfies the condition∑
σ∈6 π̃(q, σ) = 1 ∀q ∈ Q, and π ij is the probability of

occurrence of a symbol σ j∈6 at the state qi∈Q.

Definition II.3. A D-Markov machine (Ray, 2004) is a PFSA in
which each state is represented by a finite history of D symbols as
defined by (Ray, 2004; Adenis et al., 2012; Li et al., 2014):

• D is the depth of the Markov machine;
• Q is the finite set of states with cardinality |Q|≤ |6|D, i.e.,

the states are represented by equivalence classes of symbol
strings of maximum length D where each symbol belongs to
the alphabet 6;

• δ:Q×6→Q is the state-transition function that satisfies the
following condition if |Q|= |6|D, then there exist α, β∈6 and
x∈6* such that δ(αx, β)= xβ and αx, xβ∈Q.

Remark II.2. Following Definition II.3, a D-Markov chain is a sta-
tistically stationary stochastic process S= . . .s−1, s0, s1. . . and the
probability of emission of a symbol sn depends only on the last D
symbols. That is, P[sn| · · · sn−D · · · sn−1] = P[sn|sn−D · · · sn−1].

The steps of D-Markov machine construction are as follows:

Step 1: State splitting to generate symbol blocks of different
lengths. Words of length D on a symbol sequence qualify as the
states of the D-Markov machine before the operation of state
merging.
Step 2: State merging to assimilate histories from symbol blocks
leading to the same symbolic behavior (Mukherjee and Ray,
2014) with a reduction in the number of states, i.e., the total
number of states becomes less than or equal to |6|D.

Let the state of a sensor A at the kth instant be denoted as qA
k .

With this notation, the ijth matrix element πA
ij of the (stationary)

state-transition matrix 5A is the probability that qA
k+1 state is i

given that the qA
k state was j, i.e., πA

ij , P
(

qA
k+1 = i | qA

k = j
)

for

an arbitrary instant k.

2.2. PATTERN ANALYSIS OF MULTI-SENSOR INFORMATION
Relational patterns (that are necessary for construction of STPN)
are essentially extracted from the relational probabilistic finite
state automata (PFSA). These PFSA are obtained as xD-Markov
machines to determine cross-dependence as defined below; the
underlying algorithm is described in Subsection 1.

2.2.1. Construction of relational PFSA: xD-Markov machine
This section describes the construction of xD-Markov machines
from two symbol sequences {s1} and {s2} obtained from two differ-
ent sensors (possibly of different modalities) to capture the symbol
level cross-dependence. A formal definition is as follows:

Definition II.4. Let M1 and M2 be the PFSAs corresponding
to symbol streams {s1} and {s2} respectively. Then a xD-Markov
machine is defined as a 5-tupleM1→2 , (Q1, 61, ma2, δ1, 5̃12)

such that:

• 61 = {σ0, ..., σ|61|−1} is the alphabet set of symbol sequence
{s1};

• Q1 = {q1, q2, . . . , q|Q1|} is the state set corresponding to
symbol sequence {s1};

• 62 = {σ0, ..., σ|62|−1} is the alphabet set of symbol sequence
{s2};

• δ1: Q1×61→Q1 is the state-transition mapping that maps the
transition in symbol sequence {s1} from one state to another
upon arrival of a symbol in {s1};

• 5̃12 is the symbol generation matrix of size Q1×62; the ijth

element of 5̃12 denotes the probability of finding the symbol
σ j in the symbol string {s2} while making a transition from the
state qi in the symbol sequence {s1}.

In practice, 5̃12 is reshaped into a vector of lengthQ1×62 and
is treated as the extracted feature vector that is a low-dimensional
representation of the relational dependence between {s1} and {s2}.
This feature vector is called a relational pattern (RP). When both
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symbol sequences are the same, RPs are essentially the atomic pat-
tern (AP) corresponding to the symbol sequence; in that case, the
xD-Markov machine reduces to a simple D-Markov machine. It is
noted that an RP between two symbol sequences is not necessarily
symmetric; therefore, RPs need to be identified for both directions.
It is also useful to quantify cross state-transition matrices5AB and
5BA to quantify the state level cross-dependence between sensors
A and B. As illustrated in Figure 3, elements of the state-transition
matrices 5AB and 5BA corresponding to the cross machines are
expressed as:

πAB
k` , P

(
qB

n+1 = `|q
A
n = k

)
∀n

πBA
ij , P

(
qA

n+1 = j | qB
n = i

)
∀n

where i, k∈QA and i, l∈QB. For a xD-Markov machine, the cross
state-transition matrix is constructed from symbol sequences gen-
erated from two sensors by identifying the probability of occur-
rence of a state in one sensor from another state in the second
sensor. For depth, D= 1 in a xD-Markov machine, a cross state-
transition matrix and the corresponding cross symbol generation
matrix are identical.

2.2.2. Pruning of STPN
From the system perspectives, all APs and RPs need to be con-
sidered in order to model the nominal behaviors and to detect
anomalies. However, it is obvious that there is a scalability issue
if there is a significant number of sensors because the number of
relational patterns increases quadratically with the number of sen-
sors; for example, the number of RPs could be S(S-1) where S is
the total number of sensors and total number of patterns become
S2. The explosion of the pattern space dimension may prohibit the
use of a complete STPN approach for monitoring of large systems
under computational and memory constraints. However, for many
real systems, a large fraction of relational patterns may have a very
low information content due to the lack of their physical (e.g.,
electro-mechanical or via feedback control loop) dependencies.
Therefore, a pruning process needs to be established to identify a
sufficient STPN for a system. This paper adopts an information-
theoretic measure based on Mutual Information to identify the

FIGURE 3 | Illustration of Spatiotemporal Pattern Network (STPN).

importance of an AP or an RP. Mutual information-based crite-
ria have been very popular and useful in general graph pruning
strategies (Butte and Kohane, 2000; Kretzschmar et al., 2011)
including structure learning of Bayesian Networks (de Campos,
2006). In the present context, mutual information quantified on
the corresponding state-transition matrix essentially provides the
information contents of APs and RPs. The concept of network
pruning strategy is briefly described below.

Mutual information for the atomic pattern of sensor A is
expressed as:

I AA
= I

(
qA

n+1; qA
n

)
= H

(
qA

n+1

)
−H

(
qA

n+1|q
A
n

)
where

H
(
qA

n+1

)
= −

QA∑
i=1

P
(
qA

n+1 = i
)

log2P
(
qA

n+1 = i
)

H
(
qA

n+1|q
A
n

)
=

QA∑
i=1

P
(
qA

n = i
)

H
(
qA

n+1|q
A
n = i

)
H
(
qA

n+1|q
A
n = i

)
= −

QA∑
i=1

P
(
qA

n+1 = l|qA
n = i

)
·

log2 P
(
qA

n+1 = l|qA
n = i

)
The quantity IAA essentially captures the temporal self-

prediction capability (self-loop) of the sensor A. However, as an
extreme example, the AP for a random sensor data may not be very
informative and its self mutual information becomes zero under
ideal estimation.

Similarly, mutual information for the relational pattern RAB is
expressed as:

I AB
= I

(
qB

n+1; qA
n

)
= H

(
qB

n+1

)
−H

(
qB

n+1|q
A
n

)
where

H
(
qB

n+1|q
A
n

)
=

QA∑
i=1

P
(
qA

n = i
)

H
(
qB

n+1|q
A
n = i

)
H
(
qB

n+1|q
A
n = i

)
= −

QB∑
i=1

P
(
qB

n+1 = l|qA
n = i

)
·

log2 P
(
qB

n+1 = l|qA
n = i

)
The quantity IAB essentially captures sensor A’s capability of

predicting sensor B’s outputs and vice versa for IBA. Similar to
atomic patterns, an extreme example would be the scenario where
sensors A and B are not co-dependent (i.e., sensor A completely
fails to predict temporal evolution of sensor B). In this case, RAB

is not very informative and IAB will also be zero under ideal
estimation.

Therefore, mutual information is able to assign weights on the
patterns based on their relative importance (i.e., information con-
tent). The next step is to select certain patterns from the entire
library of patterns based on a threshold on the metric. In this
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paper, patterns are selected based on a measure of information
gain due to atomic and relational patterns. Formally, let the total
information gain I tot

G is defined as the sum of mutual information
for all patterns, i.e.,

I tot
G =

∑
(A,B)∈S×S

I AB (1)

where S is set of all sensors. Now, the goal is to eliminate insignif-
icant patterns from the set S ×S of all patterns. Let the set of
rejected patterns be denoted as Prej

⊂S ×S and the correspond-

ing information gain be denoted as I
rej
G . The set of rejected patterns

is chosen such that, for a specified η∈(0, 1),

I
rej
G

I tot
G

< η (2)

where mutual information for any pattern in the reject set
should be smaller than the mutual information for any pattern
in the accepted set Pacc , (S × S)\P rej , which is expressed as
I AB
|(A,B)∈P rej � I CD

|(C ,D)∈Pacc for a sufficiently small η. In this
paper, η is chosen as 0.1 for the validation experiments. In the
pruning strategy, it is possible that all patterns related to ascertain
sensor might be rejected, implying that the sensor is not useful
for the purpose at hand. However, the user may choose to put an
additional constraint of keeping at least one (atomic or relational)
pattern for each sensor in the accepted set of patterns.

Remark II.3. In order to use the STPN for fault detection, a net-
work of PFSA can be identified following the above process under
the nominal condition. Faulty conditions can then be detected
by identifying the changes in parameters related to the accepted
patterns. The structure of the STPN network is considered to
be invariant under various health conditions of the system (i.e.,
nature of information content in different patterns do not change
when there is a fault in the system). However, this conjecture may
not hold under a very large unforeseen change in the system (i.e., a
relational pattern that does not contain much information under
usual circumstances may contain critical information under a large
change in the system) and therefore, the STPN structure may need
to change in that case. In such cases, new structures of the STPN
can signify severely faulty conditions.

3. DESCRIPTION OF SIMULATION TEST BED
A simulation test bed of shipboard auxiliary systems has been
developed for testing the proposed algorithm of sensor fusion in
distributed physical processes. The test bed is built upon the model
of a notational hydraulic system that is coupled with a notional
electrical system under an adjustable thermal loading.

The simulation model is implemented in MATLAB/Simulink
as seen in Figure 4. This distributed notional system is driven
by an external speed command ωref that serves as a set point
for the speed, ωe, of the permanent magnet synchronous motor
(PMSM). A mechanical shaft coupling connects the fixed displace-
ment pump (FDP) to the PMSM. The torque load of the PMSM,
Tm, is obtained from the shaft model of the hydraulic system.
In turn, the speed of the PMSM, ωe, is an input to determine

the angular speed of the shaft, ωs, which drives the FDP and the
cooling fan in the thermal system. In turn, the FDP drives the
hydraulic motor (HM) with a dynamic load, which consists of
the thermal load, Tt, and a time-varying mechanical torque load.
The proportional-integral (PI) controller regulates the PMSMs
electrical frequency under dynamic loading conditions that arise
due to fluctuations in hydraulic and thermal loading. There is
a mechanical coupling between the PMSM and the FDP of the
hydraulic system, which is modeled by a rotational spring-damper
system applied to an inertial load. The mechanical system outputs
the shaft velocity that drives the FDP and the cooling fan of the
thermal system. The pump, in turn, drives the HM through the
pipeline. The HM is subjected to a time-varying load with a profile
defined by the user as well as the thermal load that varies with the
fan efficiency of the cooling mechanism. The systems are further
coupled with a feedback loop since the torque requirement of the
HM is input to the PMSM of the electrical system. The model
has multiple parameters that can simulate various fault condi-
tions. There are multiple sensors in each system with different
modalities such as Hall Effect sensors, torque, speed, current, tem-
perature, and hydraulic pressure sensors that are explained further
in Section 4.

The governing equations of the electrical component model are
as follows:

iq
dt
=

vq − Riq − wLd id − wλf

Lq

id
dt
=

vd − Rid + wLq iq
Ld

wr

dt
=

Te − Tl − Bwr

J

Te =
3

2
P
[
λf iq +

(
Ld − Lq

)
id iq

]
wr =

w

P

where subscripts d and q have their usual significance of direct and
quadrature axes in the equivalent 2-pole representation; v, i, and
L are the corresponding axis voltages, stator currents, and induc-
tances; R and ω are the stator resistance and inverter frequency,
respectively; λf is the flux linkage of the rotor magnets with the
stator; P is the number of pole pairs; Te is the generated electro-
magnetic torque; Tl is the load torque; B is the damping coefficient;
omegar is the rotor speed; and J is the moment of inertia.

The governing equations of the fixed displacement pump
(FDP) model are as follows:

qp = Dpωp − kleak Pp

Tp =
DpPp

ηm

kleak =
kHP

νρ

kHP =
Dpωnom(1− ηv )νnomρ

Pnom
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FIGURE 4 | Notional coupled electrical, hydraulic and thermal systems.

The governing equations of the hydraulic motor (HM) model
are as follows:

ωm =
qm − kleak Pm

Dm

Tm = DmPmηm

kleak =
kHP

νρ

kHP =
Dmwnom (1− ηv ) νnomρ

Pnom
(3)

where the subscripts p and m denote pump and motor parameters,
respectively; the subscript nom denotes nominal values; q and P is
the pressure differentials across delivery and terminal points; T is
the shaft torque; D is the displacement; ω is the angular velocity;
kleak is the flow leakage coefficient; kHP is the Hagen–Poiseuille
coefficient; νv and νm are the volumetric and mechanical efficien-
cies, respectively; and ν and ρ are the fluid kinematic viscosity and
density, respectively.

4. RESULTS AND DISCUSSION
This section presents and discusses the results of validation of the
sensor fusion algorithm on the simulation test bed.

4.1. FAULT INJECTION, SENSORS, DATA PARTITIONING
Each of the electrical, hydraulic, and thermal subsystems of the
shipboard auxiliary system is provided with a set of sensors as
listed in Table 1. In the simulation test bed, selected parameters
in each subsystem can be perturbed to induce faults as listed in
Table 2.

The pertinent assumptions in the execution of fault detection
algorithms are delineated below:

• At any instant of time, the system is subjected to at most one of
the faults mentioned in Table 2, because the occurrence of two
simultaneous faults is rather unlikely in real scenarios.

• The mechanical efficiency of a hydraulic motor or a pump is
assumed to stay constant over the period of observation as the
degradation of machines due to wear and tear occurs at a much
slower rate with respect to the drop in efficiency.

• The dynamical models in the simulation test bed are equipped
with standard commercially available sensors. Exploration of

Table 1 | Sensors of the system.

System Sensor Physical quantity

Electrical Te Torque output of PMSM

We Rotor speed of PMSM

Hydraulic whp Angular velocity of hydraulic pump

Phm Pressure across hydraulic motor (HM)

Thm Torque output of HM

whm Angular velocity of output shaft of HM

Thermal Tf Temperature

Table 2 | Fault parameters of the system.

System Fault parameter Symbol Range

Electrical Flux linkage of PMSM Wb Nominal: 0.05±0.005

Fault: 0.03±0.005

Hydraulic Volumetric efficiency of HM vvm Nominal: 0.9±0.02

Fault: 0.8±0.02

Total efficiency of HM vtm Nominal: 0.8±0.02

Fault: 0.65±0.02

Thermal Thermal efficiency vth Nominal: 0.9±0.02

Fault: 0.8±0.02

other feasible sensors (e.g., ultra-high temperature sensors) to
improve fault detection capabilities is not the focus of this study.

Figure 5 depicts a typical electromagnetic torque output for
nominal and PMSM fault cases. As it is seen that the data itself
is very noisy and, due to feedback control actions, there is no
significant observable difference in the two cases in Figure 5. Infor-
mation integration from disparate sensors has been performed to
enhance the detection and classification accuracy in such critical
fault scenarios.

For all the fault scenarios, 100 samples from each sensor are
equally divided into two parts for training and testing purposes.
For symbolization, maximum-entropy partitioning is used with
alphabet size, |6|= 6 for all sensors although |6| does not need to
be same for individual sensors. The depth for constructing PFSA
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FIGURE 5 | Electromagnetic torque under nominal and PMSM fault
conditions.

states is taken to be D= 1 for construction of both atomic pattern
and relational pattern. A reduced set of these patterns are aggre-
gated to form the composite pattern, which serves as the feature
classified by a k-NN classifier (with k = 5) using the Euclidean
distance metric for fault detection (Bishop, 2006).

4.2. FUSION WITH COMPLETE STPN
One sensor from each of the subsystems (i.e., Tf from thermal
subsystem, Te from electrical subsystem and Thm from hydraulic
subsystem) is selected for sensor fusion to identify component
faults in the system. The composite patterns (CPs) are formed
by concatenating atomic and relational patterns. Therefore, while
patterns with high information content (based on the formula-
tion above) help distinguishing between classes, patterns with low
information content dilutes the ability of separating classes. There-
fore, removing non-informative patterns may lead to reduction of
both false alarm, missed detection rates, and computational com-
plexity. In this study, CPs consist of all possible APs and RPs of
Tf, Te, and Thm. It is seen in Table 3 that CPs perform better for
detection of the nominal condition than individual sensors, but
the false alarm rate is still high.

4.3. PRUNING OF STPN
Pruning of large sensor networks of the given system is attempted
here to reduce the complexity of fusion and improve the detec-
tion accuracy by capturing the essential spatiotemporal dynamics
of the system. Left half of the Figure 6 shows a fully connected
graph of seven sensors of the system where each node is a sensor;
bi-directional arcs among them depict the RPs in both directions
and self-loops are the APs corresponding to sensors.

The right half of Figure 6 demonstrates the pruned STPN,
where the thickness of arcs represents the intensity of mutual infor-
mation of the RPs among sensors. Both directions of arrows are
preserved as the mutual information of the two oppositely directed
RPs for a pair of sensors are comparable. In this example, all the
self loops are kept intact and arcs with negligible mutual informa-
tion are omitted from the graph. With higher η, the RPs (shown

Table 3 | Fault classification accuracy by exhaustive fusion.

Class Tf (%) Te (%) Thm (%) CP (%)

Nominal 32 42 32 68

PMSM fault 30 100 40 84

HM fault 40 100 100 100

Thermal fault 100 58 44 100

FIGURE 6 | Pruning of STPN (Left: complete STPN, Right: pruned
STPN).

with thin lines in Figure 6) among whp, Phm, and Thm will not
be included in the pruned network. In this simulation study, the
structure of the reduced STPN is observed to remain stable for all
the fault classes. The reduction in complexity of network graph is
more significant in larger STPNs. The following two scenarios are
chosen to justify the credibility of the pruned STPN in the light of
fault detection accuracy.

4.3.1. Reduction of false alarm rates
The same set of sensors, namely, Tf, Te, and Thm, are selected as
the STPN and it is subjected to the proposed pruning technique,
which results in a composite pattern of AP of Te (5

Te ) and two
RPs (5ThmTe ,5ThmTf as shown by two thick arcs in Figure 6). This
action significantly reduces the false alarm rate as seen in Table 4,
where APs of Tf and Thm are dropped from the CP because these
patterns do not facilitate better detection. Also PMSM fault detec-
tion accuracy does not degrade from 100% unlike fusion with
complete STPN. Hence, this pruning technique reduces a CP con-
taining 9 patterns (i.e., 3 APs, 6 RPs) to a CP of three APs and
two RPs along with providing better class separability. Note, the
non-informative patterns are actually acting as noise elements in
the bag of patterns for the classification problem. Therefore, elim-
inating them from the stack is essentially analogous to increasing
the signal to noise ratio, which resulted in increased accuracy of
the decision system.

4.3.2. Adaptability to malfunctioning sensors
In a distributed physical process, such as the shipboard auxiliary
system under consideration, malfunctioning of primary sensors
in a subsystem is a plausible event. One of the current challenges
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Table 4 | Comparison of false alarm rate generated by exhaustive

sensor fusion (complete STPN) and pruned STPN.

Fusion type False alarm rate (%)

Complete STPN 32

Pruned STPN 8

Table 5 |Thermal fault detection by sensors of hydraulic subsystem.

whp Phm Thm CP

Detection accuracy 58% 18% 18% 70%

in the fault detection area is to identify a fault in the subsystem
with malfunctioning sensors from the sensor responses of the sub-
systems that are electromechanically connected. To simulate that
situation, three prime heterogenous sensors from the hydraulic
subsystem, namely, whp, Phm, and Thm, are selected and a fault is
injected to the thermal subsystem by degrading the thermal effi-
ciency (see Table 2). The Tf sensor of thermal subsystem is chosen
to be the malfunctioning sensor and hence, it is not incorporated
in the detection process of thermal fault.

As the individual sensors of the hydraulic subsystem performs
rather poorly in detecting thermal faults as seen in Table 5, the
information from these three sensors are fused by applying the
proposed pruning technique on the hydraulic subsystem. The
pruned STPN yields a CP consisting of an AP of whp (5

whp ) and

two RPs, namely,5Phmwhp and5Thmwhp , depicted by two thin arcs
in Figure 6; it results in a decent detection accuracy of 70% as seen
in Table 5.

5. CONCLUSION AND FUTURE WORK
This paper deals with the issue of feature level fusion of mul-
tiple sensor data for data-driven fault detection techniques. The
underlying algorithms are built upon the concepts of symbolic
dynamic filtering (SDF) (Ray, 2004; Mukherjee and Ray, 2014)
to construct a spatiotemporal pattern network from disparate
sensors. The fully connected network is pruned by applying an
information-theoretic approach to reduce computational com-
plexity. In the proposed method, the abstract semantic fusion
framework captures the temporal characteristics of individual sen-
sor observations (i.e., atomic patterns) along with co-dependence
among spatially distributed sensors (i.e., relational patterns) to
construct a fully connected graph of the sensor network. The
pruning strategy preserves the patterns having higher mutual
Information to construct composite patterns that serve as the
primary features for fault detection in real time. The proposed
information fusion method has been validated on a test bed repre-
senting shipboard auxiliary systems. The results show that fusion
with network pruning identifies component faults with a better
accuracy than fusion based on the fully connected sensor network.
The proposed fusion method is computationally less intensive
compared to the state-of-the-art spatiotemporal fusion technique
like Dynamic Bayesian Network (DBN) (Murphy, 2002) in learn-
ing phase. Moreover, compared to other sensor network pruning

techniques, varied time scales of sensors of the network can be
handled in an efficient way by STPN construction in the proposed
technique. The pattern generation technique (SDF) is also com-
pared extensively to the benchmark feature extraction techniques
in Rao et al. (2009) and Bahrampour et al. (2013) and found to
have comparable or better performance in anomaly detection and
classification along with higher computational efficiency. How-
ever, the objective function of the pruning operation does not
involve classification accuracy explicitly. Therefore, comparison
of the current objective function with a classification-oriented
objective function remains an important future work. Although,
the classification performance may get better with such an objec-
tive function, computational complexity, and data availability may
become issues as it will become a supervised pruning scheme as
opposed to the current un-supervised scheme. Apart from this
task, the following research areas are recommended as topics of
future investigation:

• Optimization of the threshold of ratio of mutual informa-
tion η (Section 2) subjected to better fault detection and lesser
complexity.

• Rigorous testing of robustness (e.g., using boosting schemes) of
the pruning strategy over different fault types and classes.

• Validation of the fusion algorithm on larger sensor network of
real distributed systems.

• Comparison between developed method and other state-of-the-
art network pruning and fusion algorithm (both model-driven
and data-driven) for fault detection.

• Comparison with other types of classifiers for the same pruned
network.
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